Hydrotalcite Clay+[TBA][OH] Ionic Liquid Combination for Selective Dihydroquinazolines

Author(s): Vivek Srivastava*

Journal Name: Current Organocatalysis

Volume 6 , Issue 1 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: We are submitting an easy, effective and environmentally benign protocol for the synthesis of 18 different 1,2-dihydroquinazoline derivatives.

Methods: We implemented [TMA][OH] ionic liquid mediated hydrotalcite clay catalytic system as a green catalyst to perform this reaction.

Results: Three-component reaction pathway was utilized to synthesize 1,2-dihydroquinazoline derivatives using aromatic aldehydes, 2-amino benzophenones, and ammonium acetate with green and recyclable ionic liquid mediated hydrotalcite clay catalytic system.

Conclusion: The notable highlights of this method comprise short reaction time, operational simplicity, high yields, and high selectivity. Additionally, the catalyst can be recovered and recycled for up to eight cycles without any loss in catalytic activity.

Keywords: 1, 2-dihydroquinazoline, catalysts recycling, heterogeneous catalysis, hydrotalcite clay, ionic liquid, synthesize.

Grover, G.; Kini, S.G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2006, 41(2), 256-262.
Kabri, Y.; Azas, N.; Dumètre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. Original quinazoline derivatives displaying antiplasmodial properties. Eur. J. Med. Chem., 2010, 45(2), 616-622.
Henderson, E.A.; Bavetsias, V.; Theti, D.S.; Wilson, S.C.; Clauss, R.; Jackman, A.L. Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg. Med. Chem., 2006, 14(14), 5020-5042.
Balakumar, C.; Lamba, P.; Pran Kishore, D.; Lakshmi Narayana, B.; Venkat Rao, K.; Rajwinder, K.; Raghuram Rao, A.; Shireesha, B.; Narsaiah, B. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur. J. Med. Chem., 2010, 45(11), 4904-4913.
Chien, T-C.; Chen, C-S.; Yu, F-H.; Chern, J-W.; Nucleosides, X.I. Synthesis and antiviral evaluation of 5′-alkylthio-5′-deoxy quinazolinone nucleoside derivatives as s-adenosyl-l-homocysteine analogs. Chem. Pharm. Bull., 2004, 52(12), 1422-1426.
Kumar, A.; Sharma, P.; Kumari, P.; Lal Kalal, B. Exploration of antimicrobial and antioxidant potential of newly synthesized 2,3-disubstituted quinazoline-4(3H)-ones. Bioorg. Med. Chem. Lett., 2011, 21(14), 4353-4357.
Barraja, P.; Caracausi, L.; Diana, P.; Montalbano, A.; Carbone, A.; Salvador, A.; Brun, P.; Castagliuolo, I.; Tisi, S.; Dall’Acqua, F.; Vedaldi, D.; Cirrincione, G. Pyrrolo [3,2-h]quinazolines as Photochemotherapeutic Agents. ChemMedChem, 2011, 6(7), 1238-1248.
Boyapati, S.; Kulandaivelu, U.; Sangu, S.; Vanga, M.R. Synthesis, antimicrobial evaluation, and docking studies of novel 4-substituted quinazoline derivatives as DNA-Gyrase inhibitors. Arch. Pharm. , 2010, 343(10), 570-576.
Yang, S.H.; Khadka, D.B.; Cho, S.H.; Ju, H-K.; Lee, K.Y.; Han, H.J.; Lee, K-T.; Cho, W-J. Virtual screening and synthesis of quinazolines as novel JAK2 inhibitors. Bioorg. Med. Chem., 2011, 19(2), 968-977.
Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. Production of 2-methyl-4(3H)-quinazolinone, an inhibitor of poly(ADP-ribose) synthetase, by bacterium. J. Antibiot., 1991, 44, 111-112.
Wattanapiromsakul, C.; Forster, P.I.; Waterman, P.G. Alkaloids and limonoids from bouchardatia neurococca: systematic significance. Phytochemistry, 2003, 64(2), 609-615.
Deng, Y.; Xu, R.; Ye, Y. A new quinazolinone alkaloids from leaves of Dichroa febrifuga. J. Chin. Pharm. Sci., 2000, 9, 116-118.
Nomura, T.; Ma, Z-Z.; Hano, Y.; Chen, Y-J. Two New Pyrroloquinazolinoquinoline Alkaloids from Peganum nigellastrum. Heterocycles, 1997, 46(1), 541-546.
Alonso, R.; Caballero, A.; Campos, P.J.; Sampedro, D.; Rodríguez, M.A. An efficient synthesis of quinazolines: a theoretical and experimental study on the photochemistry of oxime derivatives. Tetrahedron, 2010, 66(25), 4469-4473.
Zhang, Z-H.; Zhang, X-N.; Mo, L-P.; Li, Y-X.; Ma, F-P. Catalyst-free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent. Green Chem., 2012, 14(5), 1502-1506.
Truong, V.L.; Morrow, M. Mild and efficient ligand-free copper-catalyzed condensation for the synthesis of quinazolines. Tetrahedron Lett., 2010, 51(4), 758-760.
Finch, N.; Gschwend, H.W. Rearrangement of 3-amino-1-benzylindazole to 4-amino-2-phenylquinazoline. J. Org. Chem., 1971, 36(11), 1463-1465.
Carrington, H.C. 1:2 Dihydro2:2-dimethyl quinazoline. J. Chem. Soc., 1955, 3, 2527-2528.
Derabli, C.; Boulcina, R.; Kirsch, G.; Carboni, B.; Debache, A. A DMAP-catalyzed mild and efficient synthesis of 1,2-dihydroquinazolines via a one-pot three-component protocol. Tetrahedron Lett., 2014, 55, 200-204.
Zhang, Q.; Zhanga, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13, 2619-2637.
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 2011, 111, 3508-3576.
Srivastava, V.; Gaubert, K.; Pucheault, M.; Vaultier, M. Organic–inorganic hybrid materials for enantioselective organocatalysis. ChemCatChem, 2009, 1, 94-98.
Khan, F.A.; Dash, J.; Satapathy, R.; Upadhyay, S.K. Hydrotalcite catalysis in ionic liquid medium: A recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. Tetrahedron Lett., 2004, 45, 3055-3058.
Srivastava, V. Recyclable hydrotalcite clay catalysed Baylis–Hillman reaction. J. Chem. Sci., 2013, 125, 1207-1212.
Wagner, J.; Chen, H.; Brownawell, B.J.; Westall, J.C. Use of cationic surfactants to modify soil surfaces to promote sorption and retard migration of hydrophobic organic compounds. Environ. Sci. Technol., 1994, 28(2), 231-237.
Upadhyay, P.R.; Srivastava, V. Clays: An Encouraging Catalytic Support. Curr. Catal., 2016, 5(3), 162-181.
Carrado, K.A.; Decarreau, A.; Petit, S.; Bergaya, F.; Lagaly, G. Synthetic clay minerals and purification of natural clays in:Developments in Clay Science, Bergaya, F.; Theng, B.K.G.; Lagaly, G. Eds.; Elsevier:. 2006, 1 115-139.
Bowman, R.S.; Haggerty, G.M.; Huddleston, R.G.; Neel, D.; Flynn, M.M. Sorption of nonpolar organic compounds, inorganic cations, and inorganic oxyanions by surfactant-modified zeolites inSurfactant-Enhanced Subsurface Remediation;, American Chemical Society: . 1995, 594 54-64.
Choy, J-H.; Park, M.A.N. Cationic and Anionic Clays for Biological Applications. In: Interface Science and Technology; Wypych, F.; Satyanarayana, K.G., Eds.; Elsevier, 2004; Vol. 1, pp. 403-424.
Rajamathi, M.; Thomas, G.S.; Kamath, P.V. The many ways of making anionic clays. J. Chem. Sci., 2001, 113(5), 671-680.
Zikmund, M.; Hrnciarova, K. Anionic clays, Structure, synthesis applications. Chem. Listy, 1997, 91, 169-178.
Alberti, G.; Costantino, U. 5-Intercalation Chemistry of Acid Salts of Tetravalent Metals with Layered Structure and Related Materials. In: Intercalation Chemistry; Whittingham, M.S.; Jacobson, A.J., Eds.; Academic Press, 1982; pp. 147-180.
Trifirò, F.; Vaccari, A. Two- and Three-dimensional inorganic networks in: Comprehensive Supramol Chem, Atwood, J.L.; Davies, J.E.; Macnicol, D.D.; Vögtle, F.; Lehn, J.M.; Alberti, G; Bein, T., Ed.; Oxford Pergamon: , 1996, Vol. 7, pp. 251-291.
Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 1991, 11(2), 173-301.
Tichit, D.; Coq, B. Catalysis by Hydrotalcites and related materials. CATTech, 2003, 7(6), 206-217.
Angelescu, E.; Pavel, O.D.; Bîrjega, R.; Florea, M.; Zăvoianu, R. The impact of the “memory effect” on the catalytic activity of Mg/Al; Mg,Zn/Al; Mg/Al,Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation. Appl. Catal., A,, 2008, 341 (1),50-57.
Romero, M.D.; Calles, J.A.; Ocaña, M.A.; Gómez, J.M. Epoxidation of cyclohexene over basic mixed oxides derived from hydrotalcite materials: Activating agent, solvent and catalyst reutilization. Microporous Mesoporous Mater., 2008, 111(1), 243-253.
Mahajanam, S.P.V.; Buchheit, R.G. Characterization of inhibitor release from Zn-Al-[V10O28]6- hydrotalcite pigments and corrosion protection from hydrotalcite-pigmented epoxy coatings. Corrosion, 2008, 64(3), 230-240.
Maggi, R.; Malmassari, C.; Oro, C.; Pela, R.; Sartori, G.; Soldi, L. Reaction between epoxides and carbon disulfide under hydrotalcite catalysis: Eco compatible synthesis of cyclic dithiocarbonates. Synthesis, 2008, 2008(01), 53-56.
Carriazo, D.; Lima, S.; Martín, C.; Pillinger, M.; Valente, A.A.; Rives, V. Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. J. Phys. Chem. Solids, 2007, 68(10), 1872-1880.
Angelescu, E.; Pavel, O.D.; Zavoianu, R.; Barjega, R. Cyanoethylation of ethanol over mixed oxides obtained from hydrotalcite precursors. Rev. Roum. Chim., 2004, 49, 367-375.
Angelescu, E.; Pavel, O.D.; Che, M.; Birjega, R.; Constentin, G. Cyanoethylation of ethanol on Mg–Al hydrotalcites promoted by Y3+ and La3+. Catal. Commun., 2004, 5(10), 647-651.
Choudary, B.M.; Lakshmi Kantam, M.; Kavita, B. Mg-Al-O-But–Hydrotalcite: A mild and ecofriendly catalyst for the cyanoethylation of alcohols and thiols†. Green Chem., 1999, 1(6), 289-292.
Kumbhar, P.S. Modified Mg–Al hydrotalcite: a highly active heterogeneous base catalyst for cyanoethylation of alcohols. Chem. Commun., 1998, (10), 1091-1092.
Akutu, K.; Kabashima, H.; Seki, T.; Hattori, H. Nitroaldol reaction over solid base catalysts. Appl. Catal. A Gen., 2003, 247(1), 65-74.
Cwik, A.; Fuchs, A.; Hell, Z.; Clacens, J-M. Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron, 2005, 61(16), 4015-4021.
Khan, F.A.; Dash, J.; Satapathy, R.; Upadhyay, S.K. Hydrotalcite catalysis in ionic liquid medium: a recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. Tetrahedron Lett., 2004, 45(15), 3055-3058.
Akutu, K.; Kabashima, H.; Seki, T.; Hattori, H. Nitroaldol reaction over solid base catalysts.Appl. Catal., A,, 2003, 247 (1), 65-74.
Bhattacharjee, S.; Anderson, J.A. Novel chiral sulphonato-salen-manganese(iii)-pillared hydrotalcite catalysts for the asymmetric epoxidation of styrenes and cyclic alkenes. Adv. Synth. Catal., 2006, 348(12), 151-158.
Varma, R.S.; Naicker, K.P.; Liesen, P.J. Palladium chloride and tetraphenylphosphonium bromide intercalated clay as a new catalyst for the Heck reaction. Tetrahedron Lett., 1999, 40(11), 2075-2078.
Welton, T.; Wassersheid, P. Ionic liquids in synthesis, 2nd ed; Wiley-VCH: Weinheim, 2008.
Srivastava, V. Ionic liquid mediated recyclable sulphonimide based organocatalysis for aldol reaction. Cent. Eur. J. Chem., 2010, 8(2), 269-272.
Prechtl, M.H.G.; Scholten, J.D.; Dupont, J. Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles. Mol., 2010, 15(5), 3441-3461.
Hangarge, R.V.; Jarikote, D.V.; Shingare, M.S. Knoevenagel condensation reactions in an ionic liquid. Green Chem., 2002, 4(3), 266-268.
Jeong, Y.; Ryu, J-S. Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the baylis-hillman reaction. J. Org. Chem., 2010, 75(12), 4183-4191.
Verron, J.; Joerger, J.M.; Pucheault, M.; Vaultier, M. Task specific onium salts (TSOSs) as efficient soluble supports for Zard radical addition to olefins. Tetrahedron Lett., 2007, 48, 4055-4058.
Miyata, S. The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-. Clays Clay Miner., 1975, 23, 369-375.
Mohammadi Ziarani, G.; Badiei, A.; Aslani, Z.; Lashgari, N. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Arab. J. Chem., 2015, 8(1), 54-61.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 27 February, 2019
Page: [44 - 51]
Pages: 8
DOI: 10.2174/2213337206666190228111913

Article Metrics

PDF: 24