Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Recent Advances in the Aspects of Architectural Photocatalysts and its Application

Author(s): Quan Zhang, Fengli Yang and Wei-Lin Dai*

Volume 6, Issue 1, 2019

Page: [3 - 19] Pages: 17

DOI: 10.2174/2213337206666190301154615

Abstract

Architectural photocatalysts have considered to be an eco-friendly and green technology for protection and remediation of environment and the emergence of these photocatalysts also provides a new way for solar energy conversion and utilization as it only works under sunlight irradiation. Based on latest research from related group and other colleagues, this paper mainly reviews the different synthesis of architectural photocatalysts and its working mechanism and introduces some relevant applications, such as the degradation of organic pollutants, the photocatalytic hydrogen production and CO2 reduction and so on. What's more, the opportunities and challenges encountered in the area of architectural photocatalysts and their potential applications in more fields have been briefly illustrated.

Keywords: Applications, architectural photocatalysts, photocatalytic activity, semiconductor, sunlight irradiation, synthesis.

Graphical Abstract
[1]
Chen, J.; Poon, C. Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ., 2009, 44(9), 1899-1906.
[2]
Zach, M.; Hagglund, C.; Chakarov, D.; Kasemo, B. Nanoscience and nanotechnology for advanced energy systems. Curr. Opin. Solid St. M., 2006, 10(3-4), 132-143.
[3]
Banerjee, S.; Pillai, S.C.; Falaras, P.; O’Shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett., 2014, 5(15), 2543-2554.
[4]
Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater., 2012, 24(2), 229-251.
[5]
Linsebigler, A.L.; Lu, G-Q.; Yates, J.T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3), 735-758.
[6]
Yu, W.; Zhang, J.; Peng, T. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B-Environ.,, 2016, 181, 220-227.
[7]
Heller, A. Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res., 1995, 28(12), 503-508.
[8]
Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev., 2007, 11(3), 401-425.
[9]
Moraes, S.D.; Freire, R.S.; Duran, N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 2000, 40(4), 369-373.
[10]
Xiang, Q.; Yu, J.; Wong, P.K. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci., 2011, 357(1), 163-167.
[11]
Guan, K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Tech., 2005, 191(2-3), 155-160.
[12]
Vamathevan, V.; Amal, R.; Beydoun, D.; Low, G.; Mcevoy, S. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photoch. Photobio A, 2002, 148(1-3), 233-245.
[13]
Corma, A.; Garcia, H. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. J. Catal., 2013, 308, 168-175.
[14]
Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci., 2013, 6(11), 3112-3125.
[15]
Ni, M.; Leung, D.Y.C.; Leung, M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy, 2007, 32(15), 3238-3247.
[16]
Liu, Q.; Zhou, Y.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. High-Yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc., 2010, 132(41), 14385-14387.
[17]
Shi, H.; Chen, G.; Zhang, C.; Zou, Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal., 2014, 4(10), 3637-3643.
[18]
Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.Y.; Fan, X.X.; Wan, L.J.; Li, Z.S.; Ye, J.H.; Zhou, Y.; Zou, Z.G. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. Int. Ed., 2010, 49(36), 6400-6404.
[19]
Zhou, Y.; Tian, Z.; Zhao, Z.; Liu, Q.; Kou, J.; Chen, X.; Gao, J.; Yan, S.; Zou, Z. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces, 2011, 3(9), 3594-3601.
[20]
He, K.; Xie, J.; Luo, X.; Wen, J.; Ma, S.; Li, X.; Fang, Y.; Zhang, X. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal., 2017, 38(2), 240-252.
[21]
Ong, W.J.; Tan, L.L.; Chai, S.P.; Yong, S.T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton T., 2015, 44(3), 1249-1257.
[22]
Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater., 2015, 27(13), 2150-2176.
[23]
Chen, D.; Wang, Z.; Ren, T.; Ding, H.; Yao, W.; Zong, R.; Zhu, Y. Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C, 2014, 118(28), 15300-15307.
[24]
Han, C.; Yang, M.Q.; Weng, B.; Xu, Y.J. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys., 2014, 16, 16891-16903.
[25]
Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347(6225), 970-974.
[26]
Saravanan, R.; Khan, M.M.; Gupta, V.K.; Mosquera, E.; Gracia, F.; Narayanan, V.; Stephen, A. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Interface Sci., 2015, 452, 126-133.
[27]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[28]
Annapoorani, R.; Dhananjeyan, M.R.; Renganathan, R. An investigation on ZnO photocatalysed oxidation of uracil. J. Photoch. Photobio. A, 1997, 111(1-3), 215-221.
[29]
Hameed, A.; Gondal, M.A.; Yamani, Z.H. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal. Commun., 2004, 5(11), 715-719.
[30]
Seung, B.P.; Yun, C.Y. Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis. J. Aerosol Sci., 1997, 28(1001), 473-474.
[31]
Kőrösi, L.; Németh, J.; Dékány, I. Structural and photooxidation properties of SnO2/layer silicate nanocomposites. Appl. Clay Sci., 2004, 27(1-2), 29-40.
[32]
Melghit, K.; Mohammed, A.K.; Al-Amri, I. Chimie douce preparation, characterization and photocatalytic activity of nanocrystalline SnO2. Mater. Sci. Eng. B, 2005, 117(3), 302-306.
[33]
Sclafani, A.; Palmisano, L.; Marci, G.; Venezia, A.M. Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Sol. Energy Mater. Sol. Cells, 1998, 51(2), 203-219.
[34]
Khan, H.; Rigamonti, M.G.; Patience, G.S.; Boffito, D.C. Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl. Catal. B-Environ.,, 2018, 226, 311-323.
[35]
Prabhu, S.; Cindrella, L.; Kwon, O.J.; Mohanraju, K. Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction. Mater. Sci. Semicond. Process., 2018, 88, 10-19.
[36]
Ramos, P.G.; Flores, E.; Sánchez, L.A.; Candal, R.J.; Hojamberdiev, M.; Estrada, W.; Rodriguez, J. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning. Appl. Surf. Sci., 2017, 426, 844-851.
[37]
Taghavi, M.; Tabatabaee, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Afsharnia, M.; Alami, A.; Mardaneh, J. Synthesis, characterization and photocatalytic activity of TiO2/ZnO-supported phosphomolybdic acid nanocomposites. J. Mol. Liq., 2018, 249, 546-553.
[38]
Liu, Y.; Sun, L.; Wu, J.; Fang, T.; Cai, R.; Wei, A. Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites. Mater. Sci. Eng. B, 2015, 194, 9-13.
[39]
Shooshtari, N.M.; Ghazi, M.M. An investigation of the photocatalytic activity of nano α-Fe2O3/ZnO on the photodegradation of cefixime trihydrate. Chem. Eng. J., 2017, 315, 527-536.
[40]
Fallah Shojaei, A.; Shams-Nateri, A.; Ghomashpasand, M. Comparative study of photocatalytic activities of magnetically separable WO3/TiO2/Fe3O4 nanocomposites and TiO2, WO3/TiO2 and TiO2/Fe3O4 under visible light irradiation. Superlattices Microstruct., 2015, 88, 211-224.
[41]
Fan, W.; Zhang, Q.; Wang, Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys., 2013, 15(8), 2632-2649.
[42]
Li, L.; Salvador, P.A.; Rohrer, G.S. Photocatalysts with internal electric fields. Nanoscale, 2014, 6(1), 24-42.
[43]
Hao, Y.; Li, L.; Liu, D.; Yu, H.; Zhou, Q. The synergy of SPR effect and Z-scheme of Ag on enhanced photocatalytic performance of 3DOM Ag/CeO2-ZrO2 composite. Mol. Catal., 2018, 447, 37-46.
[44]
Huo, Y.; Wang, Z.; Zhang, J.; Liang, C.; Dai, K. Ag SPR-promoted 2D porous g-C3N4 /Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation. Appl. Surf. Sci., 2018, 459, 271-280.
[45]
Jiang, J.; Li, H.; Zhang, L. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem.-Eur. J., 2012, 18(20), 6360-6369.
[46]
Wang, W.S.; Du, H.; Wang, R.X.; Wen, T.; Xu, A.W. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. Nanoscale, 2013, 5, 3315-3321.
[47]
Kim, H.; Park, J.; Park, I.; Jin, K.; Jerng, S.E.; Kim, S.H.; Nam, K.T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun., 2015, 6(1), 8253-8264.
[48]
Ao, Y.; Bao, J.; Wang, P.; Wang, C. A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates. J. Alloys Compd., 2017, 698, 410-419.
[49]
Cai, T.; Liu, Y.; Wang, L.; Zhang, S.; Zeng, Y.; Yuan, J.; Ma, J.; Dong, W.; Liu, C.; Luo, S. Silver phosphate-based Z-Scheme photocatalytic system with superior sunlight photocatalytic activities and anti-photocorrosion performance. Appl. Catal. BEnviron, 2017, 208, 1-13.
[50]
Guo, Y.; Wang, P.; Qian, J.; Ao, Y.; Wang, C.; Hou, J. Phosphate group grafted twinned BiPO4 with significantly enhanced photocatalytic activity: Synergistic effect of improved charge separation efficiency and redox ability. Appl. Catal. BEnviron, 2018, 234, 90-99.
[51]
Hu, B.; Yuan, J.Y.; Tian, J.Y.; Wang, M.; Wang, X.; He, L.; Zhang, Z.; Wang, Z.W.; Liu, C.S. Co/Fe-bimetallic organic framework-derived carbon-incorporated cobalt-ferric mixed metal phosphide as a highly efficient photocatalyst under visible light. J. Colloid Interface Sci., 2018, 531, 148-159.
[52]
Kim, Y.; Kim, H.C.; Lee, J.; Lee, S.H.; Kwon, K.Y. Morphological change and photocatalytic activity of titanium phosphates. J. Photoch. Photobio. A, 2017, 338, 146-151.
[53]
Jo, W.J.; Jang, J.W.; Kong, K.j.; Kang, H.J.; Kim, J.Y.; Jun, H.; Parmar, K.P.S.; Lee, J.S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed., 2012, 124(13), 3201-3205.
[54]
Korosi, L.; Papp, S.; Bertoti, I.; Dekany, I. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chem. Mater., 2007, 19(19), 4811-4819.
[55]
Meng, J.; Xiong, X.; Zhang, X.; Xu, Y. Improved photocatalytic degradation of chlorophenol over Pt/Bi2WO6 on addition of phosphate. Appl. Surf. Sci., 2018, 439, 859-867.
[56]
Wang, L.; Chai, Y.; Ren, J.; Ding, J.; Liu, Q.; Dai, W.L. Ag3PO4 nanoparticles loaded on 3D flower-like spherical MoS2: a highly efficient hierarchical heterojunction photocatalyst. Dalton T., 2015, 44, 14625-14634.
[57]
Lachheb, H.; Ahmed, O.; Houas, A.; Nogier, J.P. Photocatalytic activity of TiO2-SBA-15 under UV and visible light. J. Photoch. Photobio. A, 2011, 226(1), 1-8.
[58]
Ma, J.; Chu, J.; Qiang, L.; Xue, J. Synthesis and structural characterization of novel visible photocatalyst Bi-TiO2/SBA-15 and its photocatalytic performance. RSC Advances, 2012, 2, 3753-3758.
[59]
Chai, Y.; Wang, L.; Ren, J.; Dai, W.L. A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants. Appl. Surf. Sci., 2015, 324, 212-220.
[60]
Chai, Y.; Ding, J.; Wang, L.; Liu, Q.; Ren, J.; Dai, W.L. Enormous enhancement in photocatalytic performance of Ag3PO4 /HAp composite: A Z-scheme mechanism insight. Appl. Catal. B-Environ, 2015, 179, 29-36.
[61]
Tahir, M.; Cao, C.; Mahmood, N.; Butt, F.K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces, 2014, 6(2), 1258-1265.
[62]
Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci., 2017, 391, 72-123.
[63]
Chen, J.; Shen, S.; Guo, P.; Wang, M.; Wu, P.; Wang, X.; Guo, L. In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl. Catal. B-Environ, 2014, 152-153, 335-341.
[64]
Habibi-Yangjeh, A.; Akhundi, A. Novel ternary g-C3N4/Fe3O4/ Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. J. Mol. Catal. Chem., 2016, 415, 122-130.
[65]
Hao, R.; Wang, G.; Tang, H.; Sun, L.; Xu, C.; Han, D. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B-Environ, 2016, 187, 47-58.
[66]
Xia, P.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-Scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem.& Eng., 2017, 6(1), 965-973.
[67]
Xue, J.; Ma, S.; Zhou, Y.; Zhang, Z.; He, M. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl. Mater. Interfaces, 2015, 7(18), 9630-9637.
[68]
Zhu, Z.; Lu, Z.; Wang, D.; Tang, X.; Yan, Y.; Shi, W.; Wang, Y.; Gao, N.; Yao, X.; Dong, H. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B-Environ, 2016, 182, 115-122.
[69]
Ding, J.; Wang, L.; Liu, Q.; Chai, Y.; Liu, X.; Dai, W.L. Remarkable enhancement in visible-light absorption and electron transfer of carbon nitride nanosheets with 1% tungstate dopant. Appl. Catal. B-Environ, 2015, 176-177, 91-98.
[70]
Liu, Q.; Ding, J.; Chai, Y.; Zhao, J.; Cheng, S.; Zong, B.; Dai, W.L. Unprecedented enhancement in visible-light-driven photoactivity of modified graphitic C3N4 by coupling with H2WO4. J. Environ. Chem. Eng., 2015, 3(2), 1072-1080.
[71]
Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Ma, T.; Sun, Y. Fabrication of Z-scheme g-C3N4 /RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem. Eng. J., 2016, 290, 136-146.
[72]
Zhu, B.; Xia, P.; Li, Y.; Ho, W.; Yu, J. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci., 2017, 391, 175-183.
[73]
Ren, J.; Chai, Y.; Liu, Q.; Zhang, L.; Dai, W.L. Intercorrelated Ag3PO4 nanoparticles decorated with graphic carbon nitride: Enhanced stability and photocatalytic activities for water treatment. Appl. Surf. Sci., 2017, 403, 177-186.
[74]
Zhang, L.; Liu, Q.; Chai, Y.; Dai, W.L. Facile construction of phosphate incorporated graphitic carbon nitride with mesoporous structure and superior performance for H2 production. Int. J. Hydrogen Energy, 2018, 43(11), 5591-5602.
[75]
Kamegawa, T.; Ishiguro, Y.; Seto, H.; Yamashita, H. Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J. Mater. Chem. A , 2015, 3, 2323-2330.
[76]
Li, C.; Chen, G.; Sun, J.; Rao, J.; Han, Z.; Hu, Y.; Xing, W.; Zhang, C. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water. Appl. Catal. B-Environ, 2016, 188, 39-47.
[77]
Martin, D.J.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H2 evolution from water using visible light and structure‐controlled graphitic carbon nitride. Angew. Chem. Int. Ed., 2014, 53(35), 9240-9245.
[78]
Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; Li, Y.; Sharp, I.D.; Kudo, A.; Yamada, T.; Domen, A.K. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater., 2016, 15, 611-615.
[79]
Liao, C.; Ma, Z.; Dong, G.; Qiu, J. BiOI nanosheets decorated TiO2 nanofiber: Tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects. Appl. Surf. Sci., 2014, 314, 481-489.
[80]
Chang, K.; Mei, Z.; Wang, T.; Kang, Q.; Ouyang, S.; Ye, J. MoS2/Graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano, 2014, 8(7), 7078-7087.
[81]
Zhang, L.; Liu, Q.; Chai, Y.; Ren, J.; Dai, W.L. Imidazole modified g-C3N4 photocatalyst: Structural characterization and versatile energy applications. Appl. Surf. Sci., 2018, 430, 316-324.
[82]
Hao, C.H.; Guo, X.N.; Pan, Y.T.; Chen, S.; Jiao, Z.F.; Yang, H.; Guo, X.Y. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts. J. Am. Chem. Soc., 2016, 138(30), 9361-9364.
[83]
Jagadeesh, R.V.; Surkus, A.E.; Junge, H.; Pohl, M.M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science, 2013, 342(6162), 1073-1076.
[84]
Yang, X.J.; Chen, B.; Zheng, L.Q.; Wu, L.Z.; Tung, C.H. Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green Chem., 2014, 16, 1082-1086.
[85]
Zhang, Y.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. , 2013, 4, 1820-1824.
[86]
Yang, M.Q.; Zhang, N.; Xu, Y.J. Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl. Mater. Interfaces, 2013, 5(3), 1156-1164.
[87]
Yu, P.; Liu, G.; Tang, R. Metal-organic frameworks containing N-hydroxyphthalimide as efficient heterogeneous catalysts for allylic oxidation. Curr. Organocatal., 2014, 1, 79-86.
[88]
Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B-Environ, 2015, 176-177, 44-52.
[89]
Ye, S.; Wang, R.; Wu, M.Z.; Yuan, Y.P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci., 2015, 358, 15-27.
[90]
Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed., 2015, 54(8), 2406-2409.

© 2024 Bentham Science Publishers | Privacy Policy