Optimization and Analysis of Acid Treated Trimethylamine using Surface Response and Gas Chromatography Analytical Methods

Author(s): Seul-Ki Park, Fazlurrahman Khan, Yeon-Jin Cho, Dong-Lee Hong, Yu-Mi Jang, Young-Mog Kim*

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Trimethylamine (TMA) is a nitrogenous base aliphatic organic compound accounting for the odor of rotten fish and it is used as an indicator for analyzing the quality of fish products.

Introduction: Extraction procedures and analytical methods including colorimetric and Gas- Chromatography (GC) can quantify the TMA contents of fish products after pre-treatment with basic solutions. However, the extraction procedure and analytical methods for acid-treated samples are not known, despite the majority of fish products being preserved using acid preservatives.

Methods: The methodologies used included solid-phase micro-extraction of TMA followed by its quantification by a GC-based analytical method. An analysis of response surface methodology was also conducted to verify the optimum conditions for TMA detection in acid-treated liquid samples affected by factors including trapping time, temperature, and stirring speed.

Results: The results obtained from this study showed that the optimum conditions for the best yield of TMA extraction are 20 min of trapping, emission at 55°C, and stirring at 400 rpm. The validation of the developed method was carried out using rotten fish after acid treatment. Acid treatment decreased TMA by up to 73.01%, however, when adding NaOH solution of the same volume to the samples, TMA increased similar to the control group.

Conclusion: Here, we report a simple, sensitive, and rapid extraction procedure. A GC-based analytical method was developed for the analysis of TMA from the acid-treated sample. The developed extraction procedure and analytical methods were optimized and validated, which could be helpful for the extraction of TMA without damaging the sample.

Keywords: Box-behnken design, gas chromatography, response surface methodology, solid-phase micro-extraction, TMA extraction, trimethylamine.

[1]
Campo, M.M.; Nute, G.R.; Wood, J.D.; Elmore, S.J.; Mottram, D.S.; Enser, M. Modelling the effect of fatty acids in odour development of cooked meat in vitro: part I-sensory perception. Meat Sci., 2003, 63(3), 367-375.
[http://dx.doi.org/10.1016/S0309-1740(02)00095-5] [PMID: 22062390]
[2]
Josephson, D.B.; Lindsay, R.C.; Stuiber, D.A. Biogenesis of lipid-derived volatile aroma compounds in the emerald shiner (Notropis atherinoides). J. Agric. Food Chem., 1984, 32(6), 1347-1352.
[http://dx.doi.org/10.1021/jf00126a032]
[3]
Yoshiwa, T.; Morimoto, K.; Sakamoto, K.; Ishikawa, Y.; Tokita, M.; Morita, M. Volatile Compounds of Fishy Odor in Sardine by Simultaneous Distillation and Extraction under Reduced Pressure. Nippon Suisan Gakkaishi, 1997, 222-230.
[http://dx.doi.org/10.2331/suisan.63.222]
[4]
Castell, C.H.; Smith, B.; Neal, W. Production of Dimethylamine in Muscle of Several Species of Gadoid Fish during Frozen Storage, Especially in Relation to Presence of Dark Muscle. J. Fish. Res. Board Can., 1971, 28(1), 1-5.
[http://dx.doi.org/10.1139/f71-001]
[5]
Lundstrom, R.C.; Racicot, L.D. Gas chromatographic determination of dimethylamine and trimethylamine in seafoods. J. Assoc. Off. Anal. Chem., 1983, 66(5), 1158-1163.
[http://dx.doi.org/10.1093/jaoac/66.5.1158] [PMID: 6630129]
[6]
Namieśnik, J.; Jastrzebska, A.; Zygmunt, B. Determination of volatile aliphatic amines in air by solid-phase microextraction coupled with gas chromatography with flame ionization detection. J. Chromatogr. A, 2003, 1016(1), 1-9.
[http://dx.doi.org/10.1016/S0021-9673(03)01296-2] [PMID: 14601823]
[7]
Chung, K.H.; Lee, K.Y. Removal of trimethylamine by adsorption over zeolite catalysts and deodorization of fish oil. J. Hazard. Mater., 2009, 172(2-3), 922-927.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.081] [PMID: 19692177]
[8]
Singer, G.M.; Lijinsky, W. Naturally occurring nitrosatable compounds. I. Secondary amines in foodstuffs. J. Agric. Food Chem., 1976, 24(3), 550-553.
[http://dx.doi.org/10.1021/jf60205a044] [PMID: 946806]
[9]
Zeisel, S.H.; DaCosta, K.A. Increase in human exposure to methylamine precursors of N-nitrosamines after eating fish. Cancer Res., 1986, 46(12 Pt 1), 6136-6138.
[PMID: 3779634]
[10]
Lundstrom, R.C.; Correia, F.F.; Wilhelm, K.A. Dimethylamine production In Fresh Red Hake(Urophycis chuss): The Effect of Packaging Material Oxygen Permeability and Cellular Damage. J. Food Biochem., 1982, 6(4), 229-242.
[http://dx.doi.org/10.1111/j.1745-4514.1982.tb00304.x]
[11]
Lin, J.K.; Lai, C.C. High performance liquid chromatographic determination of naturally occurring primary and secondary amines with dabsyl chloride. Anal. Chem., 1980, 52(4), 630-635.
[http://dx.doi.org/10.1021/ac50054a008] [PMID: 7190362]
[12]
Serfert, Y.; Drusch, S.; Schwarz, K. Sensory odour profiling and lipid oxidation status of fish oil and microencapsulated fish oil. Food Chem., 2010, 123(4), 968-975.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.047]
[13]
Kwak, H.S.; Yang, K.M.; Ahn, J. Microencapsulated iron for milk fortification. J. Agric. Food Chem., 2003, 51(26), 7770-7774.
[http://dx.doi.org/10.1021/jf030199+] [PMID: 14664543]
[14]
Cho, K-S.; Zhang, L.; Hirai, M.; Shoda, M. Removal characteristics of hydrogen sulphide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. J. Ferment. Bioeng., 1991, 71(1), 44-49.
[http://dx.doi.org/10.1016/0922-338X(91)90302-W]
[15]
Cho, K-S.; Ryu, H.W.; Lee, N.Y. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. J. Biosci. Bioeng., 2000, 90(1), 25-31.
[http://dx.doi.org/10.1016/S1389-1723(00)80029-8] [PMID: 16232813]
[16]
Shinabe, K.; Oketani, S.; Ochi, T.; Matsumura, M. Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS1 isolated from a carrier-packed biological deodorization system. J. Ferment. Bioeng., 1995, 80(6), 592-598.
[http://dx.doi.org/10.1016/0922-338X(96)87737-3]
[17]
Fukami, K.; Funatsu, Y.; Kawasaki, K.; Watabe, S. Improvement of Fish-sauce Odor by Treatment with Bacteria Isolated from the Fish-sauce Mush. (Moromi) Made from Frigate Mackerel. J. Food Sci., 2004, 69(2), FMS45-FMS49.
[18]
Fukami, K.; Satomi, M.; Funatsu, Y.; Kawasaki, K-I.; Watabe, S. Characterization and distribution of Staphylococcus sp. implicated for improvement of fish sauce odor. Fish. Sci., 2004, 70(5), 916-923.
[http://dx.doi.org/10.1111/j.1444-2906.2004.00887.x]
[19]
Wekell, J.C.; Barnett, H. New Method for Analysis of Trimethylamine Oxide Using Ferrous Sulfate and EDTA. J. Food Sci., 1991, 56(1), 132-135.
[http://dx.doi.org/10.1111/j.1365-2621.1991.tb07993.x]
[20]
Murray, C.K.; Gibson, D.M. An investigation of the method of determining trimethylamine in fish muscle extracts by the formation of its picrate salt—Part I. Int. J. Food Sci. Technol., 1972, 7(1), 35-46.
[http://dx.doi.org/10.1111/j.1365-2621.1972.tb01639.x]
[21]
Castell, C.H.; Smith, B.; Dyer, W.J. Simultaneous Measurements of Trimethylamine and Dimethylamine in Fish, and Their Use for Estimating Quality of Frozen-Stored Gadoid Fillets. J. Fish. Res. Board Can., 1974, 31(4), 383-389.
[http://dx.doi.org/10.1139/f74-065]
[22]
Bullard, F.A. An improved method to analyze trimethylamine in fish and the interference of ammonia and dimethylamine. Fish Bull., 1980, 78, 465-473.
[23]
Hashimoto, Y.; Okaichi, T. On the Determination of Trimethylamine and Trimethylamine Oxide., 1957, 269-272.
[24]
Ritskes, T.M. The gas chromatographic determination of trimethylamine and dimethylamine in fish, fishery products and other foodstuffs. Int. J. Food Sci. Technol., 1975, 10(2), 221-228.
[http://dx.doi.org/10.1111/j.1365-2621.1975.tb00024.x]
[25]
Dunn, S.R.; Simenhoff, M.L.; Wesson, L.G., Jr Gas chromatographic determination of free mono-, di-, and trimethylamines in biological fluids. Anal. Chem., 1976, 48(1), 41-44.
[http://dx.doi.org/10.1021/ac60365a041] [PMID: 1244766]
[26]
Hiatt, M.H. Determination of volatile organic compounds in fish samples by vacuum distillation and fused silica capillary gas chromatography/mass spectrometry. Anal. Chem., 1983, 55(3), 506-516.
[http://dx.doi.org/10.1021/ac00254a022] [PMID: 6846846]
[27]
Kim, K-H.; Kim, D. A combination of Tedlar bag sampling and solid-phase microextraction for the analysis of trimethylamine in air: Relationship between concentration level and sample size. Microchem. J., 2009, 91(1), 16-20.
[http://dx.doi.org/10.1016/j.microc.2008.06.003]
[28]
Wzorek, B.; Mochalski, P.; Sliwka, I.; Amann, A. Application of GC-MS with a SPME and thermal desorption technique for determination of dimethylamine and trimethylamine in gaseous samples for medical diagnostic purposes. J. Breath Res., 2010, 4(2)026002
[http://dx.doi.org/10.1088/1752-7155/4/2/026002] [PMID: 21383470]
[29]
Dehaut, A.; Duthen, S.; Grard, T.; Krzewinski, F.; N’Guessan, A.; Brisabois, A.; Duflos, G. Development of an SPME-GC-MS method for the specific quantification of dimethylamine and trimethylamine: use of a new ratio for the freshness monitoring of cod fillets. J. Sci. Food Agric., 2016, 96(11), 3787-3794.
[http://dx.doi.org/10.1002/jsfa.7570] [PMID: 26676937]
[30]
Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A, 2000, 880(1-2), 35-62.
[http://dx.doi.org/10.1016/S0021-9673(00)00309-5] [PMID: 10890509]
[31]
Zhang, Z.; Yang, M.J.; Pawliszyn, J. Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation. Anal. Chem., 1994, 66(17), 844A-853A.
[http://dx.doi.org/10.1021/ac00089a001]
[32]
Pawliszyn, J. New directions in sample preparation for analysis of organic compounds. Trends Analyt. Chem., 1995, 14(3), 113-122.
[http://dx.doi.org/10.1016/0165-9936(95)94044-F]
[33]
Eisert, R.; Levsen, K. Solid-phase microextraction coupled to gas chromatography: A new method for the analysis of organics in water. J. Chromatogr. A, 1996, 733(1), 143-157.
[http://dx.doi.org/10.1016/0021-9673(95)00875-6]
[34]
Penton, Z.E. Sample preparation for gas chromatography with solid-phase extraction and solid-phase microextraction. Adv. Chromatogr., 1997, 37, 205-236.
[PMID: 8995774]
[35]
Pawliszyn, J. 2 - Theory of Solid-Phase Microextraction Handbook of Solid Phase Microextraction, , 13-59.
[36]
Box, G.E.P.; Wilson, K.B.C.F.d. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. B, 1951, 13(1), 1-45.
[http://dx.doi.org/10.1111/j.2517-6161.1951.tb00067.x]
[37]
Mills, G.A.; Walker, V. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials. J. Chromatogr. A, 2000, 902(1), 267-287.
[http://dx.doi.org/10.1016/S0021-9673(00)00767-6] [PMID: 11192159]
[38]
Vas, G.; Gal, L.; Harangi, J.; Dobo, A.; Vekey, K. Determination of Volatile Aroma Compounds of Blaufrankisch Wines Extracted by Solid-Phase Microextraction. J. Chromatogr. Sci., 1998, 36(10), 505-510.
[http://dx.doi.org/10.1093/chromsci/36.10.505]
[39]
Kim, H-y.; Hwang, S-h.; Lee, J-h. Effect of fermented vinegar on the reduction in trimethylamine in konjac glucomannan gel. Appl. Biol. Chem., 2017, 60(3), 281-285.
[http://dx.doi.org/10.1007/s13765-017-0280-1]
[40]
Li, C.; Fu, X.; Huang, Q.; Luo, F.; You, L. Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities. Eur. Food Res. Technol., 2014, 240(1), 49-60.
[http://dx.doi.org/10.1007/s00217-014-2306-9]
[41]
Wang, J.; Zhang, J.; Zhao, B.; Wang, X.; Wu, Y.; Yao, J. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation. Carbohydr. Polym., 2010, 80(1), 84-93.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.073]
[42]
Song, Y.; Du, B.; Zhou, T.; Han, B.; Yu, F.; Yang, R.; Hu, X.; Ni, Y.; Li, Q. Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes. Carbohydr. Res., 2011, 346(2), 305-310.
[http://dx.doi.org/10.1016/j.carres.2010.11.019] [PMID: 21159330]
[43]
Quanhong, L.; Caili, F. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem., 2005, 92(4), 701-706.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.042]
[44]
Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydr. Polym., 2015, 130, 122-132.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.003] [PMID: 26076608]
[45]
Liu, Z.; Mei, L.; Wang, Q.; Shao, Y.; Tao, Y. Optimization of subcritical fluid extraction of seed oil from Nitraria tangutorum using response surface methodology. Lebensm. Wiss. Technol., 2014, 56(1), 168-174.
[http://dx.doi.org/10.1016/j.lwt.2013.10.048]
[46]
Zhou, L.; Nyberg, K.; Rowat, A.C. Understanding diffusion theory and Fick’s law through food and cooking. Adv. Physiol. Educ., 2015, 39(3), 192-197.
[http://dx.doi.org/10.1152/advan.00133.2014] [PMID: 26330037]
[47]
Guenneau, S.; Puvirajesinghe, T.M. Fick’s second law transformed: one path to cloaking in mass diffusion. J. R. Soc. Interface, 2013, 10(83) 20130106
[http://dx.doi.org/10.1098/rsif.2013.0106] [PMID: 23536540]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Page: [631 - 640]
Pages: 10
DOI: 10.2174/1573411015666190301145807
Price: $65

Article Metrics

PDF: 11
HTML: 1