Structural Relationship Study of Octanol-Water Partition Coefficient of Some Sulfa Drugs Using GA-MLR and GA-ANN Methods

Author(s): Etratsadat Dadfar, Fatemeh Shafiei*, Tahereh M. Isfahani

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aim and Objective: Sulfonamides (sulfa drugs) are compounds with a wide range of biological activities and they are the basis of several groups of drugs. Quantitative Structure-Property Relationship (QSPR) models are derived to predict the logarithm of water/ 1-octanol partition coefficients (logP) of sulfa drugs.

Materials and Methods: A data set of 43 sulfa drugs was randomly divided into 3 groups: training, test and validation sets consisting of 70%, 15% and 15% of data point, respectively. A large number of molecular descriptors were calculated with Dragon software. The Genetic Algorithm - Multiple Linear Regressions (GA-MLR) and genetic algorithm -artificial neural network (GAANN) were employed to design the QSPR models. The possible molecular geometries of sulfa drugs were optimized at B3LYP/6-31G* level with Gaussian 98 software. The molecular descriptors derived from the Dragon software were used to build a predictive model for prediction logP of mentioned compounds. The Genetic Algorithm (GA) method was applied to select the most relevant molecular descriptors.

Results: The R2 and MSE values of the MLR model were calculated to be 0.312 and 5.074 respectively. R2 coefficients were 0.9869, 0.9944 and 0.9601for the training, test and validation sets of the ANN model, respectively.

Conclusion: Comparison of the results revealed that the application the GA-ANN method gave better results than GA-MLR method.

Keywords: QSPR, multiple linear regressions, back propagation neural network (BPNN), genetic algorithm, sulfa drugs, octanol-water.

[1]
Joshi, S.; Khosla, N. QSAR study on antibacterial activity of sulphonamides and derived Mannich bases. Bioorg. Med. Chem. Lett., 2003, 13(21), 3747-3751.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.017] [PMID: 14552772]
[2]
Wang, D.; Lin, Z.; Huo, Z.; Wang, T.; Yao, Z.; Cong, Y. Mechanism-based QSAR models for the toxicity of quorum sensing inhibitors to gram-negative and gram-positive bacteria. Bull. Environ. Contam. Toxicol., 2016, 97(1), 145-150.
[http://dx.doi.org/10.1007/s00128-016-1801-z] [PMID: 27084097]
[3]
Kiralj, R.; Ferreira, M. A Priori Descriptors in QSAR: a Case of Gram-Negative Bacterial Multidrug Resistance to ß-Lactams. Croat. Chem. Acta, 2008, 81(4), 579-592.
[4]
Araya-Cloutier, C.; Vincken, J.P.; van de Schans, M.G.M.; Hageman, J.; Schaftenaar, G.; den Besten, H.M.W.; Gruppen, H. QSAR-based molecular signatures of prenylated (iso)flavonoids underlying antimicrobial potency against and membrane-disruption in Gram positive and Gram negative bacteria. Sci. Rep., 2018, 8(1), 9267-9281.
[http://dx.doi.org/10.1038/s41598-018-27545-4] [PMID: 29915354]
[5]
García-Galán, M.J.; Díaz-Cruz, S.; Barcelo, D. Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trends Analyt. Chem., 2009, 28(6), 804-819.
[http://dx.doi.org/10.1016/j.trac.2009.04.006]
[6]
Fritz, J.S.; Keen, R.T. Determination of Sulfa Drugs and Sulfonamides. Anal. Chem., 1952, 24(2), 308-310.
[http://dx.doi.org/10.1021/ac60062a013]
[7]
Iqbal, J.; Al-Rashida, M.; Durdagi, S.; Alterio, V.; Di Fiore, A. Recent developments of carbonic anhydrase inhibitors as potential drugs. BioMed Res. Int., 2015, 2015(174178)174178
[http://dx.doi.org/10.1155/2015/174178] [PMID: 25821785]
[8]
Agrawal, V.K.; Srivastava, R.; Khadikar, P.V. QSAR studies on some antimalarial sulfonamides. Bioorg. Med. Chem., 2001, 9(12), 3287-3293.
[http://dx.doi.org/10.1016/S0968-0896(01)00241-3] [PMID: 11711304]
[9]
Hemmateenejad, B.; Miri, R.; Jafarpour, M.; Tabarzad, M.; Shamsipur, M. Exploring QSAR for the Inhibitory Activity of a Large Set of Aromatic/Heterocyclic Sulfonamides toward Four Different Isoenzymes of Carbonic Anhydrase. QSAR Comb. Sci., 2007, 26(10), 1065-1075.
[http://dx.doi.org/10.1002/qsar.200730010]
[10]
Supuran, C.T.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A. Antiviral sulfonamide derivatives. Mini Rev. Med. Chem., 2004, 4(2), 189-200.
[http://dx.doi.org/10.2174/1389557043487402] [PMID: 14965291]
[11]
Vullo, D.; Franchi, M.; Gallori, E.; Antel, J.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of mitochondrial isozyme V with aromatic and heterocyclic sulfonamides. J. Med. Chem., 2004, 47(5), 1272-1279.
[http://dx.doi.org/10.1021/jm031057+] [PMID: 14971907]
[12]
Shafiei, F.; Saeidifar, A. QSPR Study of Some Physicochemical Properties of Sulfonamides Using Topological and Quantum Chemical Indices. J. Chem. Soc. Pak., 2017, 39(03), 366-373.
[13]
Caira, M.R. Sulfa drugs as model cocrystal formers. Mol. Pharm., 2007, 4(3), 310-316.
[http://dx.doi.org/10.1021/mp070003j] [PMID: 17477545]
[14]
Husain, A. Amide derivatives of sulfonamides and isoniazid: synthesis and biological evaluation. Acta Pol. Pharm., 2009, 66(5), 513-521.
[PMID: 19894647]
[15]
He, R.; Ma, H.; Zhao, W.; Qu, W.; Zhao, J.; Luo, L.; Zhu, W. Modeling the QSAR of ACE-Inhibitory Peptides with ANN and Its Applied Illustration. Int. J. Pept., 2012, 2012(7)620609
[http://dx.doi.org/10.1155/2012/620609] [PMID: 21822439]
[16]
Barzegar, A.; Zamani-Gharehchamani, E.; Kadkhodaie-Ilkhchi, A. ANN QSAR workflow for predicting the inhibition of HIV-1 reverse transcriptase by pyridinone non-nucleoside derivatives. Future Med. Chem., 2017, 9(11), 1175-1191.
[http://dx.doi.org/10.4155/fmc-2017-0040] [PMID: 28722475]
[17]
Ahmadinejad, N.; Shafiei, F. Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors. Comb. Chem. High Throughput Screen., 2019, 22(6), 387-399.
[http://dx.doi.org/10.2174/1386207322666190708112251] [PMID: 31284856]
[18]
Ghamali, M.; Chtita, S.; Ousaa, A.; Elidrissi, B.; Bouachrine, M.; Lakhlifi, T. QSAR analysis of the toxicity of phenols and thiophenols using MLR and ANN. JTUSCI, 2017, 11(1), 1-10.
[http://dx.doi.org/10.1016/j.jtusci.2016.03.002]
[19]
Erös, D.; Kéri, G.; Kövesdi, I.; Szántai-Kis, C.; Mészáros, G.; Örfi, L. Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods. Mini Rev. Med. Chem., 2004, 4(2), 167-177.
[http://dx.doi.org/10.2174/1389557043487466] [PMID: 14965289]
[20]
González-Díaz, H.; Bonet, I.; Terán, C.; De Clercq, E.; Bello, R.; García, M.M.; Santana, L.; Uriarte, E. ANN-QSAR model for selection of anticancer leads from structurally heterogeneous series of compounds. Eur. J. Med. Chem., 2007, 42(5), 580-585.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.016] [PMID: 17207560]
[21]
Tuzun, B.; Yavuz, S.C.; Sabanci, N.; Saripinar, E. 4D-QSAR Study of Some Pyrazole Pyridine Carboxylic Acid Derivatives By Electron Conformational-Genetic Algorithm Method. Curr Comput Aided Drug Des, 2018, 14(4), 370-384.
[http://dx.doi.org/10.2174/1573409914666180514094202] [PMID: 29756584]
[22]
Andreu, I.; Mayorga, C.; Miranda, M.A. Metabolomics in drug intolerance. Curr. Drug Metab., 2009, 10(9), 947-955.
[http://dx.doi.org/10.2174/138920009790711823] [PMID: 20214587]
[23]
Deeb, O.; Hemmateenejad, B.; Jaber, A.; Garduno-Juarez, R.; Miri, R. Effect of the electronic and physicochemical parameters on the carcinogenesis activity of some sulfa drugs using QSAR analysis based on genetic-MLR and genetic-PLS. Chemosphere, 2007, 67(11), 2122-2130.
[http://dx.doi.org/10.1016/j.chemosphere.2006.12.098] [PMID: 17307223]
[24]
Ekins, S. Systems-ADME/Tox: resources and network approaches. J. Pharmacol. Toxicol. Methods, 2006, 53(1), 38-66.
[http://dx.doi.org/10.1016/j.vascn.2005.05.005] [PMID: 16054403]
[25]
Cappelli, C.I.; Benfenati, E.; Cester, J. Evaluation of QSAR models for predicting the partition coefficient (log P) of chemicals under the REACH regulation. Environ. Res., 2015, 143(Pt A), 26-32.
[http://dx.doi.org/10.1016/j.envres.2015.09.025] [PMID: 26432472]
[26]
Ito, S.; Ando, H.; Ose, A.; Kitamura, Y.; Ando, T.; Kusuhara, H.; Sugiyama, Y. Relationship between the urinary excretion mechanisms of drugs and their physicochemical properties. J. Pharm. Sci., 2013, 102(9), 3294-3301.
[http://dx.doi.org/10.1002/jps.23599] [PMID: 23712676]
[27]
Zhong, H.A.; Mashinson, V.; Woolman, T.A.; Zha, M. Understanding the molecular properties and metabolism of top prescribed drugs. Curr. Top. Med. Chem., 2013, 13(11), 1290-1307.
[http://dx.doi.org/10.2174/15680266113139990034] [PMID: 23675936]
[28]
Bharate, S.S.; Kumar, V.; Vishwakarma, R.A. Determining partition coefficient (log P), distribution coefficient (log D) and ionization constant (pKa) in early drug discovery. Comb. Chem. High Throughput Screen., 2016, 19(6), 461-469.
[http://dx.doi.org/10.2174/1386207319666160502123917] [PMID: 27137915]
[29]
Kokate, A.; Li, X.; Jasti, B. Effect of drug lipophilicity and ionization on permeability across the buccal mucosa: a technical note. AAPS PharmSciTech, 2008, 9(2), 501-504.
[http://dx.doi.org/10.1208/s12249-008-9071-7] [PMID: 18431653]
[30]
Czerwinski, S.E.; Skvorak, J.P.; Maxwell, D.M.; Lenz, D.E.; Baskin, S.I. Effect of octanol:water partition coefficients of organophosphorus compounds on biodistribution and percutaneous toxicity. J. Biochem. Mol. Toxicol., 2006, 20(5), 241-246.
[http://dx.doi.org/10.1002/jbt.20140] [PMID: 17009245]
[31]
Arnott, J.A.; Kumar, R.; Planey, S.L. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet., 2013, 1(1), 31-36.
[32]
Korinth, G.; Wellner, T.; Schaller, K.H.; Drexler, H. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions. Toxicol. Lett., 2012, 215(1), 49-53.
[http://dx.doi.org/10.1016/j.toxlet.2012.09.013] [PMID: 23026264]
[33]
Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci., 1999, 39(5), 868-873.
[http://dx.doi.org/10.1021/ci990307l]
[34]
Bradley, J.C.; Abraham, M.H.; Acree, W.E., Jr; Lang, A.S. Predicting Abraham model solvent coefficients. Chem. Cent. J., 2015, 9(1), 12-22.
[http://dx.doi.org/10.1186/s13065-015-0085-4] [PMID: 25798192]
[35]
Michalík, M.; Lukeš, V. The validation of quantum chemical lipophilicity prediction of alcohols. Acta Chim. Slov., 2016, 9(2), 89-94.
[http://dx.doi.org/10.1515/acs-2016-0015]
[36]
Taylor, C.D. Design and Prediction of Corrosion Inhibitors from Quantum Chemistry I. Can Effective Partition Coefficients for Organic Corrosion Inhibitors be Determined from First-Principles? J. Electrochem. Soc., 2015, 162(7), C340-C346.
[http://dx.doi.org/10.1149/2.0681507jes]
[37]
Bhal, S.K. Lipophilicity descriptors: Understanding when to use logP & logD; ACD/Labs PhysChem Software Application Notes, 2007.
[38]
Mazák, K.; Kökösi, J.; Noszál, B. Lipophilicity of zwitterions and related species: a new insight. Eur. J. Pharm. Sci., 2011, 44(1-2), 68-73.
[http://dx.doi.org/10.1016/j.ejps.2011.06.009] [PMID: 21726635]
[39]
Khakar, P.S. Two-dimensional (2D) in silico models for absorption, distribution, metabolism, excretion and toxicity (ADME/T) in drug discovery. Curr. Top. Med. Chem., 2010, 10(1), 116-126.
[http://dx.doi.org/10.2174/156802610790232224] [PMID: 19929825]
[40]
Geerts, T.; Vander Heyden, Y. In silico predictions of ADME-Tox properties: drug absorption. Comb. Chem. High Throughput Screen., 2011, 14(5), 339-361.
[http://dx.doi.org/10.2174/138620711795508359] [PMID: 21470183]
[41]
Dzimiri, N.; Fricke, U. Lipophilicity and pharmacodynamics of cardiotonic steroids in guinea-pig isolated heart muscle preparations. Br. J. Pharmacol., 1988, 93(2), 281-288.
[http://dx.doi.org/10.1111/j.1476-5381.1988.tb11432.x] [PMID: 2833968]
[42]
Clarke, E.D.; Delaney, J.S. Physical and molecular properties of agrochemicals: an analysis of screen inputs, hits, leads, and products. CHIMIA. Int. J. Chem., 2003, 57(11), 731-734.
[44]
Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: a molecular descriptor calculator. J. Cheminform., 2018, 10(1), 4.
[http://dx.doi.org/10.1186/s13321-018-0258-y] [PMID: 29411163]
[45]
Yap, C.W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[46]
Bolboacă, S.D.; Jäntschi, L.; Diudea, M.V. Molecular design and QSARs/QSPRs with molecular descriptors family. Curr Comput Aided Drug Des, 2013, 9(2), 195-205.
[http://dx.doi.org/10.2174/1573409911309020005] [PMID: 23700993]
[47]
Todeschini, R.; Consonni, V. Handbook of molecular descriptors; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527613106]
[48]
Bahadori, B.; Atabati, M. Harmony Search as a Powerful Tool for Feature Selection in QSPR Study of the Drugs Lipophilicity. Comb. Chem. High Throughput Screen., 2017, 20(4), 321-327.
[http://dx.doi.org/10.2174/1386207320666170315123604] [PMID: 28302018]
[49]
Bukharov, O.E.; Bogolyubov, D.P. Development of a decision support system based on neural networks and a genetic algorithm; Expert Systems with Applications. Expert Syst. Appl., 2015, 42(15-16), 6177-6183.
[http://dx.doi.org/10.1016/j.eswa.2015.03.018]
[50]
Pandey, V. Modeling Of Carbonic Anhydrase (II) Inhibitory Activities Of Sulphonilamide Schiff Bases By ArtifIcial Neural Network Trained With Different Numerical Techniques. Int. J. Pharm. Pharm. Sci., 2018, 10(1), 202-207.
[http://dx.doi.org/10.22159/ijpps.2018v10i1.22775]
[51]
Prakash, O.; Khan, F.; Sangwan, R.S.; Misra, L. ANN-QSAR model for virtual screening of androstenedione C-skeleton containing phytomolecules and analogues for cytotoxic activity against human breast cancer cell line MCF-7. Comb. Chem. High Throughput Screen., 2013, 16(1), 57-72.
[http://dx.doi.org/10.2174/1386207311316010008] [PMID: 23030276]
[52]
Pourbasheer, E.; Riahi, S.; Ganjali, M.R.; Norouzi, P. QSAR study of C allosteric binding site of HCV NS5B polymerase inhibitors by support vector machine. Mol. Divers., 2011, 15(3), 645-653.
[http://dx.doi.org/10.1007/s11030-010-9283-0] [PMID: 20931278]
[53]
Ahmadi, S.; Habibpour, E. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents. Anticancer. Agents Med. Chem., 2017, 17(4), 552-565.
[http://dx.doi.org/10.2174/1871520616666160811162105] [PMID: 27528182]
[54]
Sathe, P.M.; Venitz, J. Comparison of neural network and multiple linear regression as dissolution predictors. Drug Dev. Ind. Pharm., 2003, 29(3), 349-355.
[http://dx.doi.org/10.1081/DDC-120018209] [PMID: 12741616]
[55]
Kawczak, P.; Belka, M.; Slawinski, J.; Baczek, T. QSRR Evaluation of the New Anticancer Sulfonamides in View of the cis-trans Isomerism. Curr. Pharm. Anal., 2018, 14(1), 35-40.
[56]
Rouhollahi, A.; Ghasemi, J.B.; Babaee, E. Ouammou, A. Quantitative Structure Activity Relationship Modeling of Environmentally Important Diphenyl Ether Herbicides Using MLR and PLS. Curr. Anal. Chem., 2010, 6(1), 3-10.
[http://dx.doi.org/10.2174/157341110790069583]
[57]
Qudaih, Y.; Kerdphol, T.; Mitani, Y. ANN method for size determination of storage systems in microgrids. SGCE, 2015, 4(3), 247-254.
[http://dx.doi.org/10.12720/sgce.4.3.247-254]
[58]
Sonali, M.; Maind, B.; Priyanka Wankar, Ms. Research Paper on Basic of Artificial Neural Network IJRITCC, 2014, 2(1), 96-100
[59]
Srikanth, S.; Mehar, A. Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different Levels of Service. J. soft Comput. Civ. Eng., 2018, 2(1), 18-35.
[60]
Agatonovic-Kustrin, S.; Alexander, M.; Morton, D.W.; Turner, J.V. Pesticides as estrogen disruptors: QSAR for selective ERα and ERβ binding of pesticides. Comb. Chem. High Throughput Screen., 2011, 14(2), 85-92.
[http://dx.doi.org/10.2174/138620711794474097] [PMID: 20958252]
[61]
Hamidi, S.; Shayanfar, A.; Hamidi, H.; Mehdizadeh Aghdam, E.; Jouyban, A. Prediction of Electrophoretic Mobility of Analytes Using Abraham Solvation Parameters by Different Chemometric Methods. Curr. Anal. Chem., 2017, 13(4), 325-339.
[http://dx.doi.org/10.2174/1573411012666160815101243]
[62]
Wang, J.; Hou, T. Recent advances on aqueous solubility prediction. Comb. Chem. High Throughput Screen., 2011, 14(5), 328-338.
[http://dx.doi.org/10.2174/138620711795508331] [PMID: 21470182]
[63]
Hou, T.; Li, Y.; Zhang, W.; Wang, J. Recent developments of in silico predictions of intestinal absorption and oral bioavailability. Comb. Chem. High Throughput Screen., 2009, 12(5), 497-506.
[http://dx.doi.org/10.2174/138620709788489082] [PMID: 19519329]
[64]
Deeb, O.; Jawabreh, S.; Goodarzi, M. Exploring QSARs of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by MLR, PLS and PC-ANN. Curr. Pharm. Des., 2013, 19(12), 2237-2244.
[http://dx.doi.org/10.2174/1381612811319120010] [PMID: 23016841]
[65]
Votano, J.R.; Parham, M.; Hall, L.H.; Kier, L.B.; Oloff, S.; Tropsha, A.; Xie, Q.; Tong, W. Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis, 2004, 19(5), 365-377.
[http://dx.doi.org/10.1093/mutage/geh043] [PMID: 15388809]
[66]
Deeb, O.; Goodarzi, M.; Khadikar, P.V. Quantum chemical QSAR models to distinguish between inhibitory activities of sulfonamides against human carbonic anhydrases I and II and bovine IV isozymes. Chem. Biol. Drug Des., 2012, 79(4), 514-522.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01309.x] [PMID: 22181786]
[67]
kord Abadi, R.; Alizadehdakhel, A.; Tajadodi Paskiabei, S. A DFT and QSAR Study of Several Sulfonamide Derivatives in Gas and Solvent. J. Korean. Chem. Soc., 2016, 60(4), 1-10.
[68]
Doosti, E.; Shahlaei, M. QSAR Analysis of Some Antagonists for p38 map kinase Using Combination of Principal Component Analysis and Artificial Intelligence. Comb. Chem. High Throughput Screen., 2015, 18(8), 767-783.
[http://dx.doi.org/10.2174/1386207318666150803144322] [PMID: 26234506]
[69]
Emamgholizadeh, S.; Parsaeian, M.; Baradaran, M. Seed yield prediction of sesame using artificial neural network. Eur. J. Agron., 2015, 68, 89-96.
[http://dx.doi.org/10.1016/j.eja.2015.04.010]
[70]
Zhou, T.; Jhamb, S.; Liang, X.; Sundmacher, K.; Gani, R. Prediction of acid dissociation constants of organic compounds using group contribution methods. Chem. Eng. Sci., 2018, 183, 95-105.
[http://dx.doi.org/10.1016/j.ces.2018.03.005]
[71]
Al-Shayea, Q.K. Artificial Neural Networks in Medical Diagnosis. IJCSI, 2011, 8(2), 150-154.
[72]
Thapliyal, A.; Krishen Khar, R.; Chandra, A. Artificial Neural Network Modelling of Green Synthesized Silver Nanoparticles in Bentonite/Starch Bio-nanocomposite. Curr. Nanosci., 2018, 14(3), 239-251.
[http://dx.doi.org/10.2174/1573413713666171103103141]
[73]
Sardari, S.; Sardari, D. Applications of artificial neural network in AIDS research and therapy. Curr. Pharm. Des., 2002, 8(8), 659-670.
[http://dx.doi.org/10.2174/1381612024607199] [PMID: 11945163]
[74]
Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics with Special Reference to the Biological Sciences; McGraw Hill, 1960.
[75]
Lehmann, E.L.; Casella, G. Theory of Point Estimation, 2nd ed; Springer: New York, 1998.
[76]
Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast., 2006, 22(4), 679-688.
[http://dx.doi.org/10.1016/j.ijforecast.2006.03.001]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Page: [207 - 221]
Pages: 15
DOI: 10.2174/1573409915666190301124714
Price: $65

Article Metrics

PDF: 13
HTML: 1