Chemically Modified Electrodes in Electrochemical Drug Analysis

Author(s): Sariye I. Kaya, Tutku C. Karabulut, Sevinç Kurbanoglu*, Sibel A. Ozkan*

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Electrode modification is a technique performed with different chemical and physical methods using various materials, such as polymers, nanomaterials and biological agents in order to enhance sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods are well suited for drug analysis, and they are all-purpose techniques widely used in environmental studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified electrodes are discussed in terms of modification techniques and agents, and recent studies related to chemically modified electrodes in electrochemical drug analysis are summarized.

Keywords: Modified electrodes, electrochemistry, drug analysis, carbon nanomaterials, inorganic nanomaterials, electronic conductor.

[1]
Brett, C.M.A. Electrochemistry. Principles, Methods and Applications; Oxford University Press, 1993.
[2]
Vire, J.C.; Kauffmann, J-M. Trends in electrochemistry in drug analysis. Curr. Top. Electrochem., 1994.
[3]
Greef, R.; Peat, R.; Peter, L.M.; Pletcher, D.; Robinson, J. Instrumental Methods in Electrochemistry; Ellis Horwood: England, 1990.
[4]
Hart, J.P. Electroanalysis of Biologically Important Compounds; Ellis Horwood, 1990.
[5]
Kurbanoglu, S.; Bozal-Palabiyik, B.; Gumustas, M.; Uslu, B.; Ozkan, S.A.S.A. Investigation of voltammetric behavior and electroanalytical determination of anticancer epirubicin via glassy carbon electrode using differential pulse and square wave voltammetry techniques. Rev. Roum. Chim., 2015, 60(5–6), 491-499.
[6]
Bozal-Palabiyik, B.; Uslu, B. A novel electroanalytical nanosensor based on MWCNT/Fe2O3 nanoparticles for the determination of antiparkinson drug ropinirole. Ionics (Kiel), 2016, 22(1), 115-123.
[http://dx.doi.org/10.1007/s11581-015-1525-9]
[7]
Ozkan, S.A.; Uslu, B. From mercury to nanosensors: Past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal., 2016, 130, 126-140.
[http://dx.doi.org/10.1016/j.jpba.2016.05.006] [PMID: 27210510]
[8]
Wang, J. Analytical Electrochemistry; Third, 2006.
[http://dx.doi.org/10.1002/0471790303]
[9]
Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: definitions and classification. Pure Appl. Chem., 1991, 63(9), 1247-1250.
[http://dx.doi.org/10.1351/pac199163091247]
[10]
Scholz, F.; Stojek, Z.; Inzelt, G.; Marken, F.; Neudeck, A.; Bond, A.M.; Lovric, M.; Retter, U.; Lohse, H.; Compton, R.G. Electroanalytical Methods: Guide to Experiments and Applications, 2nd ed; Scholz, F., Ed.; Springer, 2010.
[http://dx.doi.org/10.1007/978-3-642-02915-8]
[11]
Ozkan, S.A.; Kauffmann, J-M.; Zuman, P. Electroanalysis in Biomedical and Pharmaceutical Sciences; Springer, 2015.
[http://dx.doi.org/10.1007/978-3-662-47138-8]
[12]
Kokkinos, C.; Economou, A.; Giokas, D. Paper-based device with a sputtered tin-film electrode for the voltammetric determination of Cd(II) and Zn(II). Sens. Actuators B Chem., 2018, 260, 223-226.
[http://dx.doi.org/10.1016/j.snb.2017.12.182]
[13]
Santhiago, M.; Henry, C.S.; Kubota, L.T. Low Cost, Simple three dimensional electrochemical paper-based analytical device for determination of p-Nitrophenol. Electrochim. Acta, 2014, 130, 771-777.
[http://dx.doi.org/10.1016/j.electacta.2014.03.109]
[14]
Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta, 2016, 146(228), 801-814.
[http://dx.doi.org/10.1016/j.talanta.2015.06.011] [PMID: 26695333]
[15]
Mohamed, H.M. Screen-printed disposable electrodes: pharmaceutical applications and recent developments. TrAC -. Trends Analyt. Chem., 2016, 82, 1-11.
[http://dx.doi.org/10.1016/j.trac.2016.02.010]
[16]
Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 2007, 73(2), 202-219.
[http://dx.doi.org/10.1016/j.talanta.2007.03.050] [PMID: 19073018]
[17]
Tanner, E.E.L.; Compton, R.G. How can electrode surface modification benefit electroanalysis? Electroanalysis, 2018, 30(7), 1336-1341.
[http://dx.doi.org/10.1002/elan.201700807]
[18]
Goyal, R.; Bishnoi, S. Surface modification in electroanalysis: past, present and future. Indian J. Chem. A, 2012, 51, 205-225.
[19]
Durst, R.A. Chemically modified electrodes: recommended terminology and definitions (IUPAC Recommendations 1997). Pure Appl. Chem., 1997, 69(6), 1317-1324.
[http://dx.doi.org/10.1351/pac199769061317]
[20]
Edwards, G.A.; Bergren, A.J.; Porter, M.D. Chemically Modified Electrodes; Elsevier B.V., 2007.
[21]
Zen, J.M.; Kumar, A.S.; Tsai, D.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15(13), 1073-1087.
[http://dx.doi.org/10.1002/elan.200390130]
[22]
Cheemalapati, S. Chemically modified electrodes-metal nanoparticles. J Clin Bioanal Chem, 2018, 2(1), 2017-2018.
[23]
IUPAC. Isotopomer; IUPAC Compendium of Chemical Terminology, 2014, p. 336.
[24]
Alkire, R.C.; Kolb, D.M.; Lipkowski, J.; Ross, P.N. Chemically Modified Electrodes; Alkire, R.C.; Kolb, D.M.; Lipkowski, J; Ross, P.N., Ed.; Wiley-VCH Pub, 2011, Vol. 11, .
[25]
Samah, N.A.; Sánchez-Martín, M.J.; Sebastián, R.M.; Valiente, M.; López-Mesas, M. Molecularly imprinted polymer for the removal of diclofenac from water: Synthesis and characterization. Sci. Total Environ., 2018, 631-632, 1534-1543.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.087] [PMID: 29727977]
[26]
Si, B.; Song, E. Molecularly imprinted polymers for the selective detection of multi-analyte neurotransmitters. Microelectron. Eng., 2018, 187–188, 58-65.
[http://dx.doi.org/10.1016/j.mee.2017.11.016]
[27]
Shahar, T.; Tal, N.; Mandler, D. Molecularly imprinted polymer particles: formation, characterization and application. Colloids Surf. A Physicochem. Eng. Asp., 2016, 495, 11-19.
[http://dx.doi.org/10.1016/j.colsurfa.2016.01.027]
[28]
Wang, S.; Sun, G.; Chen, Z.; Liang, Y.; Zhou, Q.; Pan, Y.; Zhai, H. Constructing a novel composite of molecularly imprinted polymer-coated aunps electrochemical sensor for the determination of 3-nitrotyrosine. Electrochim. Acta, 2018, 259, 893-902.
[http://dx.doi.org/10.1016/j.electacta.2017.11.033]
[29]
Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron., 2018, 100, 56-70.
[http://dx.doi.org/10.1016/j.bios.2017.08.058] [PMID: 28863325]
[30]
Wu, B.; Chen, X.; Liu, Z.; Jiang, L.; Yuan, Y.; Yan, P.; Zhou, C.; Lei, J. Room temperature curing of acrylate-functionalized polyurethanes based on the solvent-free redox polymerization. Prog. Org. Coat., 2018, 124(June), 16-24.
[http://dx.doi.org/10.1016/j.porgcoat.2018.07.007]
[31]
Mattoussi, M.; Matoussi, F.; Raouafi, N. Non-enzymatic amperometric sensor for hydrogen peroxide detection based on a ferrocene-containing cross-linked redox-active polymer. Sens. Actuators B Chem., 2018, 274(February), 412-418.
[http://dx.doi.org/10.1016/j.snb.2018.07.145]
[32]
Ruff, A. Redox polymers in bioelectrochemistry: common playgrounds and novel concepts. Curr. Opin. Electrochem., 2017, 5(1), 66-73.
[http://dx.doi.org/10.1016/j.coelec.2017.06.007]
[33]
Saleem, M.; Yu, H.; Wang, L.; Zain-ul-Abdin, ; Khalid, H.; Akram, M.; Abbasi, N.M.; Huang, J. Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Anal. Chim. Acta, 2015, 876, 9-25.
[http://dx.doi.org/10.1016/j.aca.2015.01.012] [PMID: 25998454]
[34]
Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Analytica Chimica Acta; Elsevier B.V., 2015, pp. 1-23.
[35]
Kim, J.; Kim, J.H.; Ariga, K. Redox-active polymers for energy storage nanoarchitectonics. Joule, 2017, 1(4), 739-768.
[http://dx.doi.org/10.1016/j.joule.2017.08.018]
[36]
Casado, N.; Hernández, G.; Sardon, H.; Mecerreyes, D. Current trends in redox polymers for energy and medicine. Prog. Polym. Sci., 2016, 52, 107-135.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.08.003]
[37]
Senevirathna, S.T.M.L.D.; Tanaka, S.; Fujii, S.; Kunacheva, C.; Harada, H.; Shivakoti, B.R.; Okamoto, R. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers. Chemosphere, 2010, 80(6), 647-651.
[http://dx.doi.org/10.1016/j.chemosphere.2010.04.053] [PMID: 20546842]
[38]
Information, G.; Studies, D. Ion Exchange Polymers; Meyler’s Side Effects of Drugs, 2016, pp. 307-310.
[39]
Wang, F.; Chen, Y.; Hermens, J.L.M.; Droge, S.T.J. Evaluation of passive samplers with neutral or ion-exchange polymer coatings to determine freely dissolved concentrations of the basic surfactant lauryl diethanolamine: Measurements of acid dissociation constant and organic carbon-water sorption coefficient. J. Chromatogr. A, 2013, 1315, 8-14.
[http://dx.doi.org/10.1016/j.chroma.2013.09.041] [PMID: 24094752]
[40]
Liu, Y.; Pan, L.; Xu, X.; Lu, T.; Sun, Z.; Chua, D.H.C. Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochim. Acta, 2014, 130, 619-624.
[http://dx.doi.org/10.1016/j.electacta.2014.03.086]
[41]
Yang, X.; Kirsch, J.; Olsen, E.V.; Fergus, J.W.; Simonian, A.L. Anti-Fouling PEDOT:PSS modification on glassy carbon electrodes for continuous monitoring of tricresyl phosphate. Sens. Actuators B Chem., 2013, 177, 659-667.
[http://dx.doi.org/10.1016/j.snb.2012.11.057]
[42]
Li, W.B.; Liu, Z.; Meng, Z.F.; Ren, S.; Xu, S.E.; Zhang, Y.; Wang, M.Y. Composite modification mechanism of cationic modifier to amphoteric modified kaolin and its effects on surface characteristics. Int. J. Environ. Sci. Technol., 2016, 13(11), 2639-2648.
[http://dx.doi.org/10.1007/s13762-016-1091-3]
[43]
Agyeman, A.O. Adsorption studies and selective determination of epinephrine at glycerol-clay modified glassy carbon electrode. Int. J. Electrochem. Sci., 2017, 12(10), 9601-9618.
[http://dx.doi.org/10.20964/2017.10.56]
[44]
Kemmegne-Mbouguen, J.C.; Angnes, L.; Mouafo-Tchinda, E.; Ngameni, E. Electrochemical determination of uric acid, dopamine and tryptophan at zinc hexacyanoferrate clay modified electrode. Electroanalysis, 2015, 27(10), 2387-2398.
[http://dx.doi.org/10.1002/elan.201500110]
[45]
Arruda, G.J.; Lima, F.D.; Cardoso, C.A.L. Ultrasensitive determination of carbendazim in water and orange juice using a carbon paste electrode. J. Environ. Sci. Health B, 2016, 51(8), 534-539.
[http://dx.doi.org/10.1080/03601234.2016.1170550] [PMID: 27176928]
[46]
Hashemi, H.S.; Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. A novel cysteine sensor based on modification of carbon paste electrode by Fe(II)-exchanged zeolite X nanoparticles. Mater. Sci. Eng. C, 2016, 58, 286-293.
[http://dx.doi.org/10.1016/j.msec.2015.08.051] [PMID: 26478313]
[47]
Ahmadpour-Mobarakeh, L.; Nezamzadeh-Ejhieh, A. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen. Mater. Sci. Eng. C, 2015, 49, 493-499.
[http://dx.doi.org/10.1016/j.msec.2015.01.028] [PMID: 25686976]
[48]
Daas, B.M.; Ghosh, S. Fuel cell applications of chemically synthesized zeolite modified electrode (zme) as catalyst for alcohol electro-oxidation - a review. J. Electroanal. Chem. (Lausanne Switz.), 2016, 783, 308-315.
[http://dx.doi.org/10.1016/j.jelechem.2016.11.004]
[49]
Norouzi, B.; Moradian, M.; Malekan, A. An efficient amperometric sensor for hydrogen peroxide by using a carbon paste electrode modified with cobalt impregnated zeolite. Port. Electrochem. Acta, 2015, 33(2), 111-124.
[http://dx.doi.org/10.4152/pea.201502111]
[50]
Shahnazari-Shahrezaie, E.; Nezamzadeh-Ejhieh, A. A zeolite modified carbon paste electrode based on copper exchanged clinoptilolite nanoparticles for voltammetric determination of metronidazole. RSC Advances, 2017, 7(23), 14247-14253.
[http://dx.doi.org/10.1039/C6RA28603H]
[51]
Kumar, N.; Kumbhat, S. Essentials. Nanoscience and Nanotechnology; John Wiley & Sons, Inc., 2016, Vol. 8, .
[52]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[53]
Akhgari, F.; Fattahi, H.; Oskoei, Y.M. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sens. Actuators B Chem., 2015, 221, 867-878.
[http://dx.doi.org/10.1016/j.snb.2015.06.146]
[54]
Gogotsi, Y. Carbon Nanomaterials; CRC Press, 2006, Vol. 20065971, .
[http://dx.doi.org/10.1201/9781420009378]
[55]
Siqueira, J.R.; Oliveira, O.N. Carbon-based nanomaterials. Nanostructures; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2016, pp. 233-249.
[56]
Fecht, H.; Brühne, K.; Gluche, P. Carbon-Based Nanomaterials and Hybrids, 2014.
[57]
Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent Trends in Electrochemical Sensors for Multianalyte Detection – A Review. Talanta; Elsevier, 2016, pp. 894-916.
[58]
Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81, 109.
[59]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[60]
Dang, X.; Hu, H.; Wang, S.; Hu, S. Nanomaterials-Based Electrochemical Sensors for Nitric Oxide; Microchimica Acta, 2014, pp. 455-467.
[61]
Rao, C.N.R.; Seshadri, R.; Govindaraj, A.; Sen, R. Fullerenes, nanotubes, onions and related carbon structures. Mater. Sci. Eng. Rep., 1995, 15(6), 209-262.
[http://dx.doi.org/10.1016/S0927-796X(95)00181-6]
[62]
Partha, R.; Conyers, J.L. biomedical Applications Of Functionalized Nanomaterials : Concepts. Int. J. Nanomedicine, 2009, 4, 261-275.
[PMID: 20011243]
[63]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[http://dx.doi.org/10.1021/acs.chemrev.5b00008] [PMID: 25997028]
[64]
Kempahanumakkagari, S.; Deep, A.; Kim, K.H.; Kumar Kailasa, S.; Yoon, H.O. Nanomaterial-based electrochemical sensors for arsenic - A review. Biosens. Bioelectron., 2017, 95(April), 106-116.
[http://dx.doi.org/10.1016/j.bios.2017.04.013] [PMID: 28431363]
[65]
Marín, S.; Merkoçi, A. Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis, 2012, 24(3), 459-469.
[http://dx.doi.org/10.1002/elan.201100576]
[66]
Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S., Eds.; Springer, 2007, Vol. 111, .
[67]
Terrones, M.; Ajayan, P.M.; Banhart, F.; Blase, X.; Carroll, D.L.; Charlier, J.C.; Czerw, R.; Foley, B.; Grobert, N.; Kamalakaran, R. N-Doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys., A Mater. Sci. Process., 2002, 74(3), 355-361.
[http://dx.doi.org/10.1007/s003390201278]
[68]
Jiang, K.; Eitan, A.; Schadler, L.S.; Ajayan, P.M.; Siegel, R.W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett., 2003, 3(3), 275-277.
[http://dx.doi.org/10.1021/nl025914t]
[69]
Poh, H.L.; Pumera, M. Nanoporous carbon materials for electrochemical sensing. Chem. Asian J., 2012, 7(2), 412-416.
[http://dx.doi.org/10.1002/asia.201100681] [PMID: 22162295]
[70]
Lee, J.; Han, S.; Hyeon, T. Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J. Mater. Chem., 2004, 14(4), 478.
[http://dx.doi.org/10.1039/b311541k]
[71]
Huang, J.; Liu, Y.; You, T. Carbon nanofiber based electrochemical biosensors: a review. Anal. Methods, 2010, 2(3), 202.
[http://dx.doi.org/10.1039/b9ay00312f]
[72]
Gogotsi, Y. Nanotubes & Nanofibers; CRC Press, 2006.
[http://dx.doi.org/10.1201/9781420009385]
[73]
Zhu, S.; Xu, G. Single-walled carbon nanohorns and their applications. Nanoscale, 2010, 2(12), 2538-2549.
[http://dx.doi.org/10.1039/c0nr00387e] [PMID: 20957266]
[74]
Terzyk, A.P.; Gauden, P.A.; Furmaniak, S.; Werengoxska-Ciecwiers, K.; Kowalczyk, P.; Wisniewski, M. Carbon Nanohorns; Carbon Nanomaterials Sourcebook, 2012, pp. 75-114.
[75]
Corr, S.A. Metal Oxide Nanoparticles. SPR Nanosci., 2016, 3(October), 31-56.
[http://dx.doi.org/10.1039/9781782623717-00031]
[76]
Viswanathan, S.; Manisankar, P. Nanomaterials for electrochemical sensing and decontamination of pesticides. J. Nanosci. Nanotechnol., 2015, 15(9), 6914-6923.
[http://dx.doi.org/10.1166/jnn.2015.10724] [PMID: 26716263]
[77]
Oskam, G. Metal oxide nanoparticles: synthesis, characterization and application. J. Sol-Gel Sci. Technol., 2006, 37(3), 161-164.
[http://dx.doi.org/10.1007/s10971-005-6621-2]
[78]
Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC -. Trends Analyt. Chem., 2016, 76, 15-29.
[http://dx.doi.org/10.1016/j.trac.2015.09.006]
[79]
Rao, C.N.R.; Kulkarni, G.U.; Thomas, P.J.; Edwards, P.P. Metal nanoparticles and their assemblies. Chem. Soc. Rev., 2000, 29(1), 27-35.
[http://dx.doi.org/10.1039/a904518j]
[80]
Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of Nanoparticles in Electrochemical Sensors and Biosensors.Electroanalysis; Wiley-Blackwell, 2006, pp. 1February. 319-326.
[81]
Foss, C.; Feldheim, D. Metal Nanoparticles; CRC Press, 2001.
[http://dx.doi.org/10.1201/9780585404394]
[82]
Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. HHS Public Access., 2016, 17-37.
[83]
Schadler, L.S. Polymer-Based and Polymer-Filled Nanocomposites; Nanocomposite Science and Technology, 2003, pp. 77-153.
[http://dx.doi.org/10.1002/3527602127.ch2]
[84]
Yao, J.; Li, L.; Li, P.; Yang, M. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. Nanoscale, 2017, 9(36), 13364-13383.
[http://dx.doi.org/10.1039/C7NR05233B] [PMID: 28880034]
[85]
Huang, H.; Zhu, J-J. The electrochemical applications of quantum dots. Analyst (Lond.), 2013, 138(20), 5855-5865.
[http://dx.doi.org/10.1039/c3an01034a] [PMID: 23905161]
[86]
Rowland, C.E.; Brown, C.W.; Delehanty, J.B.; Medintz, I.L. Nanomaterial-Based Sensors for the Detection of Biological Threat Agents. Materials Today; Elsevier Ltd., 2016, pp. 464-477.
[87]
Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; John Wiley & Sons, 1999.
[88]
Wang, G. Nanowires of Functional Oxides BT - Nanowires and Nanobelts: Materials, Properties and Devices; Nanowires and Nanobelts of Functional Materials, 2003, Vol. 2, pp. 113-137.
[http://dx.doi.org/10.1007/978-0-387-28747-8_7]
[89]
Alagiri, M.; Rameshkumar, P.; Pandikumar, A. Gold nanorod-based electrochemical sensing of small biomolecules: a review. Microchimica Acta. Microchimica Acta, 2017, 3069-3092.
[90]
Chang, Yu. S., -S.; Lee, C.-L.; Wang, C. R. C. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B, 1997, 101(34), 6661-6664.
[http://dx.doi.org/10.1021/jp971656q]
[91]
Huang, X.; Neretina, S.; El-Sayed, M.A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater., 2009, 21(48), 4880-4910.
[http://dx.doi.org/10.1002/adma.200802789] [PMID: 25378252]
[92]
Huang, J.; Zhang, X.; Lin, Q.; He, X.; Xing, X.; Huai, H.; Lian, W.; Zhu, H. Electrochemical sensor based on imprinted sol-gel and nanomaterials for sensitive determination of bisphenol A. Food Control, 2011, 22(5), 786-791.
[http://dx.doi.org/10.1016/j.foodcont.2010.11.017]
[93]
Cummins, W.; Duggan, P.; McLoughlin, P. A comparative study of the potential of acrylic and sol-gel polymers for molecular imprinting. Anal. Chim. Acta, 2005, 542(1 SPEC. ISS.), 52-60.
[http://dx.doi.org/10.1016/j.aca.2005.01.042]
[94]
Xu, G.; Zhang, H.; Zhong, M.; Zhang, T.; Lu, X.; Kan, X. Imprinted sol-gel electrochemical sensor for melamine direct recognition and detection. J. Electroanal. Chem. (Lausanne Switz.), 2014, 713, 112-118.
[http://dx.doi.org/10.1016/j.jelechem.2013.12.004]
[95]
Li, G.; Zha, J.; Niu, M.; Hu, F.; Hui, X.; Tang, T.; Fizir, M.; He, H. Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Appl. Clay Sci., 2018, 162(June), 409-417.
[http://dx.doi.org/10.1016/j.clay.2018.06.003]
[96]
Asyraf, M.; Anwar, M.; Sheng, L.M.; Danquah, M.K. Recent Development of Nanomaterial-Doped Conductive Polymers; JOM; Springer: US, 2017, pp. 2515-2523.
[97]
Kołodziejczyk, K.; Miękoś, E.; Zieliński, M.; Jaksender, M.; Szczukocki, D.; Czarny, K.; Krawczyk, B. Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions. J. Solid State Electrochem., 2018, 1629-1647.
[http://dx.doi.org/10.1007/s10008-017-3875-x]
[98]
Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive Polymers for Smart Textile Applications; , 2018, Vol. 48, .
[99]
Naseri, M.; Fotouhi, L.; Ehsani, A. Recent progress in the development of conducting polymer-based nanocomposites for electrochemical biosensors applications: a mini-review. Chem. Rec., 2018, 18(6), 599-618.
[http://dx.doi.org/10.1002/tcr.201700101] [PMID: 29460399]
[100]
Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A.M. Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev., 2018, 118(14), 6766-6843.
[http://dx.doi.org/10.1021/acs.chemrev.6b00275] [PMID: 29969244]
[101]
Cinti, S. Polymeric materials for printed-based electroanalytical (bio)applications. Chemosensors (Basel), 2017, 5(4), 31.
[http://dx.doi.org/10.3390/chemosensors5040031]
[102]
Gracia, R.; Mecerreyes, D. Polymers with redox properties: materials for batteries, biosensors and more. Polym. Chem., 2013, 4(7), 2206-2214.
[http://dx.doi.org/10.1039/c3py21118e]
[103]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Nonhydrolytic sol-gel derived imprinted polymer-multiwalled carbon nanotubes composite fiber sensors for electrochemical sensing of uracil and 5-fluorouracil. Electrochim. Acta, 2012, 71, 106-115.
[http://dx.doi.org/10.1016/j.electacta.2012.03.110]
[104]
Moretti, E. dos S. de Fátima Giarola, J.; Kuceki, M.; Prete, M.C.; Pereira, A.C.; Teixeira Tarley, C.R. A nanocomposite based on multi-walled carbon nanotubes grafted by molecularly imprinted poly(methacrylic acid–hemin) as a peroxidase-like catalyst for biomimetic sensing of acetaminophen. RSC Advances, 2016, 6(34), 28751-28760.
[http://dx.doi.org/10.1039/C6RA02150F]
[105]
Merli, D.; Dondi, D.; Pesavento, M.; Profumo, A. Electrochemistry of olanzapine and risperidone at carbon nanotubes modified gold electrode through classical and dft approaches. J. Electroanal. Chem. (Lausanne Switz.), 2012, 683, 103-111.
[http://dx.doi.org/10.1016/j.jelechem.2012.08.011]
[106]
Goyal, R.N.; Bishnoi, S. Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry, 2010, 79(2), 234-240.
[http://dx.doi.org/10.1016/j.bioelechem.2010.06.004] [PMID: 20615763]
[107]
Bai, H.; Wang, C.; Chen, J.; Peng, J.; Cao, Q. A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens. Bioelectron., 2015, 64, 352-358.
[http://dx.doi.org/10.1016/j.bios.2014.09.034] [PMID: 25259878]
[108]
Bali Prasad, B.; Jauhari, D.; Tiwari, M.P. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens. Bioelectron., 2013, 50, 19-27.
[http://dx.doi.org/10.1016/j.bios.2013.05.062] [PMID: 23831643]
[109]
Fouladgar, M. Electrocatalytic measurement of trace amount of captopril using multiwall carbon nanotubes as a sensor and ferrocene as a mediator. Int. J. Electrochem. Sci., 2011, 6(3), 705-716.
[110]
Karimian, N.; Gholivand, M.B.; Malekzadeh, G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2016, 771, 64-72.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.042]
[111]
Nezhadali, A.; Sadeghzadeh, S. Experimental design-artificial neural network-genetic algorithm optimization and computer-assisted design of celecoxib molecularly imprinted polymer/carbon nanotube sensor. J. Electroanal. Chem. (Lausanne Switz.), 2017, 795(January), 32-40.
[http://dx.doi.org/10.1016/j.jelechem.2017.04.032]
[112]
Motaharian, A.; Hosseini, M.R.M. Electrochemical sensor based on a carbon paste electrode modified by graphene nanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug. Anal. Methods, 2016, 8(33), 6305-6312.
[http://dx.doi.org/10.1039/C6AY01594H]
[113]
Bagheri, H.; Khoshsafar, H.; Amidi, S.; Hosseinzadeh Ardakani, Y. Fabrication of an electrochemical sensor based on magnetic multi-walled carbon nanotubes for the determination of ciprofloxacin. Anal. Methods, 2016, 8(16), 3383-3390.
[http://dx.doi.org/10.1039/C5AY03410H]
[114]
Milani Hosseini, M.R.; Motaharian, A. Electroanalytical determination of diazepam in tablet and human serum samples using a multiwalled carbon nanotube embedded molecularly imprinted polymer-modified carbon paste electrode. RSC Advances, 2015, 5(99), 81650-81659.
[http://dx.doi.org/10.1039/C5RA11598A]
[115]
Karuppiah, C.; Cheemalapati, S.; Chen, S.M.; Palanisamy, S. Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics (Kiel), 2014, 21(1), 231-238.
[http://dx.doi.org/10.1007/s11581-014-1161-9]
[116]
Mokhtari, A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens. Actuators B Chem., 2012, 169, 96-105.
[http://dx.doi.org/10.1016/j.snb.2012.03.059]
[117]
Do, P.T.; Do, P.Q.; Nguyen, H.B.; Nguyen, V.C.; Tran, D.L.; Le, T.H.; Nguyen, L.H.; Pham, H.V.; Nguyen, T.L.; Tran, Q.H. A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. J. Mol. Liq., 2014, 198, 307-312.
[http://dx.doi.org/10.1016/j.molliq.2014.07.029]
[118]
Canevari, T.C.; Nakamura, M.; Cincotto, F.H.; De Melo, F.M.; Toma, H.E. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim. Acta, 2016, 209, 464-470.
[http://dx.doi.org/10.1016/j.electacta.2016.05.108]
[119]
Sikkander, A.R.M.; Vedhi, C.; Manisankar, P. Electrochemical determination of calcium channel blocker drugs using multiwall carbon nanotube-modified glassy carbon electrode. Int. J. Ind. Chem., 2012, 3(1), 1-8.
[http://dx.doi.org/10.1186/2228-5547-3-29]
[120]
Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron., 2016, 81, 198-206.
[http://dx.doi.org/10.1016/j.bios.2016.02.052] [PMID: 26946258]
[121]
Bali Prasad, B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron., 2017, 94, 1-9.
[http://dx.doi.org/10.1016/j.bios.2017.02.028] [PMID: 28237900]
[122]
Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Imprinting molecular recognition sites on multiwalled carbon nanotubes surface for electrochemical detection of insulin in real samples. Electrochim. Acta, 2010, 55(28), 9146-9156.
[http://dx.doi.org/10.1016/j.electacta.2010.09.008]
[123]
Han, S.; Li, B.; Song, Z.; Pan, S.; Zhang, Z.; Yao, H.; Zhu, S.; Xu, G. A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode. Analyst (Lond.), 2016, 142(1), 218-223.
[http://dx.doi.org/10.1039/C6AN02338J] [PMID: 27922643]
[124]
Madrakian, T.; Haghshenas, E.; Ahmadi, M.; Afkhami, A. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens. Bioelectron., 2015, 68, 712-718.
[http://dx.doi.org/10.1016/j.bios.2015.02.001] [PMID: 25679118]
[125]
Cheemalapati, S.; Devadas, B.; Chen, S-M. Novel Poly-l-Lysine/Carboxyl-Group enriched graphene oxide/modified electrode preparation, characterization and applications for the electrochemical determination of meloxicam in pharmaceutical tablets and blood serum. Anal. Methods, 2014, 6(20), 8426-8434.
[http://dx.doi.org/10.1039/C4AY01611D]
[126]
Azodi-Deilami, S.; Asadi, E.; Abdouss, M.; Ahmadi, F.; Najafabadi, A.H.; Farzaneh, S. Determination of meloxicam in plasma samples using a highly selective and sensitive voltammetric sensor based on carbon paste electrodes modified by molecularly imprinted polymer nanoparticle–multiwall carbon nanotubes. Anal. Methods, 2015, 7(4), 1280-1292.
[http://dx.doi.org/10.1039/C4AY02034K]
[127]
Soleimani, M.; Afshar, M.G.; Ganjali, M.R. High selective methadone sensor based on molecularly imprinted polymer carbon paste electrode modified with carbon nanotubes. Sens. Lett., 2013, 11(10), 1983-1991.
[http://dx.doi.org/10.1166/sl.2013.3019]
[128]
Lopes, F.; Pacheco, J.G.; Rebelo, P.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection. Sens. Actuators B Chem., 2017, 243, 745-752.
[http://dx.doi.org/10.1016/j.snb.2016.12.031]
[129]
Zarei, K.; Fatemi, L.; Kor, K. Stripping voltammetric determination of nicardipine using β-cyclodextrin incorporated carbon nanotube-modified glassy carbon electrode. J. Anal. Chem., 2015, 70(5), 615-620.
[http://dx.doi.org/10.1134/S1061934815050184]
[130]
Gaichore, R.; Srivastava, A.K. Voltammetric determination of nifedipine using a β-cyclodextrin modified multi-walled carbon nanotube paste electrode. Sens. Actuators B Chem., 2013, 188, 1328-1337.
[http://dx.doi.org/10.1016/j.snb.2013.08.052]
[131]
Kor, K.; Zarei, K. B‐cyclodextrin incorporated carbon nanotube paste electrode as electrochemical sensor for nifedipine. Electroanalysis, 2013, 25(6), 1497-1504.
[http://dx.doi.org/10.1002/elan.201200652]
[132]
Wang, C.; Shao, X.; Liu, Q.; Qu, Q.; Yang, G.; Hu, X. Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs base on electrochemical oxidation of L-cysteine. J. Pharm. Biomed. Anal., 2006, 42(2), 237-244.
[http://dx.doi.org/10.1016/j.jpba.2006.03.038] [PMID: 16769191]
[133]
Zhang, J.; Tan, X.; Zhao, D.; Tan, S.; Huang, Z.; Mi, Y.; Huang, Z. Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes. Electrochim. Acta, 2010, 55(7), 2522-2526.
[http://dx.doi.org/10.1016/j.electacta.2009.12.019]
[134]
Tan, F.; Zhao, Q.; Teng, F.; Sun, D.; Gao, J.; Quan, X.; Chen, J. Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin. Mater. Lett., 2014, 129, 95-97.
[http://dx.doi.org/10.1016/j.matlet.2014.05.039]
[135]
Jiang, Z.; Li, G.; Zhang, M. A novel sensor based on bifunctional monomer molecularly imprinted film at graphene modified glassy carbon electrode for detecting traces of moxifloxacin. RSC Advances, 2016, 6(39), 32915-32921.
[http://dx.doi.org/10.1039/C6RA01494A]
[136]
Peng, Y.; Wu, Z.; Liu, Z. An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted o-phenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2014, 6(15), 5673-5681.
[http://dx.doi.org/10.1039/C4AY00753K]
[137]
Abbaspour, A.; Mirzajani, R. Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. J. Pharm. Biomed. Anal., 2007, 44(1), 41-48.
[http://dx.doi.org/10.1016/j.jpba.2007.01.027] [PMID: 17324550]
[138]
Gholivand, M.B.; Karimian, N. Development of piroxicam sensor based on molecular imprinted polymer-modified carbon paste electrode. Mater. Sci. Eng. C, 2011, 31(8), 1844-1851.
[http://dx.doi.org/10.1016/j.msec.2011.08.019]
[139]
Wong, A.; Santos, A.M.; Fatibello-Filho, O. Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS. J. Electroanal. Chem. (Lausanne Switz.), 2017, 799(February), 547-555.
[http://dx.doi.org/10.1016/j.jelechem.2017.06.055]
[140]
Shahrokhian, S.; Jokar, E.; Ghalkhani, M. Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan. Mikrochim. Acta, 2010, 170(1), 141-146.
[http://dx.doi.org/10.1007/s00604-010-0373-6]
[141]
Babaei, A.; Sohrabi, M.; Afrasiabi, M. A sensitive simultaneous determination of epinephrine and piroxicam using a glassy carbon electrode modified with a nickel hydroxide nanoparticles/multiwalled carbon nanotubes composite. Electroanalysis, 2012, 24(12), 2387-2394.
[http://dx.doi.org/10.1002/elan.201200483]
[142]
Babaei, A.; Afrasiabi, M. A glassy carbon electrode modified with mcm-41/nickel hydroxide nanoparticle/multiwalled carbon nanotube composite as a sensor for the simultaneous determination of dopamine, piroxicam, and cefixime. Ionics (Kiel), 2015, 21(6), 1731-1740.
[http://dx.doi.org/10.1007/s11581-014-1339-1]
[143]
Afkhami, A.; Ghaedi, H. Multiwalled carbon nanotube paste electrode as an easy, inexpensive and highly selective sensor for voltammetric determination of risperidone. Anal. Methods, 2012, 4(5), 1415-1420.
[http://dx.doi.org/10.1039/c2ay05688g]
[144]
Rezaei, B.; Mirahmadi-Zare, S.Z. Nanoscale manipulation of prednisolone as electroactive configuration using molecularly imprinted-multiwalled carbon nanotube paste electrode. Electroanalysis, 2011, 23(11), 2724-2734.
[http://dx.doi.org/10.1002/elan.201100261]
[145]
Prasad, B.B.; Kumar, A.; Singh, R. Molecularly imprinted polymer-based electrochemical sensor using functionalized fullerene as a nanomediator for ultratrace analysis of primaquine. Carbon N. Y., 2016, 109, 196-207.
[http://dx.doi.org/10.1016/j.carbon.2016.07.044]
[146]
Rezaei, B.; Majidi, N.; Ensafi, A.A.; Karimi-Maleh, H. Molecularly imprinted-multiwall carbon nanotube paste electrode as a biosensor for voltammetric detection of rutin. Anal. Methods, 2011, 3(11), 2510-2516.
[http://dx.doi.org/10.1039/c1ay05271c]
[147]
Bougrini, M.; Florea, A.; Cristea, C.; Sandulescu, R.; Vocanson, F.; Errachid, A.; Bouchikhi, B.; El Bari, N.; Jaffrezic-Renault, N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey. Food Control, 2016, 59, 424-429.
[http://dx.doi.org/10.1016/j.foodcont.2015.06.002]
[148]
Soleimani, M.; Afshar, M.G.; Shafaat, A.; Crespo, G.A. High-selective tramadol sensor based on modified molecularly imprinted polymer-carbon paste electrode with multiwalled carbon nanotubes. Electroanalysis, 2013, 25(5), 1159-1168.
[http://dx.doi.org/10.1002/elan.201200601]
[149]
Nezhadali, A.; Mojarrab, M. Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2015, 744, 85-94.
[http://dx.doi.org/10.1016/j.jelechem.2015.03.010]
[150]
Fathirad, F.; Mostafavi, A.; Afzali, D. Conductive polymeric ionic liquid/fe3o4 nanocomposite as an efficient catalyst for the voltammetric determination of amlodipine besylate. J. AOAC Int., 2017, 100(2), 406-413.
[http://dx.doi.org/10.5740/jaoacint.16-0216] [PMID: 28118570]
[151]
Meng, X.; Xu, Z.; Wang, M.; Yin, H.; Ai, S. Electrochemical behavior of Antipyrine at a Bi 2 S 3 modified glassy carbon electrode and its determination in pharmaceutical formulations. Anal. Methods, 2012, 16.
[152]
Beitollahi, H.; Ghofrani Ivari, S.; Alizadeh, R.; Hosseinzadeh, R. Preparation, characterization and electrochemical application of ZnO-CuO nanoplates for voltammetric determination of captopril and tryptophan using modified carbon paste electrode. Electroanalysis, 2015, 27(7), 1742-1749.
[http://dx.doi.org/10.1002/elan.201500016]
[153]
Ghoreishi, S.M.; Karamali, E.; Khoobi, A.; Enhessari, M. Preparation of a manganese titanate nanosensor: Application in electrochemical studies of captopril in the presence of para-aminobenzoic acid. Anal. Biochem., 2015, 487, 49-58.
[http://dx.doi.org/10.1016/j.ab.2015.07.008] [PMID: 26226644]
[154]
Jain, R. Dhanjai. An electrochemical sensor based on synergistic effect of nano zinc oxide-multiwalled carbon nanotubes hybrid film for sensing of calcium antagonist cilnidipine. J. Electrochem. Soc., 2013, 160(10), H645-H652.
[http://dx.doi.org/10.1149/2.009310jes]
[155]
Fathi, M.R.; Almasifar, D. Electrochemical sensor for square wave voltammetric determination of clozapine by glassy carbon electrode modified by WO3 Nnanoparticles. IEEE Sens. J., 2017, 17(18), 6069-6076.
[http://dx.doi.org/10.1109/JSEN.2017.2735304]
[156]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. An electrochemical sensor for Clozapine at Ruthenium Doped TiO2 nanoparticles modified electrode. Sens. Actuators B Chem., 2017, 247, 858-867.
[http://dx.doi.org/10.1016/j.snb.2017.03.102]
[157]
Mashhadizadeh, M.H.; Afshar, E. Electrochimica Acta Electrochemical Investigation of Clozapine at TiO 2 Nanoparticles Modified Carbon Paste Electrode and Simultaneous Adsorptive Voltammetric Determination of Two Antipsychotic Drugs; Elsevier, 2015, pp. 2015-2017.
[158]
Qu, S.; Pei, S.; Zhang, S.; Song, P. Preparation of silicate nanotubes and its application for electrochemical sensing of clozapine. Mater. Lett., 2013, 102–103, 56-58.
[http://dx.doi.org/10.1016/j.matlet.2013.03.108]
[159]
Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/β-Alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Actuators B Chem., 2017, 241, 879-886.
[http://dx.doi.org/10.1016/j.snb.2016.11.014]
[160]
Prasad, B.B.; Singh, R.; Kumar, A. Gold nanorods: vs. gold nanoparticles: application in electrochemical sensing of cytosine β-d-arabinoside using metal ion mediated molecularly imprinted polymer. RSC Advances, 2016, 6(84), 80679-80691.
[http://dx.doi.org/10.1039/C6RA14097A]
[161]
Manea, F.; Ihos, M.; Remes, A.; Burtica, G.; Schoonman, J. Electrochemical determination of diclofenac sodium in aqueous solution on cu-doped zeolite-expanded graphite-epoxy electrode. Electroanalysis, 2010, 22(17–18), 2058-2063.
[http://dx.doi.org/10.1002/elan.201000074]
[162]
Chethana, B.K.; Basavanna, S.; Naik, Y.A. Voltammetric determination of diclofenac sodium using tyrosine- modified carbon paste electrode. Ind. Eng. Chem. Res., 2012, 51(31), 10287-10295.
[http://dx.doi.org/10.1021/ie202921e]
[163]
Beltagi, A.M. Utilization of a Montmorillonite-Ca-modified carbon paste electrode for the stripping voltammetric determination of diflunisal in its pharmaceutical formulations and human blood. J. Appl. Electrochem., 2009, 39(12), 2375-2384.
[http://dx.doi.org/10.1007/s10800-009-9924-0]
[164]
Teixeira, M.; Marcolino-Junior, L.; Fatibello-Filho, O.; Moraes, F.; Nunes, R. determination of analgesics (dipyrone and acetaminophen) in pharmaceutical preparations by cyclic voltammetry at a Copper(II) Hexacyanoferrate(III) modified carbon paste electrode. Curr. Anal. Chem., 2009, 5(4), 303-310.
[http://dx.doi.org/10.2174/157341109789077759]
[165]
Wang, Y.; Han, M.; Liu, G.; Hou, X.; Huang, Y.; Wu, K.; Li, C. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens. Bioelectron., 2015, 74, 792-798.
[http://dx.doi.org/10.1016/j.bios.2015.07.046] [PMID: 26232004]
[166]
Liu, Y.; Liu, J.; Liu, J.; Gan, W.; Ye, B. ce; Li, Y. Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres. Mikrochim. Acta, 2017, 184(5), 1285-1294.
[http://dx.doi.org/10.1007/s00604-017-2124-4]
[167]
Santini, A.O.; de Oliveira, J.E.; Pezza, H.R.; Pezza, L. A new potentiometric ibuprofenate ion sensor immobilized in a graphite matrix for determination of ibuprofen in tablets. Microchem. J., 2006, 84(1–2), 44-49.
[http://dx.doi.org/10.1016/j.microc.2006.04.007]
[168]
Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection. Nanoscale Res. Lett., 2012, 7(1), 331.
[http://dx.doi.org/10.1186/1556-276X-7-331] [PMID: 22720725]
[169]
Roushani, M.; Shahdost-Fard, F. Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode. Talanta, 2015, 144, 510-516.
[http://dx.doi.org/10.1016/j.talanta.2015.06.052] [PMID: 26452855]
[170]
Roushani, M.; Nezhadali, A.; Jalilian, Z.; Azadbakht, A. Development of novel electrochemical sensor on the base of molecular imprinted polymer decorated on SiC nanoparticles modified glassy carbon electrode for selective determination of loratadine. Mater. Sci. Eng. C, 2017, 71, 1106-1114.
[http://dx.doi.org/10.1016/j.msec.2016.11.079] [PMID: 27987666]
[171]
Roy, E.; Patra, S.; Madhuri, R.; Sharma, P.K. Gold nanoparticle mediated designing of non-hydrolytic sol-gel cross-linked metformin imprinted polymer network: a theoretical and experimental study. Talanta, 2014, 120, 198-207.
[http://dx.doi.org/10.1016/j.talanta.2013.11.074] [PMID: 24468360]
[172]
Li, Y.; Liu, Y.; Liu, J.; Liu, J.; Tang, H.; Cao, C.; Zhao, D.; Ding, Y. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci. Rep., 2015, 5(1), 7699.
[http://dx.doi.org/10.1038/srep07699] [PMID: 25572290]
[173]
Li, Y.; Liu, Y.; Yang, Y.; Yu, F.; Liu, J.; Song, H.; Liu, J.; Tang, H.; Ye, B.C.; Sun, Z. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS Appl. Mater. Interfaces, 2015, 7(28), 15474-15480.
[http://dx.doi.org/10.1021/acsami.5b03755] [PMID: 26126643]
[174]
Chen, D.; Deng, J.; Liang, J.; Xie, J.; Hu, C.; Huang, K. A core-shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole. Sens. Actuators B Chem., 2013, 183, 594-600.
[http://dx.doi.org/10.1016/j.snb.2013.04.050]
[175]
Norouzi, P.; Dousty, F.; Ganjali, M.R.; Daneshgar, P. Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formulation and biological fluid. Int. J. Electrochem. Sci., 2009, 4, 1373-1386.
[176]
Baghayeri, M.; Namadchian, M. … H. K.-M. Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of ag nanoparticles at the surface of glassy carbon electrode. J. Electroanal. Chem. (Lausanne Switz.), 2013, 697, 53-59.
[http://dx.doi.org/10.1016/j.jelechem.2013.03.011]
[177]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadood, H.M.; Banks, C.E. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens. Actuators B Chem., 2017, 252, 1045-1054.
[http://dx.doi.org/10.1016/j.snb.2017.06.105]
[178]
Ghavami, R.; Navaee, A. Determination of nimesulide in human serum using a glassy carbon electrode modified with SiCn anoparticles. Mikrochim. Acta, 2012, 176(3–4), 493-499.
[http://dx.doi.org/10.1007/s00604-011-0710-4]
[179]
Arvand, M.; Orangpour, S.; Ghodsi, N. Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. Rsc Adv., 2015, 5(57), 46095-46103.
[http://dx.doi.org/10.1039/C5RA00061K]
[180]
Gholivand, M.B.; Malekzadeh, G.; Derakhshan, A.A. Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam. Sens. Actuators B Chem., 2014, 201, 378-386.
[http://dx.doi.org/10.1016/j.snb.2014.04.054]
[181]
Shaikh, T. uddin, S. J.; Talpur, F. N.; Khaskeli, A. R.; Agheem, M. H.; Shah, M. R.; Sherazi, T. H.; Siddiqui, S. Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode. J. Electron. Mater., 2017, 46(10), 5957-5966.
[http://dx.doi.org/10.1007/s11664-017-5573-y]
[182]
Norouzi, P.; Ganjali, M.R.; Labbafi, S.; Mohammadi, A. Subsecond FFT-adsorptive voltammetric technique as a novel method for subnano level monitoring of piroxicam in its tablets and bulk form at au microelectrode in flowing solutions. Anal. Lett., 2007, 40(4), 747-762.
[http://dx.doi.org/10.1080/00032710601017888]
[183]
Norouzi, P.; Ghaheri, N. β-Cyclodextrine modified carbon paste electrode as a selective sensor for determination of piroxicam using flow injection cyclic voltammerty analytical & bioanalytical electrochemistry. Anal. Bioanal. Electrochem. Anal. Bioanal. Electrochem, 2011, 3(1), 87-101.
[184]
Karim-Nezhad, G.; Khorablou, Z.; Dorraji, P. Applications of polymer and nanoscale carbon-based materials in piroxicam sensing and detection. Sens. Lett., 2017, 15(3), 282-288.
[http://dx.doi.org/10.1166/sl.2017.3808]
[185]
Güney, S.; Cebeci, F. Selective electrochemical sensor for theophylline based on an electrode modified with imprinted sol-gel film immobilized on carbon nanoparticle layer. Sens. Actuators B Chem., 2015, 208, 307-314.
[http://dx.doi.org/10.1016/j.snb.2014.10.056]
[186]
Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron., 2013, 44(1), 34-40.
[http://dx.doi.org/10.1016/j.bios.2012.11.030] [PMID: 23391704]
[187]
Madrakian, T.; Haryani, R.; Ahmadi, M.; Afkhami, A. A sensitive electrochemical sensor for rapid and selective determination of venlafaxine in biological fluids using carbon paste electrode modified with molecularly imprinted polymer-coated magnetite nanoparticles. J. Iran. Chem. Soc., 2016, 13(2), 243-251.
[http://dx.doi.org/10.1007/s13738-015-0731-8]
[188]
Li, Y.; Zhang, L.; Liu, J.; Zhou, S-F.; Al-Ghanim, K.A.; Mahboob, S.; Ye, B-C.; Zhang, X. A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. RSC Advances, 2016, 6(49), 43724-43731.
[http://dx.doi.org/10.1039/C6RA05553B]
[189]
Li, T.H.; Wang, D.; Lan, H.Z.; Gan, N. Determination of 17β-estradiol based on electropolymerized-molecularly imprinted polymer on gold nanoparticles-graphene modified electrode. Adv. Mat. Res., 2014, 881–883, 93-97.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.881-883.93]
[190]
Norouzi, P.; Gupta, V.K.; Larijani, B.; Rasoolipour, S.; Faridbod, F.; Ganjali, M.R. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode. Talanta, 2015, 131, 577-584.
[http://dx.doi.org/10.1016/j.talanta.2014.07.033] [PMID: 25281143]
[191]
Shrivastava, R.; Saxena, S.; Satsangee, S.P.; Jain, R. Graphene/TiO2/Polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics (Kiel), 2015, 21(7), 2039-2049.
[http://dx.doi.org/10.1007/s11581-014-1353-3]
[192]
Hu, Y.; Li, J.; Zhang, Z.; Zhang, H.; Luo, L.; Yao, S. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4@SiO2/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode. Anal. Chim. Acta, 2011, 698(1-2), 61-68.
[http://dx.doi.org/10.1016/j.aca.2011.04.054] [PMID: 21645660]
[193]
Coelho, M.; Giarola, J.; da Silva, A.; Tarley, C.; Borges, K.; Pereira, A. Development and application of electrochemical sensor based on molecularly imprinted polymer and carbon nanotubes for the determination of carvedilol. Chemosensors (Basel), 2016, 4(4), 22.
[http://dx.doi.org/10.3390/chemosensors4040022]
[194]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[http://dx.doi.org/10.1016/j.bios.2014.04.045] [PMID: 24832202]
[195]
Arkan, E.; Karimi, Z.; Shamsipur, M.; Saber, R. Electrochemical determination of celecoxib on a graphene based carbon ionic liquid electrode modified with gold nanoparticles and its application to pharmaceutical analysis. Anal. Sci., 2013, 29(8), 855-860.
[http://dx.doi.org/10.2116/analsci.29.855] [PMID: 23934569]
[196]
Arvand, M.; Hassannezhad, M. Square wave voltammetric determination of uric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics (Kiel), 2015, 21(12), 3245-3256.
[http://dx.doi.org/10.1007/s11581-015-1514-z]
[197]
Sarhangzadeh, K.; Khatami, A.A.; Jabbari, M.; Bahari, S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J. Appl. Electrochem., 2013, 43(12), 1217-1224.
[http://dx.doi.org/10.1007/s10800-013-0609-3]
[198]
Thiagarajan, S.; Rajkumar, M.; Chen, S. Nano TiO2 -PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int. J. Electrochem. Sci., 2012, 7, 2109-2122.
[199]
Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C, 2016, 59, 168-176.
[http://dx.doi.org/10.1016/j.msec.2015.09.097] [PMID: 26652361]
[200]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[http://dx.doi.org/10.1016/j.msec.2012.04.066] [PMID: 24364977]
[201]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Kumar Gupta, V.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 197, 114-119.
[http://dx.doi.org/10.1016/j.molliq.2014.04.037]
[202]
Liu, X.; Zhong, J.; Rao, H.; Lu, Z.; Ge, H.; Chen, B.; Zou, P.; Wang, X.; He, H.; Zeng, X. Electrochemical dipyridamole sensor based on molecularly imprinted polymer on electrode modified with Fe3O4@Au/Amine-multi-walled carbon nanotubes. J. Solid State Electrochem., 2017, 21(11), 3071-3082.
[http://dx.doi.org/10.1007/s10008-017-3650-z]
[203]
Martin, C.S.; Teixeira, M.F.S. Electrocatalytic study of an electrode modified with reactive blue 4 dye covalently immobilized on amine-functionalized silica. J. Solid State Electrochem., 2012, 16(12), 3877-3886.
[http://dx.doi.org/10.1007/s10008-012-1829-x]
[204]
Ghica, M.E.; Ferreira, G.M.; Brett, C.M.A. Poly(Thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J. Solid State Electrochem., 2015, 19(9), 2869-2881.
[http://dx.doi.org/10.1007/s10008-015-2926-4]
[205]
Gopu, G.; Muralidharan, B.; Vedhi, C.; Manisankar, P. Determination of three analgesics in pharmaceutical and urine sample on nano Poly (3, 4-Ethylenedioxythiophene) modified electrode. Ionics (Kiel), 2012, 18(1–2), 231-239.
[http://dx.doi.org/10.1007/s11581-011-0619-2]
[206]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples. Electrochim. Acta, 2011, 56(20), 7202-7211.
[http://dx.doi.org/10.1016/j.electacta.2011.04.090]
[207]
Li, J.; Wang, X.; Duan, H.; Wang, Y.; Luo, C. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites. Mater. Sci. Eng. C, 2016, 64, 391-398.
[http://dx.doi.org/10.1016/j.msec.2016.04.003] [PMID: 27127069]
[208]
Thanh, T.D.; Balamurugan, J.; Tuan, N.T.; Jeong, H.; Lee, S.H.; Kim, N.H.; Lee, J.H. Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing. Biosens. Bioelectron., 2017, 89(Pt 2), 750-757.
[http://dx.doi.org/10.1016/j.bios.2016.09.076] [PMID: 27816589]
[209]
Bagheri, H.; Pajooheshpour, N.; Afkhami, A.; Khoshsafar, H. Fabrication of a novel electrochemical sensing platform based on a core-shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine. RSC Advances, 2016, 6(56), 51135-51145.
[http://dx.doi.org/10.1039/C6RA09488K]
[210]
Lian, W.; Liu, S.; Yu, J.; Xing, X.; Li, J.; Cui, M.; Huang, J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron., 2012, 38(1), 163-169.
[http://dx.doi.org/10.1016/j.bios.2012.05.017] [PMID: 22683249]
[211]
Jain, R.; Shrivastava, S.A. Graphene-Polyaniline-Bi2O3 hybrid film sensor for voltammetric quantification of anti-inflammatory drug etodolac. J. Electrochem. Soc., 2014, 161(4), H189-H194.
[http://dx.doi.org/10.1149/2.043404jes]
[212]
Jain, R.; Sinha, A.; Khan, A.L. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine. Mater. Sci. Eng. C, 2016, 65, 205-214.
[http://dx.doi.org/10.1016/j.msec.2016.03.115] [PMID: 27157745]
[213]
Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol-gel-modified pencil graphite electrode. Sens. Actuators B Chem., 2010, 146(1), 321-330.
[http://dx.doi.org/10.1016/j.snb.2010.02.025]
[214]
Gholivand, M.B.; Karimian, N. Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode. Sens. Actuators B Chem., 2015, 215, 471-479.
[http://dx.doi.org/10.1016/j.snb.2015.04.007]
[215]
Nezhadali, A.; Mojarrab, M. Computational study and multivariate optimization of hydrochlorothiazide analysis using molecularly imprinted polymer electrochemical sensor based on carbon nanotube/polypyrrole film. Sens. Actuators B Chem., 2014, 190, 829-837.
[http://dx.doi.org/10.1016/j.snb.2013.08.086]
[216]
Loudiki, A.; Hammani, H.; Boumya, W.; Lahrich, S.; Farahi, A.; Achak, M.; Bakasse, M.; El Mhammedi, M.A. Electrocatalytical effect of montmorillonite to oxidizing ibuprofen: analytical application in river water and commercial tablets. Appl. Clay Sci., 2016, 123, 99-108.
[http://dx.doi.org/10.1016/j.clay.2016.01.013]
[217]
Wu, B.; Hou, L.; Zhang, T.; Han, Y.; Kong, C. A molecularly imprinted electrochemical sensor based on a gold nanoparticle/carbon nanotube hybrid material for the sensitive detection of isoniazid. Anal. Methods, 2015, 7(21), 9121-9129.
[http://dx.doi.org/10.1039/C5AY01802A]
[218]
Santhosh, P.; Senthil Kumar, N.; Renukadevi, M.; Gopalan, A.I.; Vasudevan, T.; Lee, K-P. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode. Anal. Sci., 2007, 23(4), 475-478.
[http://dx.doi.org/10.2116/analsci.23.475] [PMID: 17420555]
[219]
Wang, H.; Qian, D.; Xiao, X.; Gao, S.; Cheng, J.; He, B.; Liao, L.; Deng, J. A highly sensitive and selective sensor based on a graphene-coated carbon paste electrode modified with a computationally designed boron-embedded duplex molecularly imprinted hybrid membrane for the sensing of lamotrigine. Biosens. Bioelectron., 2017, 94, 663-670.
[http://dx.doi.org/10.1016/j.bios.2017.03.055] [PMID: 28390317]
[220]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. A Novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim. Acta, 2014, 123, 332-339.
[http://dx.doi.org/10.1016/j.electacta.2014.01.056]
[221]
Rezaei, B.; Rahmanian, O.; Ensafi, A.A. Sensing lorazepam with a glassy carbon electrode coated with an electropolymerized-imprinted polymer modified with multiwalled carbon nanotubes and gold nanoparticles. Mikrochim. Acta, 2013, 180(1–2), 33-39.
[http://dx.doi.org/10.1007/s00604-012-0897-z]
[222]
Babaei, A.; Afrasiabi, M.; Babazadeh, M. A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis, 2010, 22(15), 1743-1749.
[http://dx.doi.org/10.1002/elan.200900578]
[223]
Cao, W.; Xiong, H.; Gao, X.; Zhang, X.; Wang, S.A. B2-agonist sensor based on a molecularly imprinted poly-o-phenylenediamine film on a columnar-structured platinum electrode. Anal. Methods, 2014, 6(7), 2349-2355.
[http://dx.doi.org/10.1039/c3ay42282h]
[224]
Afzali, F.; Rounaghi, G.; Zavar, M.H.A.; Ashraf, N. Supramolecular β-cyclodextrin/multi-walled carbon nanotube paste electrode for amperometric detection of naproxen. J. Electrochem. Soc., 2016, 163(3), B56-B61.
[http://dx.doi.org/10.1149/2.0521603jes]
[225]
Tashkhourian, J.; Hemmateenejad, B.; Beigizadeh, H.; Hosseini-Sarvari, M.; Razmi, Z. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J. Electroanal. Chem. (Lausanne Switz.), 2014, 714–715, 103-108.
[http://dx.doi.org/10.1016/j.jelechem.2013.12.026]
[226]
Prasad, B.B.; Fatma, S. One MoNomer Doubly imprinted dendrimer nanofilm modified pencil graphite electrode for simultaneous electrochemical determination of norepinephrine and uric acid. Electrochim. Acta, 2017, 232, 474-483.
[http://dx.doi.org/10.1016/j.electacta.2017.02.165]
[227]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[http://dx.doi.org/10.1016/j.msec.2013.08.002] [PMID: 24094200]
[228]
Rezaei, B.; Hamedian Esfahani, M.; Ensafi, A.A. Modified Au nanoparticles/imprinted sol-gel/multiwall carbon nanotubes pencil graphite electrode as a selective electrochemical sensor for papaverine determination. IEEE Sens. J., 2016, 16(19), 7037-7044.
[http://dx.doi.org/10.1109/JSEN.2016.2598381]
[229]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[http://dx.doi.org/10.1016/j.bios.2014.03.055] [PMID: 24755294]
[230]
Nigović, B.; Mornar, A.; Sertić, M. Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Mikrochim. Acta, 2016, 183(4), 1459-1467.
[http://dx.doi.org/10.1007/s00604-016-1781-z]
[231]
Arvand, M.; Pourhabib, A. Adsorptive stripping differential pulse voltammetric determination of risperidone with a multi-walled carbon nanotube-ionic liquid paste modified glassy carbon electrode. J. Chin. Chem. Soc. (Taipei), 2013, 60(1), 63-72.
[http://dx.doi.org/10.1002/jccs.201200161]
[232]
Ma, M.; Zhu, P.; Pi, F.; Ji, J.; Sun, X. A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of Ractopamine. J. Electroanal. Chem. (Lausanne Switz.), 2016, 775, 171-178.
[http://dx.doi.org/10.1016/j.jelechem.2016.04.044]
[233]
Rezaei, B.; Lotfi-Forushani, H.; Ensafi, A.A. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mater. Sci. Eng. C, 2014, 37(1), 113-119.
[http://dx.doi.org/10.1016/j.msec.2013.12.036] [PMID: 24582230]
[234]
Oliveira, G.G.; Azzi, D.C.; Vicentini, F.C.; Sartori, E.R.; Fatibello-Filho, O. Voltammetric determination of verapamil and propranolol using a glassy carbon electrode modified with functionalized multiwalled carbon nanotubes within a poly (allylamine hydrochloride) film. J. Electroanal. Chem. (Lausanne Switz.), 2013, 708, 73-79.
[http://dx.doi.org/10.1016/j.jelechem.2013.09.016]
[235]
Hasanzadeh, M.; Pournaghi-Azar, M.H.; Shadjou, N.; Jouyban, A. A verapamil electrochemical sensor based on magnetic mobile crystalline material-41 grafted by sulfonic acid. Electrochim. Acta, 2013, 89, 660-668.
[http://dx.doi.org/10.1016/j.electacta.2012.10.159]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2020
Published on: 01 July, 2020
Page: [641 - 660]
Pages: 20
DOI: 10.2174/1573412915666190304140433
Price: $65

Article Metrics

PDF: 31
HTML: 3