B7-H3-targeted Radioimmunotherapy of Human Cancer

Author(s): Benjamin B. Kasten, Soldano Ferrone, Kurt R. Zinn, Donald J. Buchsbaum*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 24 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer


Background: Targeted Radioimmunotherapy (RIT) is an attractive approach to selectively localize therapeutic radionuclides to malignant cells within primary and metastatic tumors while sparing normal tissues from the effects of radiation. Many human malignancies express B7-H3 on the tumor cell surface, while expression on the majority of normal tissues is limited, presenting B7-H3 as a candidate target for RIT. This review provides an overview of the general principles of targeted RIT and discusses publications that have used radiolabeled B7-H3-targeted antibodies for RIT of cancer in preclinical or clinical studies.

Methods: Databases including PubMed, Scopus, and Google Scholar were searched for publications through June 2018 using a combination of terms including “B7-H3”, “radioimmunotherapy”, “targeted”, “radiotherapy”, and “cancer”. After screening search results for relevancy, ten publications were included for discussion.

Results: B7-H3-targeted RIT studies to date range from antibody development and assessment of novel Radioimmunoconjugates (RICs) in animal models of human cancer to phase II/III trials in humans. The majority of clinical studies have used B7-H3-targeted RICs for intra- compartment RIT of central nervous system malignancies. The results of these studies have indicated high tolerability and favorable efficacy outcomes, supporting further assessment of B7-H3-targeted RIT in larger trials. Preclinical B7-H3-targeted RIT studies have also shown encouraging therapeutic outcomes in a variety of solid malignancies.

Conclusion: B7-H3-targeted RIT studies over the last 15 years have demonstrated feasibility for clinical development and support future assessment in a broader array of human malignancies. Future directions worthy of exploration include strategies that combine B7-H3- targeted RIT with chemotherapy or immunotherapy.

Keywords: Targeted radioimmunotherapy, B7-H3, cancer, mAb, radiotherapy, Radioimmunoconjugates (RICs).

Larson, S.M.; Carrasquillo, J.A.; Cheung, N-K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer, 2015, 15(6), 347-360.
[http://dx.doi.org/10.1038/nrc3925] [PMID: 25998714]
Buchsbaum, D.J. Experimental radioimmunotherapy. Semin. Radiat. Oncol., 2000, 10(2), 156-167.
[http://dx.doi.org/10.1016/S1053-4296(00)80052-1] [PMID: 10727604]
Kim, Y.S.; Brechbiel, M.W. An overview of targeted alpha therapy. Tumour Biol., 2012, 33(3), 573-590.
[http://dx.doi.org/10.1007/s13277-011-0286-y] [PMID: 22143940]
Elgqvist, J.; Frost, S.; Pouget, J-P.; Albertsson, P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front. Oncol., 2014, 3, 324.
[http://dx.doi.org/10.3389/fonc.2013.00324] [PMID: 24459634]
Song, H.; Sgouros, G. Radioimmunotherapy of solid tumors: searching for the right target. Curr. Drug Deliv., 2011, 8(1), 26-44.
[http://dx.doi.org/10.2174/156720111793663651] [PMID: 21034423]
Aarts, F.; Bleichrodt, R.P.; Oyen, W.J.G.; Boerman, O.C. Intracavitary radioimmunotherapy to treat solid tumors. Cancer Biother. Radiopharm., 2008, 23(1), 92-107.
[http://dx.doi.org/10.1089/cbr.2007.0412] [PMID: 18298333]
Meredith, R.F.; Buchsbaum, D.J.; Alvarez, R.D.; LoBuglio, A.F. Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin. Cancer Res., 2007, 13(18 Pt 2), 5643s-5645s.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0985] [PMID: 17875801]
Palm, S.; Bäck, T.; Haraldsson, B.; Jacobsson, L.; Lindegren, S.; Albertsson, P. Biokinetic modeling and dosimetry for optimizing intraperitoneal radioimmunotherapy of ovarian cancer microtumors. J. Nucl. Med., 2016, 57(4), 594-600.
[http://dx.doi.org/10.2967/jnumed.115.167825] [PMID: 26769860]
Zhang, G.; Xu, Y.; Lu, X.; Huang, H.; Zhou, Y.; Lu, B.; Zhang, X. Diagnosis value of serum B7-H3 expression in non-small cell lung cancer. Lung Cancer, 2009, 66(2), 245-249.
[http://dx.doi.org/10.1016/j.lungcan.2009.01.017] [PMID: 19269710]
Sun, J.; Chen, L.J.; Zhang, G.B.; Jiang, J.T.; Zhu, M.; Tan, Y.; Wang, H.T.; Lu, B.F.; Zhang, X.G. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol. Immunother., 2010, 59(8), 1163-1171.
[http://dx.doi.org/10.1007/s00262-010-0841-1] [PMID: 20333377]
Modak, S.; Kramer, K.; Gultekin, S.H.; Guo, H.F.; Cheung, N-K.V. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res., 2001, 61(10), 4048-4054.
[PMID: 11358824]
Kramer, K.; Kushner, B.H.; Modak, S.; Pandit-Taskar, N.; Smith-Jones, P.; Zanzonico, P.; Humm, J.L.; Xu, H.; Wolden, S.L.; Souweidane, M.M.; Larson, S.M.; Cheung, N-K.V. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol., 2010, 97(3), 409-418.
[http://dx.doi.org/10.1007/s11060-009-0038-7] [PMID: 19890606]
Loo, D.; Alderson, R.F.; Chen, F.Z.; Huang, L.; Zhang, W.; Gorlatov, S.; Burke, S.; Ciccarone, V.; Li, H.; Yang, Y.; Son, T.; Chen, Y.; Easton, A.N.; Li, J.C.; Rillema, J.R.; Licea, M.; Fieger, C.; Liang, T.W.; Mather, J.P.; Koenig, S.; Stewart, S.J.; Johnson, S.; Bonvini, E.; Moore, P.A. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin. Cancer Res., 2012, 18(14), 3834-3845.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0715] [PMID: 22615450]
Wang, Y.; Sabbatino, F.; Yu, L.; Favoino, E.; Wang, X.; Ligorio, M.; Ferrone, S.; Schwab, J.H.; Ferrone, C.R. Tumor antigen-specific monoclonal antibody-based immunotherapy, cancer initiating cells and disease recurrence. Resistance to Immunotherapeutic Antibodies in Cancer., 2013, 2, 25-47.
Sabbatino, F.; Wang, Y.; Wang, X.; Schwab, J.H.; Ferrone, S.; Ferrone, C.R. Novel tumor antigen-specific monoclonal antibody-based immunotherapy to eradicate both differentiated cancer cells and cancer-initiating cells in solid tumors. Semin. Oncol., 2014, 41(5), 685-699.
[http://dx.doi.org/10.1053/j.seminoncol.2014.08.007] [PMID: 25440613]
Zang, X.; Sullivan, P.S.; Soslow, R.A.; Waitz, R.; Reuter, V.E.; Wilton, A.; Thaler, H.T.; Arul, M.; Slovin, S.F.; Wei, J.; Spriggs, D.R.; Dupont, J.; Allison, J.P. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol., 2010, 23(8), 1104-1112.
[http://dx.doi.org/10.1038/modpathol.2010.95] [PMID: 20495537]
Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res., 2016, 22(14), 3425-3431.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2428] [PMID: 27208063]
Xu, H.; Cheung, I.Y.; Guo, H-F.; Cheung, N-K.V. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res., 2009, 69(15), 6275-6281.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4517] [PMID: 19584290]
Arena, S.; Bellosillo, B.; Siravegna, G.; Martínez, A.; Cañadas, I.; Lazzari, L.; Ferruz, N.; Russo, M.; Misale, S.; González, I.; Iglesias, M.; Gavilan, E.; Corti, G.; Hobor, S.; Crisafulli, G.; Salido, M.; Sánchez, J.; Dalmases, A.; Bellmunt, J.; De Fabritiis, G.; Rovira, A.; Di Nicolantonio, F.; Albanell, J.; Bardelli, A.; Montagut, C. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res., 2015, 21(9), 2157-2166.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2821] [PMID: 25623215]
Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer, 2013, 108(3), 479-485.
[http://dx.doi.org/10.1038/bjc.2012.581] [PMID: 23299535]
McGranahan, N.; Swanton, C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell, 2017, 168(4), 613-628.
[http://dx.doi.org/10.1016/j.cell.2017.01.018] [PMID: 28187284]
Brown, C.E.; Alizadeh, D.; Starr, R.; Weng, L.; Wagner, J.R.; Naranjo, A.; Ostberg, J.R.; Blanchard, M.S.; Kilpatrick, J.; Simpson, J.; Kurien, A.; Priceman, S.J.; Wang, X.; Harshbarger, T.L.; D’Apuzzo, M.; Ressler, J.A.; Jensen, M.C.; Barish, M.E.; Chen, M.; Portnow, J.; Forman, S.J.; Badie, B. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med., 2016, 375(26), 2561-2569.
[http://dx.doi.org/10.1056/NEJMoa1610497] [PMID: 28029927]
Seaman, S.; Zhu, Z.; Saha, S.; Zhang, X.M.; Yang, M.Y.; Hilton, M.B.; Morris, K.; Szot, C.; Morris, H.; Swing, D.A.; Tessarollo, L.; Smith, S.W.; Degrado, S.; Borkin, D.; Jain, N.; Scheiermann, J.; Feng, Y.; Wang, Y.; Li, J.; Welsch, D.; DeCrescenzo, G.; Chaudhary, A.; Zudaire, E.; Klarmann, K.D.; Keller, J.R.; Dimitrov, D.S.; St Croix, B. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell, 2017, 31(4), 501-515.e8.
[http://dx.doi.org/10.1016/j.ccell.2017.03.005] [PMID: 28399408]
Boudousq, V.; Bobyk, L.; Busson, M.; Garambois, V.; Jarlier, M.; Charalambatou, P.; Pèlegrin, A.; Paillas, S.; Chouin, N.; Quenet, F.; Maquaire, P.; Torgue, J.; Navarro-Teulon, I.; Pouget, J.P. Comparison between internalizing anti-HER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212Pb. PLoS One, 2013, 8(7),e69613.
[http://dx.doi.org/10.1371/journal.pone.0069613] [PMID: 23922757]
Kasten, B.B.; Arend, R.C.; Katre, A.A.; Kim, H.; Fan, J.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl. Med. Biol., 2017, 47, 23-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.01.003] [PMID: 28104527]
Kasten, B.B.; Gangrade, A.; Kim, H.; Fan, J.; Ferrone, S.; Ferrone, C.R.; Zinn, K.R.; Buchsbaum, D.J. 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl. Med. Biol., 2018, 58, 67-73.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.12.004] [PMID: 29413459]
Lobo, E.D.; Hansen, R.J.; Balthasar, J.P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci., 2004, 93(11), 2645-2668.
[http://dx.doi.org/10.1002/jps.20178] [PMID: 15389672]
Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M.J.; Ensari, S.; Pinkstaff, J.K.; Sullivan, L.M.; Biroc, S.L.; Cho, H.; Schultz, P.G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H.P.; Sapra, P. A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1766-1771.
[http://dx.doi.org/10.1073/pnas.1321237111] [PMID: 24443552]
Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192.
[http://dx.doi.org/10.1021/bc5004982] [PMID: 25494884]
Kukis, D.L.; DeNardo, G.L.; DeNardo, S.J.; Mirick, G.R.; Miers, L.A.; Greiner, D.P.; Meares, C.F. Effect of the extent of chelate substitution on the immunoreactivity and biodistribution of 2IT-BAT-Lym-1 immunoconjugates. Cancer Res., 1995, 55(4), 878-884.
[PMID: 7850803]
Al-Ejeh, F.; Darby, J.M.; Thierry, B.; Brown, M.P. A simplified suite of methods to evaluate chelator conjugation of antibodies: effects on hydrodynamic radius and biodistribution. Nucl. Med. Biol., 2009, 36(4), 395-402.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.01.001] [PMID: 19423007]
Reilly, R. The immunoreactivity of radiolabeled antibodies--its impact on tumor targeting and strategies for preservation. Cancer Biother. Radiopharm., 2004, 19(6), 669-672.
[http://dx.doi.org/10.1089/cbr.2004.19.669] [PMID: 15665615]
Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; Murugappan, S.; Sidhu, R. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol., 2014, 15(6), 569-579.
[http://dx.doi.org/10.1016/S1470-2045(14)70118-4] [PMID: 24739896]
Ahmed, M.; Cheng, M.; Zhao, Q.; Goldgur, Y.; Cheal, S.M.; Guo, H-F.; Larson, S.M.; Cheung, N-K.V. Humanized affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3. J. Biol. Chem., 2015, 290(50), 30018-30029.
[http://dx.doi.org/10.1074/jbc.M115.679852] [PMID: 26487718]
Alvarez, R.D.; Partridge, E.E.; Khazaeli, M.B.; Plott, G.; Austin, M.; Kilgore, L.; Russell, C.D.; Liu, T.; Grizzle, W.E.; Schlom, J.; LoBuglio, A.F.; Meredith, R.F. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol. Oncol., 1997, 65(1), 94-101.
[http://dx.doi.org/10.1006/gyno.1996.4577] [PMID: 9103398]
Meredith, R.F.; Khazaeli, M.B.; Macey, D.J.; Grizzle, W.E.; Mayo, M.; Schlom, J.; Russell, C.D.; LoBuglio, A.F.; Phase, I.I. Phase II study of interferon-enhanced 131I-labeled high affinity CC49 monoclonal antibody therapy in patients with metastatic prostate cancer. Clin. Cancer Res., 1999, 5(Suppl.(10)), 3254s-3258s.
[PMID: 10541372]
Friesen, C.; Lubatschofski, A.; Kotzerke, J.; Buchmann, I.; Reske, S.N.; Debatin, K-M. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(9), 1251-1261.
[http://dx.doi.org/10.1007/s00259-003-1216-z] [PMID: 12830326]
Oei, A.L.; Verheijen, R.H.; Seiden, M.V.; Benigno, B.B.; Lopes, A.; Soper, J.T.; Epenetos, A.A.; Massuger, L.F. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int. J. Cancer, 2007, 120(12), 2710-2714.
[http://dx.doi.org/10.1002/ijc.22663] [PMID: 17354223]
Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M.J., Jr; Dobelbower, M.C.; Lowy, A.M. Safety and outcome measures of first-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol., 2018, 41(7), 716-721.
[http://dx.doi.org/10.1097/COC.0000000000000353] [PMID: 27906723]
Bäck, T.; Chouin, N.; Lindegren, S.; Kahu, H.; Jensen, H.; Albertsson, P.; Palm, S. Cure of human ovarian carcinoma solid xenografts by fractionated α-radioimmunotherapy with 211At-MX35-F(ab')2: Influence of absorbed tumor dose and effect on long-term survival. J. Nucl. Med., 2017, 58(4), 598-604.
[http://dx.doi.org/10.2967/jnumed.116.178327] [PMID: 27688477]
Rosenblat, T.L.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Divgi, C.R.; Panageas, K.S.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Sgouros, G.; Larson, S.M.; Scheinberg, D.A.; Jurcic, J.G. Sequential cytarabine and α-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res., 2010, 16(21), 5303-5311.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0382] [PMID: 20858843]
Allen, B.J.; Singla, A.A.; Rizvi, S.M.A.; Graham, P.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy, 2011, 3(9), 1041-1050.
[http://dx.doi.org/10.2217/imt.11.97] [PMID: 21913827]
McDevitt, M.R.; Ma, D.; Lai, L.T.; Simon, J.; Borchardt, P.; Frank, R.K.; Wu, K.; Pellegrini, V.; Curcio, M.J.; Miederer, M.; Bander, N.H.; Scheinberg, D.A. Tumor therapy with targeted atomic nanogenerators. Science, 2001, 294(5546), 1537-1540.
[http://dx.doi.org/10.1126/science.1064126] [PMID: 11711678]
Milenic, D.E.; Garmestani, K.; Brady, E.D.; Albert, P.S.; Ma, D.; Abdulla, A.; Brechbiel, M.W. α-particle radioimmunotherapy of disseminated peritoneal disease using a (212)Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother. Radiopharm., 2005, 20(5), 557-568.
[http://dx.doi.org/10.1089/cbr.2005.20.557] [PMID: 16248771]
Nedrow, J.R.; Josefsson, A.; Park, S.; Bäck, T.; Hobbs, R.F.; Brayton, C.; Bruchertseifer, F.; Morgenstern, A.; Sgouros, G. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res., 2017, 7(1), 57.
[http://dx.doi.org/10.1186/s13550-017-0303-2] [PMID: 28721684]
Green, D.J.; O’Steen, S.; Lin, Y.; Comstock, M.L.; Kenoyer, A.L.; Hamlin, D.K.; Wilbur, D.S.; Fisher, D.R.; Nartea, M.; Hylarides, M.D.; Gopal, A.K.; Gooley, T.A.; Orozco, J.J.; Till, B.G.; Orcutt, K.D.; Wittrup, K.D.; Press, O.W. CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies. Blood, 2018, 131(6), 611-620.
[http://dx.doi.org/10.1182/blood-2017-09-807610] [PMID: 29158362]
Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, Å.M.; Hamacher, K.A.; Ma, D.; Humm, J.L.; Brechbiel, M.W.; Molinet, R.; Scheinberg, D.A. Targeted α particle immunotherapy for myeloid leukemia. Blood, 2002, 100(4), 1233-1239.
[http://dx.doi.org/10.1182/blood.V100.4.1233.h81602001233_1233_1239] [PMID: 12149203]
Jurcic, J.G. Clinical studies with bismuth-213 and actinium-225 for hematologic malignancies. Curr. Radiopharm., 2018, 11(3), 192-199.
[http://dx.doi.org/10.2174/1874471011666180525102814] [PMID: 29793418]
Yong, K.; Brechbiel, M. Application of 212Pb for targeted alpha-particle therapy (TAT): Pre-clinical and mechanistic understanding through to clinical translation. AIMS Med. Sci., 2015, 2(3), 228-245.
[http://dx.doi.org/10.3934/medsci.2015.3.228] [PMID: 26858987]
Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; Bolch, W.E.; Brill, A.B.; Fisher, D.R.; Howell, R.W.; Meredith, R.F.; Sgouros, G.; Wessels, B.W.; Zanzonico, P.B. SNM MIRD Committee. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J. Nucl. Med., 2010, 51(2), 311-328.
[http://dx.doi.org/10.2967/jnumed.108.058651] [PMID: 20080889]
Abbas, N.; Heyerdahl, H.; Bruland, O.S.; Brevik, E.M.; Dahle, J. Comparing high LET 227Th- and low LET 177Lu-trastuzumab in mice with HER-2 positive SKBR-3 xenografts. Curr. Radiopharm., 2013, 6(2), 78-86.
[http://dx.doi.org/10.2174/18744710113069990017] [PMID: 23551110]
Kiess, A.; Minn, I.; Vaidyanathan, G.; Hobbs, R.F.; Josefsson, A.; Shen, C.; Brummet, M.; Chen, Y.; Choi, J.; Koumarianou, E.; Baidoo, K.; Brechbiel, M.; Mease, R.C.; Sgouros, G.; Zalutsky, M.R.; Pomper, M. (2S)-2-(3-(1-carboxy-5-(4-[211At]astatobenzamido)pentyl)ureido)-pentanedioic acid for PSMA-targeted α-particle radiopharmaceutical therapy. J. Nucl. Med., 2016, 57(10), 1569-1575.
[http://dx.doi.org/10.2967/jnumed.116.174300] [PMID: 27230930]
Meredith, R.; Torgue, J.; Shen, S.; Fisher, D.R.; Banaga, E.; Bunch, P.; Morgan, D.; Fan, J.; Straughn, J.M., Jr Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J. Nucl. Med., 2014, 55(10), 1636-1642.
[http://dx.doi.org/10.2967/jnumed.114.143842] [PMID: 25157044]
Dekempeneer, Y.; Keyaerts, M.; Krasniqi, A.; Puttemans, J.; Muyldermans, S.; Lahoutte, T.; D’huyvetter, M.; Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther., 2016, 16(8), 1035-1047.
[http://dx.doi.org/10.1080/14712598.2016.1185412] [PMID: 27145158]
Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; Erdi, A.K.; Aydogan, B.; Costes, S.; Watson, E.E.S.N.M.E.E.W.; Brill, A.B.; Charkes, N.D.; Fisher, D.R.; Hays, M.T.; Thomas, S.R.; Hays, M.T.; Howell, R.W.; Siegel, J.A.; Thomas, S.R.; Wessels, B.W. Medical Internal Radiation Dose Committee. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. J. Nucl. Med., 1999, 40(1), 11S-36S.
[PMID: 9935083]
Vaziri, B.; Wu, H.; Dhawan, A.P.; Du, P.; Howell, R.W. SNMMI MIRD Committee. MIRD pamphlet No. 25: MIRDcell V2.0 software tool for dosimetric analysis of biologic response of multicellular populations. J. Nucl. Med., 2014, 55(9), 1557-1564.
[http://dx.doi.org/10.2967/jnumed.113.131037] [PMID: 25012457]
Buchsbaum, D.J. Experimental approaches to increase radiolabeled antibody localization in tumors. Cancer Res., 1995, 55(Suppl.23), 5729s-5732s.
[PMID: 7493336]
Loke, K.S.H.; Padhy, A.K.; Ng, D.C.E.; Goh, A.S.W.; Divgi, C. Dosimetric considerations in radioimmunotherapy and systemic radionuclide therapies: a review. World J. Nucl. Med., 2011, 10(2), 122-138.
[http://dx.doi.org/10.4103/1450-1147.89780] [PMID: 22144871]
O’Donoghue, J.A.; Baidoo, N.; Deland, D.; Welt, S.; Divgi, C.R.; Sgouros, G. Hematologic toxicity in radioimmunotherapy: dose-response relationships for I-131 labeled antibody therapy. Cancer Biother. Radiopharm., 2002, 17(4), 435-443.
[http://dx.doi.org/10.1089/108497802760363222] [PMID: 12396707]
O’Donoghue, J.A.; Wheldon, T.E. Targeted radiotherapy using Auger electron emitters. Phys. Med. Biol., 1996, 41(10), 1973-1992.
[http://dx.doi.org/10.1088/0031-9155/41/10/009] [PMID: 8912375]
Behr, T.M.; Sgouros, G.; Vougiokas, V.; Memtsoudis, S.; Gratz, S.; Schmidberger, H.; Blumenthal, R.D.; Goldenberg, D.M.; Becker, W. Therapeutic efficacy and dose-limiting toxicity of Auger-electron vs. beta emitters in radioimmunotherapy with internalizing antibodies: evaluation of 125I- vs. 131I-labeled CO17-1A in a human colorectal cancer model. Int. J. Cancer, 1998, 76(5), 738-748.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980529)76:5<738:AID-IJC20>3.0.CO;2-Z] [PMID: 9610734]
Reilly, R.M.; Kassis, A. Targeted Auger Electron Radiotherapy of Malignancies in: Monoclonal Antibody and Peptide Targeted Radiotherapy of Cancer. Relly, R.M. (Ed.); , 2010.
Maki, S.; Itoh, Y.; Kubota, S.; Okada, T.; Nakahara, R.; Ito, J.; Kawamura, M.; Naganawa, S.; Yoshino, Y.; Fujita, T.; Kato, M.; Gotoh, M.; Ikeda, M. Clinical outcomes of 125I brachytherapy with and without external-beam radiation therapy for localized prostate cancer: results from 300 patients at a single institution in Japan. J. Radiat. Res. (Tokyo), 2017, 58(6), 870-880.
[http://dx.doi.org/10.1093/jrr/rrx051] [PMID: 28992050]
Wang, G.; Zhang, F.; Yang, B.; Xue, J.; Peng, S.; Zhong, Z.; Zhang, T.; Lu, M.; Gao, F. Feasibility and clinical calue of CT-guided 125I brachytherapy for bilateral lung recurrences from colorectal carcinoma. Radiology, 2016, 278(3), 897-905.
[http://dx.doi.org/10.1148/radiol.2015150641] [PMID: 26406550]
Rizzieri, D. Zevalin(®) (ibritumomab tiuxetan): After more than a decade of treatment experience, what have we learned? Crit. Rev. Oncol. Hematol., 2016, 105, 5-17.
[http://dx.doi.org/10.1016/j.critrevonc.2016.07.008] [PMID: 27497027]
Goldsmith, S.J. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin. Nucl. Med., 2010, 40(2), 122-135.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.11.002] [PMID: 20113680]
Sahlin, M.; Bauden, M.P.; Andersson, R.; Ansari, D. Radioimmunotherapy--a potential novel tool for pancreatic cancer therapy? Tumour Biol., 2015, 36(6), 4053-4062.
[http://dx.doi.org/10.1007/s13277-015-3479-y] [PMID: 25926382]
Evans-Axelsson, S.; Timmermand, O.V.; Bjartell, A.; Strand, S.E.; Elgqvist, J. Radioimmunotherapy for prostate cancer--current status and future possibilities. Semin. Nucl. Med., 2016, 46(2), 165-179.
[http://dx.doi.org/10.1053/j.semnuclmed.2015.10.005] [PMID: 26897720]
Kim, J.S. Combination radioimmunotherapy approaches and quantification of immuno-PET. Nucl. Med. Mol. Imaging, 2016, 50(2), 104-111.
[http://dx.doi.org/10.1007/s13139-015-0392-7] [PMID: 27275358]
Bourgeois, M.; Bailly, C.; Frindel, M.; Guerard, F.; Chérel, M.; Faivre-Chauvet, A.; Kraeber-Bodéré, F.; Bodet-Milin, C. Radioimmunoconjugates for treating cancer: recent advances and current opportunities. Expert Opin. Biol. Ther., 2017, 17(7), 813-819.
[http://dx.doi.org/10.1080/14712598.2017.1322577] [PMID: 28438082]
Li, T.; Ao, E.C.I.; Lambert, B.; Brans, B.; Vandenberghe, S.; Mok, G.S.P. Quantitative imaging for targeted radionuclide therapy dosimetry - technical review. Theranostics, 2017, 7(18), 4551-4565.
[http://dx.doi.org/10.7150/thno.19782] [PMID: 29158844]
Walter, R.B. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Investig. Drugs, 2018, 27(4), 339-348.
[http://dx.doi.org/10.1080/13543784.2018.1452911] [PMID: 29534618]
Shah, M.; Da Silva, R.; Gravekamp, C.; Libutti, S.K.; Abraham, T.; Dadachova, E. Targeted radionuclide therapies for pancreatic cancer. Cancer Gene Ther., 2015, 22(8), 375-379.
[http://dx.doi.org/10.1038/cgt.2015.32] [PMID: 26227823]
Nicholson, S.; Gooden, C.S.; Hird, V.; Maraveyas, A.; Mason, P.; Lambert, H.E.; Meares, C.F.; Epenetos, A.A. Radioimmunotherapy after chemotherapy compared to chemotherapy alone in the treatment of advanced ovarian cancer: a matched analysis. Oncol. Rep., 1998, 5(1), 223-226.
[http://dx.doi.org/10.3892/or.5.1.223] [PMID: 9458326]
Sahlmann, C.O.; Homayounfar, K.; Niessner, M.; Dyczkowski, J.; Conradi, L.C.; Braulke, F.; Meller, B.; Beißbarth, T.; Ghadimi, B.M.; Meller, J.; Goldenberg, D.M.; Liersch, T. Repeated adjuvant anti-CEA radioimmunotherapy after resection of colorectal liver metastases: Safety, feasibility, and long-term efficacy results of a prospective phase 2 study. Cancer, 2017, 123(4), 638-649.
[http://dx.doi.org/10.1002/cncr.30390] [PMID: 27763687]
Qu, C.F.; Song, E.Y.; Li, Y.; Rizvi, S.M.A.; Raja, C.; Smith, R.; Morgenstern, A.; Apostolidis, C.; Allen, B.J. Pre-clinical study of 213Bi labeled PAI2 for the control of micrometastatic pancreatic cancer. Clin. Exp. Metastasis, 2005, 22(7), 575-586.
[http://dx.doi.org/10.1007/s10585-005-5788-9] [PMID: 16475028]
Qu, C.F.; Songl, Y.J.; Rizvi, S.M.A.; Li, Y.; Smith, R.; Perkins, A.C.; Morgenstern, A.; Brechbiel, M.; Allen, B.J. In vivo and in vitro inhibition of pancreatic cancer growth by targeted alpha therapy using 213Bi-CHX.A"-C595. Cancer Biol. Ther., 2005, 4(8), 848-853.
[http://dx.doi.org/10.4161/cbt.4.8.1892] [PMID: 16082185]
Song, H.; Shahverdi, K.; Huso, D.L.; Esaias, C.; Fox, J.; Liedy, A.; Zhang, Z.; Reilly, R.T.; Apostolidis, C.; Morgenstern, A.; Sgouros, G. 213Bi (-emitter)-antibody targeting of breast cancer metastases in the neu-N transgenic mouse model. Cancer Res., 2008, 68(10), 3873-3880.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6308] [PMID: 18483272]
Song, H.; Hobbs, R.F.; Vajravelu, R.; Huso, D.L.; Esaias, C.; Apostolidis, C.; Morgenstern, A.; Sgouros, G. Radioimmunotherapy of breast cancer metastases with α-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res., 2009, 69(23), 8941-8948.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1828] [PMID: 19920193]
Steinberger, P.; Majdic, O.; Derdak, S.V.; Pfistershammer, K.; Kirchberger, S.; Klauser, C.; Zlabinger, G.; Pickl, W.F.; Stöckl, J.; Knapp, W. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol., 2004, 172(4), 2352-2359.
[http://dx.doi.org/10.4049/jimmunol.172.4.2352] [PMID: 14764704]
Hofmeyer, K.A.; Ray, A.; Zang, X. The contrasting role of B7-H3. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10277-10278.
[http://dx.doi.org/10.1073/pnas.0805458105] [PMID: 18650376]
Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K.; Chen, L. B7-H3: a costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol., 2001, 2(3), 269-274.
[http://dx.doi.org/10.1038/85339] [PMID: 11224528]
Ye, Z.; Zheng, Z.; Li, X.; Zhu, Y.; Zhong, Z.; Peng, L.; Wu, Y. B7-H3 overexpression predicts poor survival of cancer patients: A meta-analysis. Cell. Physiol. Biochem., 2016, 39(4), 1568-1580.
[http://dx.doi.org/10.1159/000447859] [PMID: 27626927]
Kraan, J.; van den Broek, P.; Verhoef, C.; Grunhagen, D.J.; Taal, W.; Gratama, J.W.; Sleijfer, S. Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br. J. Cancer, 2014, 111(1), 149-156.
[http://dx.doi.org/10.1038/bjc.2014.286] [PMID: 24892449]
Flem-Karlsen, K.; Fodstad, Ø.; Tan, M.; Nunes-Xavier, C.E. B7-H3 in cancer - beyond immune regulation. Trends Cancer, 2018, 4(6), 401-404.
[http://dx.doi.org/10.1016/j.trecan.2018.03.010] [PMID: 29860983]
Castellanos, J.R.; Purvis, I.J.; Labak, C.M.; Guda, M.R.; Tsung, A.J.; Velpula, K.K.; Asuthkar, S. B7-H3 role in the immune landscape of cancer. Am. J. Clin. Exp. Immunol., 2017, 6(4), 66-75.
[PMID: 28695059]
Modak, S.; Guo, H.F.; Humm, J.L.; Smith-Jones, P.M.; Larson, S.M.; Cheung, N-K.V. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother. Radiopharm., 2005, 20(5), 534-546.
[http://dx.doi.org/10.1089/cbr.2005.20.534] [PMID: 16248769]
Luther, N.; Zhou, Z.; Zanzonico, P.; Cheung, N-K.; Humm, J.; Edgar, M.A.; Souweidane, M.M. The potential of theragnostic 124I-8H9 convection-enhanced delivery in diffuse intrinsic pontine glioma. Neuro-oncol., 2014, 16(6), 800-806.
[http://dx.doi.org/10.1093/neuonc/not298] [PMID: 24526309]
Kramer, K.; Pandit-Taskar, N.; Zanzonico, P.; Wolden, S.L.; Humm, J.L.; DeSelm, C.; Souweidane, M.M.; Lewis, J.S.; Cheung, N-K.V. Low incidence of radionecrosis in children treated with conventional radiation therapy and intrathecal radioimmunotherapy. J. Neurooncol., 2015, 123(2), 245-249.
[http://dx.doi.org/10.1007/s11060-015-1788-z] [PMID: 25944385]
Brian, D. D. K. M.; H., W. L.; Kim, K.; L., W. S., Central nervous system relapse of rhabdomyosarcoma. Pediatr. Blood Cancer, 2018, 65(1),e26710.
Ivasyk, I.; Morgenstern, P.F.; Wembacher-Schroeder, E.; Souweidane, M.M. Influence of an intratumoral cyst on drug distribution by convection-enhanced delivery: case report. J. Neurosurg. Pediatr., 2017, 20(3), 256-260.
[http://dx.doi.org/10.3171/2017.5.PEDS1774] [PMID: 28686124]
Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; Turner, R.S.; Lewis, J.S.; Cheung, N.V.; Larson, S.M.; Dunkel, I.J. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol., 2018, 19(8), 1040-1050.
[http://dx.doi.org/10.1016/S1470-2045(18)30322-X] [PMID: 29914796]
Wang, G.; Wu, Z.; Wang, Y.; Li, X.; Zhang, G.; Hou, J. Therapy to target renal cell carcinoma using 131I-labeled B7-H3 monoclonal antibody. Oncotarget, 2016, 7(17), 24888-24898.
[http://dx.doi.org/10.18632/oncotarget.8550] [PMID: 27058890]
Zhou, Z.; Singh, R.; Souweidane, M.M. Convection enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr. Neuropharmacol., 2017, 15(1), 116-128.
[http://dx.doi.org/10.2174/1570159X14666160614093615] [PMID: 27306036]
Matthay, K.K.; Brisse, H.; Couanet, D.; Couturier, J.; Bé-nard, J.; Mosseri, V.; Edeline, V.; Lumbroso, J.; Valteau-Couanet, D.; Michon, J. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer, 2003, 98(1), 155-165.
[http://dx.doi.org/10.1002/cncr.11448] [PMID: 12833468]
Mathew, R.K.; Rutka, J.T. Diffuse intrinsic pontine glioma: Clinical features, molecular genetics, and novel targeted therapeutics. J. Korean Neurosurg. Soc., 2018, 61(3), 343-351.
[http://dx.doi.org/10.3340/jkns.2018.0008] [PMID: 29742880]
Burtomab designated for advanced pediatric cancer. Oncology Times, 2017, 39(13), 55.
Modak, S.; Quaglia, M. P. L.; Carrasquillo, J. A.; Zanzonico, P.; Enero, C.; Pandit-Taskar, N.; Kang, H. J.; Cheung, N.-K. V. Intraperitoneal radioimmunotherapy (RIT) for desmoplastic small round cell tumor (DSRCT): initial results from a phase I trial. J Clin Oncol., 2013, 31(Suppl. 15), 3033.
Imai, K.; Wilson, B.S.; Bigotti, A.; Natali, P.G.; Ferrone, S. A 94,000-dalton glycoprotein expressed by human melanoma and carcinoma cells. J. Natl. Cancer Inst., 1982, 68(5), 761-769.
[PMID: 6951087]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
Dalerba, P.; Cho, R.W.; Clarke, M.F. Cancer stem cells: models and concepts. Annu. Rev. Med., 2007, 58(1), 267-284.
[http://dx.doi.org/10.1146/annurev.med.58.062105.204854] [PMID: 17002552]
Huang, E.H.; Heidt, D.G.; Li, C.W.; Simeone, D.M. Cancer stem cells: a new paradigm for understanding tumor progression and therapeutic resistance. Surgery, 2007, 141(4), 415-419.
[http://dx.doi.org/10.1016/j.surg.2006.12.015] [PMID: 17383517]
Chang, S-J.; Hodeib, M.; Chang, J.; Bristow, R.E. Survival impact of complete cytoreduction to no gross residual disease for advanced-stage ovarian cancer: a meta-analysis. Gynecol. Oncol., 2013, 130(3), 493-498.
[http://dx.doi.org/10.1016/j.ygyno.2013.05.040] [PMID: 23747291]
Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2--a phase I study. J. Nucl. Med., 2009, 50(7), 1153-1160.
[http://dx.doi.org/10.2967/jnumed.109.062604] [PMID: 19525452]
Cederkrantz, E.; Andersson, H.; Bernhardt, P.; Bäck, T.; Hultborn, R.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Ljungberg, M.; Magnander, T.; Palm, S.; Albertsson, P. Absorbed doses and risk estimates of 211At-MX35 F(ab’)2 in intraperitoneal therapy of ovarian cancer patients. Int. J. Radiat. Oncol. Biol. Phys., 2015, 93(3), 569-576.
[http://dx.doi.org/10.1016/j.ijrobp.2015.07.005] [PMID: 26460999]
Fauci, J.M.; Sabbatino, F.; Wang, Y.; Londoño-Joshi, A.I.; Straughn, J.M., Jr; Landen, C.N.; Ferrone, S.; Buchsbaum, D.J. Monoclonal antibody-based immunotherapy of ovarian cancer: targeting ovarian cancer cells with the B7-H3-specific mAb 376.96. Gynecol. Oncol., 2014, 132(1), 203-210.
[http://dx.doi.org/10.1016/j.ygyno.2013.10.038] [PMID: 24216048]
American Cancer Society. Cancer Facts and Figures 2017, 2017.
Sun, J.; Guo, Y-D.; Li, X-N.; Zhang, Y-Q.; Gu, L.; Wu, P-P.; Bai, G-H.; Xiao, Y. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. OncoTargets Ther., 2014, 7, 1979-1986.
[http://dx.doi.org/10.2147/OTT.S63424] [PMID: 25378933]
Kasten, B.B.; Oliver, P.G.; Kim, H.; Fan, J.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. 212Pb-labeled antibody 225.28 targeted to chondroitin sulfate proteoglycan 4 for triple-negative breast cancer therapy in mouse models. Int. J. Mol. Sci., 2018, 19(4),e925.
[http://dx.doi.org/10.3390/ijms19040925] [PMID: 29561763]
Wang, X.; Osada, T.; Wang, Y.; Yu, L.; Sakakura, K.; Katayama, A.; McCarthy, J.B.; Brufsky, A.; Chivukula, M.; Khoury, T.; Hsu, D.S.; Barry, W.T.; Lyerly, H.K.; Clay, T.M.; Ferrone, S. CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J. Natl. Cancer Inst., 2010, 102(19), 1496-1512.
[http://dx.doi.org/10.1093/jnci/djq343] [PMID: 20852124]
Ercan, G.; Karlitepe, A.; Ozpolat, B. Pancreatic cancer stem cells and therapeutic approaches. Anticancer Res., 2017, 37(6), 2761-2775.
[PMID: 28551612]
Gómez-Miragaya, J.; Palafox, M.; Paré, L.; Yoldi, G.; Ferrer, I.; Vila, S.; Galván, P.; Pellegrini, P.; Pérez-Montoyo, H.; Igea, A.; Muñoz, P.; Esteller, M.; Nebreda, A.R.; Urruticoechea, A.; Morilla, I.; Pernas, S.; Climent, F.; Soler Monso, M.T.; Petit, A.; Serra, V.; Prat, A.; González-Suárez, E. Resistance to taxanes in triple negative breast cancer associates with the dynamics of a CD49f+ tumor initiating population. Stem Cell Reports, 2017, 8(5), 1392-1407.
[http://dx.doi.org/10.1016/j.stemcr.2017.03.026] [PMID: 28457887]
Schultz, M.J.; Holdbrooks, A.T.; Chakraborty, A.; Grizzle, W.E.; Landen, C.N.; Buchsbaum, D.J.; Conner, M.G.; Arend, R.C.; Yoon, K.J.; Klug, C.A.; Bullard, D.C.; Kesterson, R.A.; Oliver, P.G.; O’Connor, A.K.; Yoder, B.K.; Bellis, S.L. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res., 2016, 76(13), 3978-3988.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2834] [PMID: 27216178]
Feldmann, G.; Dhara, S.; Fendrich, V.; Bedja, D.; Beaty, R.; Mullendore, M.; Karikari, C.; Alvarez, H.; Iacobuzio-Donahue, C.; Jimeno, A.; Gabrielson, K.L.; Matsui, W.; Maitra, A. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res., 2007, 67(5), 2187-2196.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3281] [PMID: 17332349]
Berman, D.M.; Karhadkar, S.S.; Maitra, A.; Montes De Oca, R.; Gerstenblith, M.R.; Briggs, K.; Parker, A.R.; Shimada, Y.; Eshleman, J.R.; Watkins, D.N.; Beachy, P.A. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature, 2003, 425(6960), 846-851.
[http://dx.doi.org/10.1038/nature01972] [PMID: 14520411]
Mahindroo, N.; Punchihewa, C.; Fujii, N. Hedgehog-Gli signaling pathway inhibitors as anticancer agents. J. Med. Chem., 2009, 52(13), 3829-3845.
[http://dx.doi.org/10.1021/jm801420y] [PMID: 19309080]
Krantz, S.B.; Shields, M.A.; Dangi-Garimella, S.; Munshi, H.G.; Bentrem, D.J. Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J. Surg. Res., 2012, 173(1), 105-112.
[http://dx.doi.org/10.1016/j.jss.2011.09.020] [PMID: 22099597]
Steg, A.D.; Katre, A.A.; Bevis, K.S.; Ziebarth, A.; Dobbin, Z.C.; Shah, M.M.; Alvarez, R.D.; Landen, C.N. Smoothened antagonists reverse taxane resistance in ovarian cancer. Mol. Cancer Ther., 2012, 11(7), 1587-1597.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-1058] [PMID: 22553355]
Meng, E.; Hanna, A.; Samant, R.S.; Shevde, L.A. The impact of hedgehog signaling pathway on DNA repair mechanisms in human cancer. Cancers (Basel), 2015, 7(3), 1333-1348.
[http://dx.doi.org/10.3390/cancers7030839] [PMID: 26197339]
Heller, E.; Hurchla, M.A.; Xiang, J.; Su, X.; Chen, S.; Schneider, J.; Joeng, K.S.; Vidal, M.; Goldberg, L.; Deng, H.; Hornick, M.C.; Prior, J.L.; Piwnica-Worms, D.; Long, F.; Cagan, R.; Weilbaecher, K.N. Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment. Cancer Res., 2012, 72(4), 897-907.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2681] [PMID: 22186138]
Anastas, J.N.; Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer, 2013, 13(1), 11-26.
[http://dx.doi.org/10.1038/nrc3419] [PMID: 23258168]
Arend, R.C.; Londoño-Joshi, A.I.; Straughn, J.M., Jr; Buchsbaum, D.J. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol. Oncol., 2013, 131(3), 772-779.
[http://dx.doi.org/10.1016/j.ygyno.2013.09.034] [PMID: 24125749]
Lamb, R.; Ablett, M.P.; Spence, K.; Landberg, G.; Sims, A.H.; Clarke, R.B. Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One, 2013, 8(7),e67811.
[http://dx.doi.org/10.1371/journal.pone.0067811] [PMID: 23861811]
Pohl, S-G.; Brook, N.; Agostino, M.; Arfuso, F.; Kumar, A.P.; Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis, 2017, 6(4),e310.
[http://dx.doi.org/10.1038/oncsis.2017.14] [PMID: 28368389]
Barghout, S.H.; Zepeda, N.; Xu, Z.; Steed, H.; Lee, C-H.; Fu, Y. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells. Biochem. Biophys. Res. Commun., 2015, 468(1-2), 173-178.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.138] [PMID: 26522223]
Condello, S.; Morgan, C.A.; Nagdas, S.; Cao, L.; Turek, J.; Hurley, T.D.; Matei, D. β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene, 2015, 34(18), 2297-2308.
[http://dx.doi.org/10.1038/onc.2014.178] [PMID: 24954508]
Nagaraj, A.B.; Joseph, P.; Kovalenko, O.; Singh, S.; Armstrong, A.; Redline, R.; Resnick, K.; Zanotti, K.; Waggoner, S.; DiFeo, A. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget, 2015, 6(27), 23720-23734.
[http://dx.doi.org/10.18632/oncotarget.4690] [PMID: 26125441]
Zhang, K.; Song, H.; Yang, P.; Dai, X.; Li, Y.; Wang, L.; Du, J.; Pan, K.; Zhang, T. Silencing dishevelled-1 sensitizes paclitaxel-resistant human ovarian cancer cells via AKT/GSK-3β/β-catenin signalling. Cell Prolif., 2015, 48(2), 249-258.
[http://dx.doi.org/10.1111/cpr.12161] [PMID: 25643607]
Gangrade, A.; Pathak, V.; Augelli-Szafran, C.E.; Wei, H.X.; Oliver, P.; Suto, M.; Buchsbaum, D.J. Preferential inhibition of Wnt/beta-catenin signaling by novel benzimidazole compounds in triple-negative breast cancer. Int. J. Mol. Sci., 2018, 19(5),e1524.
[http://dx.doi.org/10.3390/ijms19051524] [PMID: 29783777]
Nakagawa, M.; Oda, Y.; Eguchi, T.; Aishima, S.; Yao, T.; Hosoi, F.; Basaki, Y.; Ono, M.; Kuwano, M.; Tanaka, M.; Tsuneyoshi, M. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep., 2007, 18(4), 769-774.
[http://dx.doi.org/10.3892/or.18.4.769] [PMID: 17786334]
Weichert, W.; Denkert, C.; Noske, A.; Darb-Esfahani, S.; Dietel, M.; Kalloger, S.E.; Huntsman, D.G.; Köbel, M. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia, 2008, 10(9), 1021-1027.
[http://dx.doi.org/10.1593/neo.08474] [PMID: 18714364]
Ryan, Q.C.; Headlee, D.; Acharya, M.; Sparreboom, A.; Trepel, J.B.; Ye, J.; Figg, W.D.; Hwang, K.; Chung, E.J.; Murgo, A.; Melillo, G.; Elsayed, Y.; Monga, M.; Kalnitskiy, M.; Zwiebel, J.; Sausville, E.A. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol., 2005, 23(17), 3912-3922.
[http://dx.doi.org/10.1200/JCO.2005.02.188] [PMID: 15851766]
Khabele, D.; Son, D-S.; Parl, A.K.; Goldberg, G.L.; Augenlicht, L.H.; Mariadason, J.M.; Rice, V.M. Drug-induced inactivation or gene silencing of class I histone deacetylases suppresses ovarian cancer cell growth: implications for therapy. Cancer Biol. Ther., 2007, 6(5), 795-801.
[http://dx.doi.org/10.4161/cbt.6.5.4007] [PMID: 17387270]
Shen, L.; Ciesielski, M.; Ramakrishnan, S.; Miles, K.M.; Ellis, L.; Sotomayor, P.; Shrikant, P.; Fenstermaker, R.; Pili, R.; Class, I. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS One, 2012, 7(1),e30815.
[http://dx.doi.org/10.1371/journal.pone.0030815] [PMID: 22303460]
García-Guerrero, E.; Gogishvili, T.; Danhof, S.; Schreder, M.; Pallaud, C.; Pérez-Simón, J.A.; Einsele, H.; Hudecek, M. Panobinostat induces CD38 upregulation and augments the antimyeloma efficacy of daratumumab. Blood, 2017, 129(25), 3386-3388.
[http://dx.doi.org/10.1182/blood-2017-03-770776] [PMID: 28476749]
Smith, H.J.; Straughn, J.M.; Buchsbaum, D.J.; Arend, R.C. Epigenetic therapy for the treatment of epithelial ovarian cancer: A clinical review. Gynecol. Oncol. Rep., 2017, 20, 81-86.
[http://dx.doi.org/10.1016/j.gore.2017.03.007] [PMID: 28378010]
Yeruva, S.L.H.; Zhao, F.; Miller, K.D.; Tevaarwerk, A.J.; Wagner, L.I.; Gray, R.J.; Sparano, J.A.; Connolly, R.M. E2112: randomized phase iii trial of endocrine therapy plus entinostat/placebo in patients with hormone receptor positive advanced breast cancer. NPJ Breast Cancer, 2018, 4(1), 1.
[http://dx.doi.org/10.1038/s41523-017-0053-3] [PMID: 29354686]
Zhang, G.B.; Zhou, H.; Chen, Y.J.; Ge, Y.; Xie, F.; Shi, Q.; Ma, H.B.; Fei, M.; Zhang, X.G. Characterization and application of two novel monoclonal antibodies against 2IgB7-H3: expression analysis of 2IgB7-H3 on dendritic cells and tumor cells. Tissue Antigens, 2005, 66(2), 83-92.
[http://dx.doi.org/10.1111/j.1399-0039.2005.00449.x] [PMID: 16029427]
Makhov, P.; Joshi, S.; Ghatalia, P.; Kutikov, A.; Uzzo, R.G.; Kolenko, V.M. Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and management strategies. Mol. Cancer Ther., 2018, 17(7), 1355-1364.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1299] [PMID: 29967214]
Crispen, P.L.; Sheinin, Y.; Roth, T.J.; Lohse, C.M.; Kuntz, S.M.; Frigola, X.; Thompson, R.H.; Boorjian, S.A.; Dong, H.; Leibovich, B.C.; Blute, M.L.; Kwon, E.D. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin. Cancer Res., 2008, 14(16), 5150-5157.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0536] [PMID: 18694993]
Li, M.; Zhang, G.; Zhang, X.; Lv, G.; Wei, X.; Yuan, H.; Hou, J. Overexpression of B7-H3 in CD14+ monocytes is associated with renal cell carcinoma progression. Med. Oncol., 2014, 31(12), 349.
[http://dx.doi.org/10.1007/s12032-014-0349-1] [PMID: 25416051]
Pagel, J.M.; Orgun, N.; Hamlin, D.K.; Wilbur, D.S.; Gooley, T.A.; Gopal, A.K.; Park, S.I.; Green, D.J.; Lin, Y.; Press, O.W. A comparative analysis of conventional and pretargeted radioimmunotherapy of B-cell lymphomas by targeting CD20, CD22, and HLA-DR singly and in combinations. Blood, 2009, 113(20), 4903-4913.
[http://dx.doi.org/10.1182/blood-2008-11-187401] [PMID: 19124831]
Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev., 2018, 69, 152-163.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
Marquardt, S.; Solanki, M.; Spitschak, A.; Vera, J.; Pützer, B.M. Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin. Cancer Biol., 2018, 53, 90-109.
[http://dx.doi.org/10.1016/j.semcancer.2018.06.006] [PMID: 29966677]
Roy, L.; Cowden Dahl, K.D. Can stemness and chemoresistance be therapeutically targeted via signaling pathways in ovarian cancer? Cancers (Basel), 2018, 10(8),e241.
[http://dx.doi.org/10.3390/cancers10080241] [PMID: 30042330]
Morrison, B.J.; Morris, J.C.; Steel, J.C. Lung cancer-initiating cells: a novel target for cancer therapy. Target. Oncol., 2013, 8(3), 159-172.
[http://dx.doi.org/10.1007/s11523-012-0247-4] [PMID: 23314952]
Walters Haygood, C.L.; Arend, R.C.; Straughn, J.M.; Buchsbaum, D.J. Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival? World J. Stem Cells, 2014, 6(4), 441-447.
[http://dx.doi.org/10.4252/wjsc.v6.i4.441] [PMID: 25258665]
Annett, S.; Robson, T. Targeting cancer stem cells in the clinic: Current status and perspectives. Pharmacol. Ther., 2018, 187, 13-30.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.001] [PMID: 29421575]
Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res., 2009, 15(17), 5379-5388.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0265] [PMID: 19706802]
Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y-X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest., 2014, 124(2), 687-695.
[http://dx.doi.org/10.1172/JCI67313] [PMID: 24382348]
Rodriguez-Ruiz, M.E.; Rodriguez, I.; Garasa, S.; Barbes, B.; Solorzano, J.L.; Perez-Gracia, J.L.; Labiano, S.; Sanmamed, M.F.; Azpilikueta, A.; Bolaños, E.; Sanchez-Paulete, A.R.; Aznar, M.A.; Rouzaut, A.; Schalper, K.A.; Jure-Kunkel, M.; Melero, I. Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res., 2016, 76(20), 5994-6005.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0549] [PMID: 27550452]
Dovedi, S.J.; Cheadle, E.J.; Popple, A.L.; Poon, E.; Morrow, M.; Stewart, R.; Yusko, E.C.; Sanders, C.M.; Vignali, M.; Emerson, R.O.; Robins, H.S.; Wilkinson, R.W.; Honeychurch, J.; Illidge, T.M. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res., 2017, 23(18), 5514-5526.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1673] [PMID: 28533222]
Lee, Y.H.; Martin-Orozco, N.; Zheng, P.; Li, J.; Zhang, P.; Tan, H.; Park, H.J.; Jeong, M.; Chang, S.H.; Kim, B.S.; Xiong, W.; Zang, W.; Guo, L.; Liu, Y.; Dong, Z.J.; Overwijk, W.W.; Hwu, P.; Yi, Q.; Kwak, L.; Yang, Z.; Mak, T.W.; Li, W.; Radvanyi, L.G.; Ni, L.; Liu, D.; Dong, C. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res., 2017, 27(8), 1034-1045.
[http://dx.doi.org/10.1038/cr.2017.90] [PMID: 28685773]
Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; Jones, H.; Wilkinson, R.W.; Honeychurch, J.; Illidge, T.M. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res., 2014, 74(19), 5458-5468.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1258] [PMID: 25274032]
Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer, 2015, 15(7), 409-425.
[http://dx.doi.org/10.1038/nrc3958] [PMID: 26105538]
Jiang, W.; Chan, C.K.; Weissman, I.L.; Kim, B.Y.S.; Hahn, S.M. Immune priming of the tumor microenvironment by radiation. Trends Cancer, 2016, 2(11), 638-645.
[http://dx.doi.org/10.1016/j.trecan.2016.09.007] [PMID: 28741502]
Ye, J.C.; Formenti, S.C. Integration of radiation and immunotherapy in breast cancer - Treatment implications. Breast, 2018, 38, 66-74.
[http://dx.doi.org/10.1016/j.breast.2017.12.005] [PMID: 29253718]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [4016 - 4038]
Pages: 23
DOI: 10.2174/0929867326666190228120908
Price: $65

Article Metrics

PDF: 30