Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR

Author(s): Chew-Li Moo, Shun-Kai Yang, Khatijah Yusoff, Mokrish Ajat, Warren Thomas, Aisha Abushelaibi, Swee-Hua-Erin Lim, Kok-Song Lai*

Journal Name: Current Drug Discovery Technologies

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Antimicrobials are useful compounds intended to eradicate or stop the growth of harmful microorganisms. The sustained increase in the rates of antimicrobial resistance (AMR) worldwide is worrying and poses a major public health threat. The development of new antimicrobial agents is one of the critical approaches to overcome AMR. However, in the race towards developing alternative approaches to combat AMR, it appears that the scientific community is falling behind when pitched against the evolutionary capacity of multi-drug resistant (MDR) bacteria. Although the “pioneering strategy” of discovering completely new drugs is a rational approach, the time and effort taken are considerable, the process of drug development could instead be expedited if efforts were concentrated on enhancing the efficacy of existing antimicrobials through: combination therapies; bacteriophage therapy; antimicrobial adjuvants therapy or the application of nanotechnology. This review will briefly detail the causes and mechanisms of AMR as background, and then provide insights into a novel, future emerging or evolving strategies that are currently being evaluated and which may be developed in the future to tackle the progression of AMR.

Keywords: Antimicrobial resistance (AMR), current approach, combination therapy, nanotechnology, drug development and microorganisms.

[1]
Saga T, Yamaguchi K. History of antimicrobial agents and resistant bacteria. Japan Med Assoc J 2009; 52: 103-8.
[2]
Ellis A. Overcoming resistance. Overcoming Resist 2002; 5: 5-7.
[3]
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[4]
Luyt CE, Bréchot N, Trouillet JL, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care 2014; 18(5): 480.
[http://dx.doi.org/10.1186/s13054-014-0480-6] [PMID: 25405992]
[5]
Viswanathan VK. Off-label abuse of antibiotics by bacteria. Gut Microbes 2014; 5(1): 3-4.
[http://dx.doi.org/10.4161/gmic.28027] [PMID: 24637595]
[6]
Gebretekle GB, Serbessa MK. Exploration of over the counter sales of antibiotics in community pharmacies of Addis Ababa, Ethiopia: pharmacy professionals’ perspective. Antimicrob Resist Infect Control 2016; 5: 2.
[http://dx.doi.org/10.1186/s13756-016-0101-z] [PMID: 26835006]
[7]
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 2017; 6: 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[8]
Goel PK, Ross-Degnan D, McLaughlin TJ, Soumerai SB. Influence of location and staff knowledge on quality of retail pharmacy prescribing for childhood diarrhea in Kenya. Int J Qual Health Care 1996; 8(6): 519-26.
[http://dx.doi.org/10.1093/intqhc/8.6.519] [PMID: 9007601]
[9]
Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 2013; 56(10): 1445-50.
[http://dx.doi.org/10.1093/cid/cit070] [PMID: 23403172]
[10]
Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis 2014; 59(Suppl. 2): S71-5.
[http://dx.doi.org/10.1093/cid/ciu392] [PMID: 25151481]
[11]
Vollmer W, Blanot D, De Pedro MA, et al. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. FEMS Microbiol Rev 2005; 30: 565-9.
[12]
Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycinInternational Journal of Infectious Diseases. Elsevier 2011; Vol. 15.
[http://dx.doi.org/10.1016/j.ijid.2011.07.007]
[13]
Neu HC, Gootz TD. Antimicrobial ChemotherapyBaron S Medical Microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston 1996.
[14]
Shahab M, Verma M, Pathak M, Mitra K, Misra-Bhattacharya S. Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi. PLoS One 2014; 9(6) e99884
[http://dx.doi.org/10.1371/journal.pone.0099884] [PMID: 24941309]
[15]
McLuskey K, Cameron S, Hammerschmidt F, Hunter WN. Structure and reactivity of hydroxypropylphosphonic acid epoxidase in fosfomycin biosynthesis by a cation- and flavin-dependent mechanism. Proc Natl Acad Sci USA 2005; 102(40): 14221-6.
[http://dx.doi.org/10.1073/pnas.0504314102] [PMID: 16186494]
[16]
Bhattacharjee MK. Antibiotics That Inhibit Cell Wall SynthesisChemistry of Antibiotics and Related Drugs. Springer International Publishing 2016; pp. 49-94.
[http://dx.doi.org/10.1007/978-3-319-40746-3_3]
[17]
Pinho MG, Kjos M, Veening JW. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 2013; 11(9): 601-14.
[http://dx.doi.org/10.1038/nrmicro3088] [PMID: 23949602]
[18]
Liu Y, Breukink E. The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics (Basel) 2016; 5(3): 28.
[http://dx.doi.org/10.3390/antibiotics5030028] [PMID: 27571111]
[19]
Kåhrström CT. Bacterial physiology: Flipping out over MurJ. Nat Rev Microbiol 2014; 12(9): 595.
[http://dx.doi.org/10.1038/nrmicro3328] [PMID: 25043163]
[20]
Smith JL, Weinberg ED. Mechanisms of antibacterial action of bacitracin. J Gen Microbiol 1962; 28(3): 559-69.
[http://dx.doi.org/10.1099/00221287-28-3-559] [PMID: 13914300]
[21]
Jha RK, de Sousa SM. Microplate assay for inhibitors of the transpeptidase activity of PBP1b of Escherichia coli. J Biomol Screen 2006; 11(8): 1005-14.
[http://dx.doi.org/10.1177/1087057106294364] [PMID: 17092918]
[22]
Rioseras B, Yagüe P, López-García MT, et al. Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptomyces coelicolor. Sci Rep 2016; 6: 21659.
[http://dx.doi.org/10.1038/srep21659] [PMID: 26867711]
[23]
Alberts B, Johnson A, Lewis J. General principles of cell communication. Mol Biol Cell 2002; 4.
[24]
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Frontiers Media, SA. Frontiers in Neuroscience 2017; P. 73.
[25]
Bellm L, Lehrer RI, Ganz T. Protegrins: new antibiotics of mammalian origin. Expert Opin Investig Drugs 2000; 9(8): 1731-42.
[http://dx.doi.org/10.1517/13543784.9.8.1731] [PMID: 11060772]
[26]
Hong W, Zeng J, Xie J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 2014; 4(4): 258-65.
[http://dx.doi.org/10.1016/j.apsb.2014.06.012] [PMID: 26579393]
[27]
Lambert T. Antibiotics that affect the ribosome. Rev - Off Int Epizoot 2012; 31(1): 57-64.
[http://dx.doi.org/10.20506/rst.31.1.2095] [PMID: 22849268]
[28]
Kotra LP, Haddad J, Mobashery S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter re-sistance Antimicrobial Agents and Chemotherapy American Society for Microbiology. ASM 2000; pp. 3249-56. 2000.
[29]
Chopra S, Reader J. tRNAs as antibiotic targets. Int J Mol Sci 2014; 16(1): 321-49.
[http://dx.doi.org/10.3390/ijms16010321] [PMID: 25547494]
[30]
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65(2): 232-60.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[31]
Constable PD, Hinchcliff KW, Kenneth W, Done SH, Grünberg W, Radostits OM. Veterinary medicine : a textbook of the diseases of cattle, horses, sheep, pigs and goats. 10th ed. Saunders: Elsevier 2016.
[32]
Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of action. Trends Microbiol 2003; 11(6): 272-9.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[33]
Vodnala M, Ranjbarian F, Pavlova A, de Koning HP, Hofer A. Trypanosoma brucei methylthioadenosine phosphorylase protects the para-site from the antitrypanosomal effect of deoxyadenosine: Implications for the pharmacology of adenosine antimetabolites. J Biol Chem 2016; 291(22): 11717-26.
[http://dx.doi.org/10.1074/jbc.M116.715615] [PMID: 27036940]
[34]
Kimberlin DW, Whitley RJ. Antiviral therapy of HSV-1 and -2Campadelli-Fiume G, Mocarski E, et al Human Herpesvirus-es: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press 2007.
[http://dx.doi.org/10.1017/CBO9780511545313.065]
[35]
Parenti F, Lancini G. Antibiotic and Chemotherapy Rifamycins. 9th ed. Elsevier 2011; pp. 861-900.
[36]
Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 2011; 92(3): 479-97.
[http://dx.doi.org/10.1007/s00253-011-3557-z] [PMID: 21904817]
[37]
Bhattacharjee MK. Chemistry of Antibiotics and Related Drugs. Springer International Publishing 2016; 2016: 60-94.
[38]
Hitchings GH. Mechanism of action of trimethoprim-sulfamethoxazole. I. J Infect Dis 1973; 128: 433-6.
[http://dx.doi.org/10.1093/infdis/128.Supplement_3.S433] [PMID: 4758044]
[39]
Qi J, Virga KG, Das S, et al. Synthesis of bi-substrate state mimics of dihydropteroate synthase as potential inhibitors and molecular probes. Bioorg Med Chem 2011; 19(3): 1298-305.
[http://dx.doi.org/10.1016/j.bmc.2010.12.003] [PMID: 21216602]
[40]
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13(1): 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[41]
Liu A, Tran L, Becket E, et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 2010; 54(4): 1393-403.
[http://dx.doi.org/10.1128/AAC.00906-09] [PMID: 20065048]
[42]
Blake KL, O’Neill AJ. Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. J Antimicrob Chemother 2013; 68(1): 12-6.
[http://dx.doi.org/10.1093/jac/dks373] [PMID: 23045225]
[43]
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8(8): 552-63.
[http://dx.doi.org/10.1038/nrmicro2382] [PMID: 20601965]
[44]
Baroud M, Dandache I, Araj GF, et al. Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents 2013; 41(1): 75-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.08.010] [PMID: 23142087]
[45]
Munita JM, Arias CA, Unit AR, De Santiago A. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016; 4(2): 1-37.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[46]
Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 2013; 68(1): 34-9.
[http://dx.doi.org/10.1093/jac/dks357] [PMID: 22969080]
[47]
Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19(2): 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[48]
Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Nature 2011; 470: 558-62.
[http://dx.doi.org/10.1038/nature09743] [PMID: 21350490]
[49]
Eicher T, Cha HJ, Seeger MA, et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci USA 2012; 109(15): 5687-92.
[http://dx.doi.org/10.1073/pnas.1114944109] [PMID: 22451937]
[50]
Zalucki YM, Dhulipala V, Shafer WM. Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. MBio 2012; 3(6): e00446-12.
[http://dx.doi.org/10.1128/mBio.00446-12] [PMID: 23221802]
[51]
Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52(7): 2428-34.
[http://dx.doi.org/10.1128/AAC.00084-08] [PMID: 18443112]
[52]
Gao W, Chua K, Davies JK, et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 2010; 6(6)e1000944
[http://dx.doi.org/10.1371/journal.ppat.1000944] [PMID: 20548948]
[53]
Billal DS, Feng J, Leprohon P, Légaré D, Ouellette M. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics 2011; 12: 512.
[http://dx.doi.org/10.1186/1471-2164-12-512] [PMID: 22004526]
[54]
Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44(6): 1549-55.
[http://dx.doi.org/10.1128/AAC.44.6.1549-1555.2000] [PMID: 10817707]
[55]
Kumar N, Radhakrishnan A, Wright CC, et al. Crystal structure of the transcriptional regulator Rv1219c of Mycobacterium tuberculosis. Protein Sci 2014; 23(4): 423-32.
[http://dx.doi.org/10.1002/pro.2424] [PMID: 24424575]
[56]
Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother 2006; 50(7): 2500-5.
[http://dx.doi.org/10.1128/AAC.00131-06] [PMID: 16801432]
[57]
Zhang WJ, Xu XR, Schwarz S, et al. Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. J Antimicrob Chemother 2014; 69(2): 385-9.
[http://dx.doi.org/10.1093/jac/dkt355] [PMID: 24013193]
[58]
Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES. Detection of methyltransferases conferring high-level resistance to aminoglycosides in enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother 2008; 52(5): 1843-5.
[http://dx.doi.org/10.1128/AAC.01477-07] [PMID: 18347105]
[59]
Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem 2011; 286(28): 25265-73.
[http://dx.doi.org/10.1074/jbc.M111.226936] [PMID: 21597116]
[60]
Lynch JP III, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother 2013; 14(2): 199-210.
[http://dx.doi.org/10.1517/14656566.2013.763030] [PMID: 23321047]
[61]
Queenan AM, Shang W, Flamm R, Bush K. Hydrolysis and inhibition profiles of beta-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob Agents Chemother 2010; 54(1): 565-9.
[http://dx.doi.org/10.1128/AAC.01004-09] [PMID: 19884379]
[62]
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012; 25(4): 682-707.
[http://dx.doi.org/10.1128/CMR.05035-11] [PMID: 23034326]
[63]
Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 2005; 57(10): 1451-70.
[http://dx.doi.org/10.1016/j.addr.2005.04.002] [PMID: 15950313]
[64]
Yap PSX, Yang SK, Lai KS, Lim SHE. Essential Oils: The Ultimate Solution to Antimicrobial Resistance in Escherichia coli?Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications. Croatia: InTech 2017; pp. 299-313.
[http://dx.doi.org/10.5772/67776]
[65]
Qin S, Wang Y, Zhang Q, et al. Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob Agents Chemother 2012; 56(10): 5332-9.
[http://dx.doi.org/10.1128/AAC.00809-12] [PMID: 22869568]
[66]
Kaur I. Novel Strategies to Combat Antimicrobial Resistance. J Infect Dis Ther 2016; 4: 292.
[http://dx.doi.org/10.4172/2332-0877.1000292]
[67]
Campbell J, Singh AK, Santa Maria JP Jr, et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 2011; 6(1): 106-16.
[http://dx.doi.org/10.1021/cb100269f] [PMID: 20961110]
[68]
Sieradzki K, Tomasz A. Suppression of beta-lactam antibiotic resistance in a methicillin-resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. J Antimicrob Chemother 1997; 39(Suppl. A): 47-51.
[http://dx.doi.org/10.1093/jac/39.suppl_1.47] [PMID: 9511062]
[69]
Lee N, Yuen KY, Kumana CR. Clinical role of beta-lactam/beta-lactamase inhibitor combinations. Drugs 2003; 63(14): 1511-24.
[http://dx.doi.org/10.2165/00003495-200363140-00006] [PMID: 12834367]
[70]
Vannuffel P, Cocito C. Mechanism of action of streptogramins and macrolides. Drugs 1996; 51(Suppl. 1): 20-30.
[http://dx.doi.org/10.2165/00003495-199600511-00006] [PMID: 8724813]
[71]
Gordon NC, Png K, Wareham DW. Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54(12): 5316-22.
[http://dx.doi.org/10.1128/AAC.00922-10] [PMID: 20876375]
[72]
De Pauw BE, Deresinski SC, Feld R, Lane-Allman EF, Donnelly JP. The Intercontinental Antimicrobial Study Group. Ceftazidime compared with piperacillin and tobramycin for the empiric treatment of fever in neutropenic patients with cancer. A multicenter randomized trial. Ann Intern Med 1994; 120(10): 834-44.
[http://dx.doi.org/10.7326/0003-4819-120-10-199405150-00004] [PMID: 8154643]
[73]
Schentag JJ, Jusko WJ. Gentamicin Persistence In The Body 1977; 486.
[http://dx.doi.org/10.1016/S0140-6736(77)91973-0]
[74]
Servais H, Jossin Y, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP. Gentamicin causes apoptosis at low concentrations in renal LLC-PK1 cells subjected to electroporation. Antimicrob Agents Chemother 2006; 50(4): 1213-21.
[http://dx.doi.org/10.1128/AAC.50.4.1213-1221.2006] [PMID: 16569831]
[75]
Paul M, Dickstein Y, Schlesinger A, Grozinsky-Glasberg S, Soares-Weiser K, Leibovici L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia 2013.
[http://dx.doi.org/10.1002/14651858.CD003038.pub2]
[76]
Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 1999; 96(5): 2192-7.
[http://dx.doi.org/10.1073/pnas.96.5.2192] [PMID: 10051617]
[77]
Ormälä AM, Jalasvuori M. Phage therapy: Should bacterial resistance to phages be a concern, even in the long run? Bacteriophage 2013; 3(1)e24219
[http://dx.doi.org/10.4161/bact.24219]] [PMID: 23819105]
[78]
Keen EC. Phage therapy: concept to cure. Front Microbiol 2012; 3: 238.
[http://dx.doi.org/10.3389/fmicb.2012.00238] [PMID: 22833738]
[79]
Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 2010; 70: 217-48.
[http://dx.doi.org/10.1016/S0065-2164(10)70007-1] [PMID: 20359459]
[80]
Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol 2013; 8(6): 769-83.
[http://dx.doi.org/10.2217/fmb.13.47] [PMID: 23701332]
[81]
Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 2009; 106(12): 4629-34.
[http://dx.doi.org/10.1073/pnas.0800442106] [PMID: 19255432]
[82]
Duerkop BA, Huo W, Bhardwaj P, Palmer KL, Hooper LV. Molecular basis for lytic bacteriophage resistance in enterococci. MBio 2016; 7(4): e01304-16.
[http://dx.doi.org/10.1128/mBio.01304-16] [PMID: 27578757]
[83]
Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage 2011; 1(2): 66-85.
[http://dx.doi.org/10.4161/bact.1.2.15845] [PMID: 22334863]
[84]
Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014; 5(1): 226-35.
[http://dx.doi.org/10.4161/viru.25991] [PMID: 23973944]
[85]
Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Górski A. Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw 2007; 61: 461-5.
[PMID: 17679835]
[86]
Maiques E, Úbeda C, Tormo MÁ, et al. Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J Bacteriol 2007; 189(15): 5608-16.
[http://dx.doi.org/10.1128/JB.00619-07] [PMID: 17545290]
[87]
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012; 13(8): 699-722.
[http://dx.doi.org/10.2174/138920312804871193] [PMID: 23305359]
[88]
Van Bambeke F, Pagès JM, Lee VJ. Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 2006; 1(2): 157-75.
[http://dx.doi.org/10.2174/157489106777452692] [PMID: 18221142]
[89]
Lomovskaya O, Warren MS, Lee A, et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 2001; 45(1): 105-16.
[http://dx.doi.org/10.1128/AAC.45.1.105-116.2001] [PMID: 11120952]
[90]
Nelson ML, Levy SB. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 1999; 43(7): 1719-24.
[http://dx.doi.org/10.1128/AAC.43.7.1719] [PMID: 10390229]
[91]
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015; 2015246012
[http://dx.doi.org/10.1155/2015/246012] [PMID: 25861355]
[92]
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1803-15.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[93]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[94]
Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 2009; 68(5): 278-83.
[http://dx.doi.org/10.1016/j.marenvres.2009.07.001] [PMID: 19665221]
[95]
Qi G, Li L, Yu F, Wang H. Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 2013; 5(21): 10874-81.
[http://dx.doi.org/10.1021/am403940d] [PMID: 24131516]
[96]
Qiu Z, Yu Y, Chen Z, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci USA 2012; 109(13): 4944-9.
[http://dx.doi.org/10.1073/pnas.1107254109] [PMID: 22411796]
[97]
Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv 2012; 9(11): 1325-32.
[http://dx.doi.org/10.1517/17425247.2012.717927] [PMID: 22924701]
[98]
Azuma K, Izumi R, Osaki T, et al. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 2015; 6(1): 104-42.
[http://dx.doi.org/10.3390/jfb6010104] [PMID: 25780874]
[99]
Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[100]
Gillies ER, Fréchet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[101]
Allen TM. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 1998; 56(5): 747-56.
[http://dx.doi.org/10.2165/00003495-199856050-00001] [PMID: 9829150]
[102]
Singla S, Harjai K, Raza K, Wadhwa S, Katare OP, Chhibber S. Phospholipid vesicles encapsulated bacteriophage: A novel approach to enhance phage biodistribution. J Virol Methods 2016; 236: 68-76.
[http://dx.doi.org/10.1016/j.jviromet.2016.07.002] [PMID: 27393682]
[103]
Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 2012; 7: 6003-9.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[104]
Möhler JS, Sim W, Blaskovich MAT, Cooper MA, Ziora ZM. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol Adv 2018; 36(5): 1391-411.
[http://dx.doi.org/10.1016/j.biotechadv.2018.05.004] [PMID: 29847770]
[105]
Möhler JS, Kolmar T, Synnatschke K, et al. Enhancement of antibiotic-activity through complexation with metal ions - Combined ITC, NMR, enzymatic and biological studies. J Inorg Biochem 2017; 167: 134-41.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.028] [PMID: 27984786]
[106]
Kumar M, Curtis A, Hoskins C. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 2018; 10(1): 1-17.
[http://dx.doi.org/10.3390/pharmaceutics10010011] [PMID: 29342903]
[107]
Phillips MA, Stewart MA, Woodling DL, Xie ZR. Has Molecular Docking Ever Brought us a Medicine?. Molecular Docking 2018; pp. 141-78.
[http://dx.doi.org/10.5772/intechopen.72898]
[108]
Young MJ, Mahfouz TM. New Bacterial Targets and Computational Methods Against Bacterial Resistance. Med Res Arch 2017; 5(4): 1-24.
[109]
Fischbach MA. Combination therapies for combating antimicrobial resistance. Curr Opin Microbiol 2011; 14(5): 519-23.
[http://dx.doi.org/10.1016/j.mib.2011.08.003] [PMID: 21900036]
[110]
Yang SK, Yusoff K, Mai CW, et al. Additivity vs synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules 2017; 22(11): 1733.
[http://dx.doi.org/10.3390/molecules22111733] [PMID: 29113046]
[111]
Yang SK, Yap PSX, Krishnan T, et al. Mode of action: Synergistic interaction of pepper-mint (Mentha x piperita L. Carl) essential oil and meropenem against plasmid-mediated resistant E. coli. Rec Nat Prod 2018; 12(6): 582-94.
[http://dx.doi.org/10.25135/rnp.59.17.12.078]
[112]
Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 2010; 28(12): 591-5.
[http://dx.doi.org/10.1016/j.tibtech.2010.08.001] [PMID: 20810181]
[113]
Kalle AM, Rizvi A. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob Agents Chemother 2011; 55(1): 439-42.
[http://dx.doi.org/10.1128/AAC.00735-10] [PMID: 20937780]
[114]
Ma Y, Zhou T, Zhao C. Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials. Carbohydr Res 2008; 343(2): 230-7.
[http://dx.doi.org/10.1016/j.carres.2007.11.006] [PMID: 18045578]
[115]
Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm 2010; 387(1-2): 187-98.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.033] [PMID: 19969054]
[116]
Thapa R, Bhagat C, Shrestha P, Awal S, Dudhagara P. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Ann Clin Microbiol Antimicrob 2017; 16(1): 39.
[http://dx.doi.org/10.1186/s12941-017-0216-y] [PMID: 28511708]
[117]
Shaikh S, Rizvi SMD, Shakil S, et al. Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J Cell Biochem 2017; 118(9): 2802-8.
[http://dx.doi.org/10.1002/jcb.25929] [PMID: 28181300]
[118]
Mandal SM, Roy A, Ghosh AK, Hazra TK, Basak A, Franco OL. Challenges and future prospects of antibiotic therapy: From peptides to phages utilization. Frontiers Media, SA. Front Pharmacol 2014; p. 105.
[119]
Yang SK, Low LY, Yap PSX, Yusoff K, Mai CW, Lai KS, et al. Plant-derived antimicrobials: Insights into mitigation of antimicrobial re-sistance. Rec Nat Prod 2018; 12(4): 295-316.
[http://dx.doi.org/10.25135/rnp.41.17.09.058]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Page: [430 - 447]
Pages: 18
DOI: 10.2174/1570163816666190304122219
Price: $65

Article Metrics

PDF: 31
HTML: 2