Non-Steroidal Anti-Inflammatory Drugs Loaded Liposomes for Topical Treatment of Inflammatory and Degenerative Conditions

Author(s): Carla Matos*, Paulo Lobão

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 23 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Topical administration of drugs presents some advantages over other routes; the drug can be administered in the anatomical region to be treated, limiting the systemic distribution and side effects. However, the structure of the skin makes it a highly effective barrier to drug permeation. Amongst the strategies to overcome this obstacle, liposomes are interesting vehicles for delivering the drugs into the skin, the synovial cavity or other regions affected by inflammatory or degenerative conditions. Liposomes are lipid carriers of nanometric size formed by phospholipid bilayers. They have the advantages of preparation feasibility and biological compatibility associated with the possibility of carrying either lipophylic and/or hydrophylic compounds, and have been extensively used in various drug delivery systems, for drug targeting, controlled release and permeation enhancement of drugs. Conventional liposomes are not very stable and not suitable for dermal administration after topical application, since they accumulate on the skin surface due to the rigidity of the lipid layers and suffer dehydration, culminating in their fragmentation. Other formulations have emerged in the meantime, such as transfersomes, niosomes or ethosomes. The present work consists of a review on the published scientific papers regarding the development of liposomal formulations containing non-steroidal anti-inflammatory drugs for the purpose of relieving the symptomatology of inflammatory and degenerative ailments. The exposition summarizes data relating to liposome type, composition, preparation method, liposome characterization, topical vehicle used, in vitro permeation studies performed, in vivo anti-inflammatory assays carried out and results obtained in the different studies published in the last five years.

Keywords: Liposomes, topical, anti-inflammatory drugs, drug encapsulation, drug delivery, inflammation.

[1]
Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[http://dx.doi.org/10.1038/newbio231232a0] [PMID: 5284360]
[2]
Vane, J.; Botting, R. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J., 1987, 1(2), 89-96.
[http://dx.doi.org/10.1096/fasebj.1.2.3111928] [PMID: 3111928]
[3]
Seidel, E.J.; Rother, M.; Regenspurger, K.; Rother, I. A randomised trial comparing the efficacy and safety of topical ketoprofen in Transfersome(®) gel (IDEA-033) with oral ketoprofen and drug-free ultra-deformable Sequessome™ vesicles (TDT 064) for the treatment of muscle soreness following exercise. J. Sports Sci., 2016, 34(1), 88-95.
[http://dx.doi.org/10.1080/02640414.2015.1035667] [PMID: 25893979]
[4]
Puglia, C.; Tirendi, G.G.; Bonina, F. Emerging role of colloidal drug delivery systems (CDDS) in NSAID topical administration. Curr. Med. Chem., 2013, 20(14), 1847-1857.
[http://dx.doi.org/10.2174/0929867311320140004] [PMID: 23410154]
[5]
Maestrelli, F.; Bragagni, M.; Mura, P. Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: a review. J. Drug Deliv. Sci. Technol., 2016, 32, 192-205.
[http://dx.doi.org/10.1016/j.jddst.2015.09.011]
[6]
Singh, V.; Sharma, H.; Veerma, R.; Javed, A.; Singh, M. Topical non-steroidal anti- inflammatory drug (NSAIDs) microemulsions: rationale, review and future prospective. Asian J. Pharmaceutics, 2013, 7(1), 1.
[http://dx.doi.org/10.22377/ajp.v7i1.33]
[7]
Cevc, G.; Mazgareanu, S.; Rother, M. Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int. J. Pharm., 2008, 360(1-2), 29-39.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.051] [PMID: 18337027]
[8]
Raza, K.; Kumar, M.; Kumar, P.; Malik, R.; Sharma, G.; Kaur, M.; Katare, O.P. Topical delivery of aceclofenac: challenges and promises of novel drug delivery systems. BioMed Res. Int., 2014, 2014 406731
[http://dx.doi.org/10.1155/2014/406731] [PMID: 25045671]
[9]
de Castro, B.; Gameiro, P.; Lima, J.L.F.C.; Matos, C.; Reis, S. A fast and reliable spectroscopic method for the determination of membrane--water partition coefficients of organic compounds. Lipids, 2001, 36(1), 89-96.
[http://dx.doi.org/10.1007/s11745-001-0673-0] [PMID: 11214736]
[10]
Matos, C.; de Castro, B.; Gameiro, P.; Lima, J.L.F.C.; Reis, S. Zeta-potential measurements as a tool to quantify the effect of charged drugs on the surface potential of egg phosphatidylcholine liposomes. Langmuir, 2004, 20(2), 369-377.
[http://dx.doi.org/10.1021/la034780b] [PMID: 15743080]
[11]
Lichtenberger, L.M.; Zhou, Y.; Jayaraman, V.; Doyen, J.R.; O’Neil, R.G.; Dial, E.J.; Volk, D.E.; Gorenstein, D.G.; Boggara, M.B.; Krishnamoorti, R. Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphatidylcholine. Biochim. Biophys. Acta, 2012, 1821(7), 994-1002.
[http://dx.doi.org/10.1016/j.bbalip.2012.04.002] [PMID: 22521764]
[12]
Caddeo, C.; Sales, O.D.; Valenti, D.; Saurí, A.R.; Fadda, A.M.; Manconi, M. Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: liposomes, ethosomes and PEVs. Int. J. Pharm., 2013, 443(1-2), 128-136.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.041] [PMID: 23299087]
[13]
Carboni, M.; Falchi, A.M.; Lampis, S.; Sinico, C.; Manca, M.L.; Schmidt, J.; Talmon, Y.; Murgia, S.; Monduzzi, M. Physicochemical, cytotoxic, and dermal release features of a novel cationic liposome nanocarrier. Adv. Healthc. Mater., 2013, 2(5), 692-701.
[http://dx.doi.org/10.1002/adhm.201200302] [PMID: 23184424]
[14]
El-Menshawe, S.F.; Hussein, A.K. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm. Dev. Technol., 2013, 18(4), 779-786.
[http://dx.doi.org/10.3109/10837450.2011.598166] [PMID: 21913880]
[15]
Ferreira, H.; Matamá, T.; Silva, R.; Silva, C.; Gomes, A.C.; Cavaco-Paulo, A. Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: a strategy to improve wound healing. React. Funct. Polym., 2013, 73, 1328-1334.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.05.012]
[16]
Gaur, P.K.; Purohit, S.; Mishra, S. Development of aceclofenac nanovesicular system using biomaterial for transdermal delivery: physical characterization, ex vivo, in vivo, and anti-inflammatory studies. J. Biomater. Sci. Polym. Ed., 2013, 24(18), 2126-2141.
[http://dx.doi.org/10.1080/09205063.2013.828579] [PMID: 23944964]
[17]
Gaur, P.K.; Mishra, S.; Purohit, S.; Kumar, Y.; Bhandari, A. Development of a new nanovesicle formulation as transdermal carrier: formulation, physicochemical characterization, permeation studies and anti-inflammatory activity. Artif. Cells Nanomed. Biotechnol., 2014, 42(5), 323-330.
[http://dx.doi.org/10.3109/21691401.2013.827119] [PMID: 23944163]
[18]
Gaur, P.K.; Purohit, S.; Kumar, Y.; Mishra, S.; Bhandari, A. Preparation, characterization and permeation studies of a nanovesicular system containing diclofenac for transdermal delivery. Pharm. Dev. Technol., 2014, 19(1), 48-54.
[http://dx.doi.org/10.3109/10837450.2012.751406] [PMID: 23281714]
[19]
Gaur, P.K.; Purohit, S.; Kumar, Y.; Mishra, S.; Bhandari, A. Ceramide-2 nanovesicles for effective transdermal delivery: development, characterization and pharmacokinetic evaluation. Drug Dev. Ind. Pharm., 2014, 40(4), 568-576.
[http://dx.doi.org/10.3109/03639045.2013.782502] [PMID: 23547761]
[20]
Ghanbarzadeh, S.; Arami, S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed Res. Int., 2013, 2013616810
[http://dx.doi.org/10.1155/2013/616810] [PMID: 23936825]
[21]
Kumbhar, D.; Wavikar, P.; Vavia, P. Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamic activity. AAPS PharmSciTech, 2013, 14(3), 1072-1082.
[http://dx.doi.org/10.1208/s12249-013-9986-5] [PMID: 23818079]
[22]
Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: a new tool for effective dermal and transdermal drug delivery. Int. J. Pharm., 2013, 455(1-2), 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
[23]
Manca, M.L.; Manconi, M.; Falchi, A.M.; Castangia, I.; Valenti, D.; Lampis, S.; Fadda, A.M. Close-packed vesicles for diclofenac skin delivery and fibroblast targeting. Colloids Surf. B Biointerfaces, 2013, 111, 609-617.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.014] [PMID: 23907049]
[24]
Ahad, A.; Raish, M.; Al-Mohizea, A.M.; Al-Jenoobi, F.I.; Alam, M.A. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. Int. J. Biol. Macromol., 2014, 67, 99-104.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.011] [PMID: 24657163]
[25]
Duangjit, S.; Obata, Y.; Sano, H.; Onuki, Y.; Opanasopit, P.; Ngawhirunpat, T.; Miyoshi, T.; Kato, S.; Takayama, K. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol. Pharm. Bull., 2014, 37(2), 239-247.
[http://dx.doi.org/10.1248/bpb.b13-00576] [PMID: 24225259]
[26]
Duangjit, S.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Obata, Y.; Takayama, K.; Ngawhirunpat, T. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int. J. Nanomedicine, 2014, 9, 2005-2017.
[http://dx.doi.org/10.2147/IJN.S60674] [PMID: 24851047]
[27]
Fetih, G.; Fathalla, D.; El-Badry, M. Liposomal gels for site-specific, sustained delivery of celecoxib: in vitro and in vivo evaluation. Drug Dev. Res., 2014, 75(4), 257-266.
[http://dx.doi.org/10.1002/ddr.21179] [PMID: 24939834]
[28]
Gaur, P.K.; Bajpai, M.; Mishra, S.; Verma, A. Development of ibuprofen nanoliposome for transdermal delivery: Physical characterization, in vitro/in vivo studies, and anti-inflammatory activity. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 370-375.
[http://dx.doi.org/10.3109/21691401.2014.953631] [PMID: 25211229]
[29]
Szura, D.; Ozimek, Ł.; Przybyło, M.; Karłowicz-Bodalska, K.; Jaźwińska-Tarnawska, E.; Wiela-Hojeńska, A.; Han, S. The impact of liposomes on transdermal permeation of naproxen--in vitro studies. Acta Pol. Pharm., 2014, 71(1), 145-151.
[PMID: 24779203]
[30]
Taha, E.I. Lipid vesicular systems: formulation optimization and ex vivo comparative study. J. Mol. Liq., 2014, 196, 211-216.
[http://dx.doi.org/10.1016/j.molliq.2014.03.045]
[31]
Vázquez-González, M.L.; Bernad, R.; Calpena, A.C.; Domènech, O.; Montero, M.T.; Hernández-Borrell, J. Improving ex vivo skin permeation of non-steroidal anti-inflammatory drugs: enhancing extemporaneous transformation of liposomes into planar lipid bilayers. Int. J. Pharm., 2014, 461(1-2), 427-436.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.009] [PMID: 24361268]
[32]
Tavano, L.; de Cindio, B.; Picci, N.; Ioele, G.; Muzzalupo, R. Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications. Biomed. Microdevices, 2014, 16(6), 851-858.
[http://dx.doi.org/10.1007/s10544-014-9889-6] [PMID: 25129111]
[33]
Jain, S.; Patel, N.; Madan, P.; Lin, S. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route. Pharm. Dev. Technol., 2015, 20(4), 473-489.
[http://dx.doi.org/10.3109/10837450.2014.882939] [PMID: 24490793]
[34]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[35]
Trommer, H.; Neubert, R.H.H. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol. Physiol., 2006, 19(2), 106-121.
[http://dx.doi.org/10.1159/000091978] [PMID: 16685150]
[36]
Aghazadeh-Habashi, A.; Yang, Y.; Tang, K.; Lőbenberg, R.; Doschak, M.R. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures. Drug Deliv. Transl. Res., 2015, 5(6), 540-551.
[http://dx.doi.org/10.1007/s13346-015-0257-8] [PMID: 26350235]
[37]
Pappinen, S.; Pryazhnikov, E.; Khiroug, L.; Ericson, M.B.; Yliperttula, M.; Urtti, A. Organotypic cell cultures and two-photon imaging: tools for in vitro and in vivo assessment of percutaneous drug delivery and skin toxicity. J. Control. Release, 2012, 161(2), 656-667.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.005] [PMID: 22465394]
[38]
Arpicco, S.; Battaglia, L.; Brusa, P.; Cavalli, R.; Chirio, D.; Dosio, F.; Gallarate, M.; Milla, P.; Peira, E.; Rocco, F.; Sapino, S.; Stella, B.; Ugazio, E.; Ceruti, M. Recent studies on the delivery of hydrophilic drugs in nanoparticulate Systems. J. Drug Deliv. Sci. Technol., 2016, 32, 298-312.
[http://dx.doi.org/10.1016/j.jddst.2015.09.004]
[39]
Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014, 190, 15-28.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.053] [PMID: 24747160]
[40]
Mezei, M.; Gulasekharam, V. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci., 1980, 26(18), 1473-1477.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[41]
Elsayed, M.M.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm., 2007, 6332(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005] [PMID: 17222523]
[42]
Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur. J. Pharm. Biopharm., 2003, 55(3), 271-277.
[http://dx.doi.org/10.1016/S0939-6411(03)00021-3] [PMID: 12754000]
[43]
El Maghraby, G.M.; Williams, A.C.; Barry, B.W. Can drug-bearing liposomes penetrate intact skin? J. Pharm. Pharmacol., 2006, 58(4), 415-429.
[http://dx.doi.org/10.1211/jpp.58.4.0001] [PMID: 16597359]
[44]
El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci., 2008, 34(4-5), 203-222.
[http://dx.doi.org/10.1016/j.ejps.2008.05.002] [PMID: 18572392]
[45]
Dreier, J.; Sørensen, J.A.; Brewer, J.R. Superresolution and fluorescence dynamics evidence reveal that intact liposomes do not cross the human skin barrier. PLoS One, 2016, 11(1) e0146514
[http://dx.doi.org/10.1371/journal.pone.0146514] [PMID: 26751684]
[46]
Cevc, G.; Blume, G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim. Biophys. Acta, 2001, 1514(2), 191-205.
[http://dx.doi.org/10.1016/S0005-2736(01)00369-8] [PMID: 11557020]
[47]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.054] [PMID: 24939745]
[48]
Manjanna, K.M.; Shivakumar, B.; Pramod Kumar, T.M. Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Crit. Rev. Ther. Drug Carrier Syst., 2010, 27(6), 509-545.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i6.20] [PMID: 21175420]
[49]
Salah, S.; Mahmoud, A.A.; Kamel, A.O. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 846-856.
[http://dx.doi.org/10.1080/10717544.2017.1326539] [PMID: 28535740]
[50]
Valjakka-Koskela, R.; Kirjavainen, M.; Monkkonen, J.; Urtti, A.; Kiesvaara, J. Enhancement of percutaneous absorption of naproxen by phospholipids. Int. J. Pharm., 1998, 175, 225-230.
[http://dx.doi.org/10.1016/S0378-5173(98)00285-3]
[51]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 2015, 10(2), 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[52]
Chandra, A.; Sharma, P.K. Proniosome based drug delivery system of piroxicam. Afr. J. Pharm. Pharmacol., 2008, 2(9), 184-190.
[53]
Pandey, P.; Pancholi, S.S. Nanocarriers: a novel treatment approach for arthritis. Int. J. Pharm. Sci. Res., 2013, 4(11), 4165-4174.
[54]
Sardana, V.; Burzynski, J.; Zalzal, P. Safety and efficacy of topical ketoprofen in transfersome gel in knee osteoarthritis: A systematic review. Musculoskelet. Care, 2017, 15(2), 114-121.
[http://dx.doi.org/10.1002/msc.1163] [PMID: 27778435]
[55]
Manosroi, A.; Jantrawut, P.; Manosroi, J. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int. J. Pharm., 2008, 360(1-2), 156-163.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.033] [PMID: 18539416]
[56]
Usama, A.; Fetih, G.; El-Faham, T. Performance of meloxicam niosomal gel formulations for transdermal drug delivery. Br. J. Pharm. Res., 2016, 12(2), 1-14.
[http://dx.doi.org/10.9734/BJPR/2016/26985]
[57]
Nasr, M.; Mansour, S.; Mortada, N.D.; Elshamy, A.A. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J. Microencapsul., 2008, 25(7), 499-512.
[http://dx.doi.org/10.1080/02652040802055411] [PMID: 18608811]
[58]
Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 11, 2279-2304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[59]
Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech, 2017, 18(1), 58-71.
[http://dx.doi.org/10.1208/s12249-016-0489-z] [PMID: 26868380]
[60]
Manconi, M.; Caddeo, C.; Sinico, C.; Valenti, D.; Mostallino, M.C.; Biggio, G.; Fadda, A.M. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction. Eur. J. Pharm. Biopharm., 2011, 78(1), 27-35.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.010] [PMID: 21167279]
[61]
Al-Mahallawi, A.M.; Abdelbary, A.A.; Aburahma, M.H. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int. J. Pharm., 2015, 485(1-2), 329-340.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.033] [PMID: 25796122]
[62]
Karami, Z.; Hamidi, M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[63]
Dave, V.; Yadav, R.B.; Gupta, S.; Sharma, S. Guggulosomes: a herbal approach for enhanced topical delivery of phenylbutazone. Fut. J. Pharm. Sci., 2017, 3(1), 23-32.
[http://dx.doi.org/10.1016/j.fjps.2016.11.002]
[64]
Moghimipour, E.; Salami, A.; Monjezi, M. Formulation and evaluation of liposomes for transdermal delivery of celecoxib. Jundishapur J. Nat. Pharm. Prod., 2015, 10(1) e17653
[http://dx.doi.org/10.17795/jjnpp-17653] [PMID: 27747190]
[65]
Kwon, K.; Kim, J. In vitro anti-inflammatory efficacies of liposomal suspensions of acetylsalicylic acid. Biotechnol. Bioprocess Eng.; BBE, 2016, 21(5), 659-666.
[http://dx.doi.org/10.1007/s12257-016-0407-y]
[66]
Alomrani, A.H.; Badran, M.M. Flexosomes for transdermal delivery of meloxicam: characterization and antiinflammatory activity. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 305-312.
[http://dx.doi.org/10.3109/21691401.2016.1147452] [PMID: 26924417]
[67]
Abd-Allah, F.I. Development, characterization and ex vivo evaluation of various liposome-encapsulated aceclofenac formulations. Br. J. Pharm. Res., 2016, 9(4), 1-12.
[http://dx.doi.org/10.9734/BJPR/2016/22501]
[68]
Sharma, G.; Goyal, H.; Thakur, K.; Raza, K.; Katare, O.P. Novel elastic membrane vesicles (EMVs) and ethosomes-mediated effective topical delivery of aceclofenac: a new therapeutic approach for pain and inflammation. Drug Deliv., 2016, 23(8), 3135-3145.
[http://dx.doi.org/10.3109/10717544.2016.1155244] [PMID: 26960815]
[69]
Rinaldi, F.; Del Favero, E.; Rondelli, V.; Pieretti, S.; Bogni, A.; Ponti, J.; Rossi, F.; Di Marzio, L.; Paolino, D.; Marianecci, C.; Carafa, M. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 538-546.
[http://dx.doi.org/10.1080/14756366.2016.1268607] [PMID: 28114822]
[70]
Moghaddam, A.A.; Ahad, A.; Aqil, M.; Ahmad, F.J.; Sultana, Y.; Ali, A. Ibuprofen loaded nano-ethanolic liposomes carbopol gel system: in vitro characterization and anti-inflammatory efficacy assessment in Wistar rats. J. Polym. Eng., 2018, 38(3), 291-298.
[http://dx.doi.org/10.1515/polyeng-2016-0462]
[71]
El-Ridy, M.S.; Yehia, S.A.; Mohsen, A.M.; El-Awdan, S.A.; Darwish, A.B. Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: in-vitro and in-vivo evaluation. Curr. Drug Deliv., 2018, 15(1), 122-133.
[http://dx.doi.org/10.2174/1567201814666170224141548] [PMID: 28240177]
[72]
Rother, M.; Vester, J.; Bolten, W.W.; Kneer, W.; Conaghan, P.G. Meta-analysis of randomized clinical trials investigating the effect of tdt 064, a gel-based formulation containing ultra-deformable phospholipid vesicles, in patients with knee osteoarthritis. Rheumatology (Sunnyvale), 2014, 4(2), 138.
[http://dx.doi.org/10.4172/2161-1149.1000138]
[73]
Elnaggar, Y.S.R.; El-Refaie, W.M.; El-Massik, M.A.; Abdallah, O.Y. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J. Control. Release, 2014, 180, 10-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.004] [PMID: 24531009]
[74]
Nikhil, A.; Harikumar, S.L. Nirmala. Topical Liposomal gel: a novel drug delivery system. Int. J. Res. Pharm. Chem., 2012, 2(2), 383-391.
[75]
Pitorre, M.; Gondé, H.; Haury, C.; Messous, M.; Poilane, J.; Boudaud, D.; Kanber, E.; Rossemond Ndombina, G.A.; Benoit, J.P.; Bastiat, G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J. Control. Release, 2017, 266, 140-155.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.031] [PMID: 28951319]
[76]
Coviello, T.; Trotta, A.M.; Marianecci, C.; Carafa, M.; Di Marzio, L.; Rinaldi, F.; Di Meo, C.; Alhaique, F.; Matricardi, P. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surf. B Biointerfaces, 2015, 125, 291-299.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.060] [PMID: 25524220]
[77]
Ruela, A.L.M.; Perissinato, A.G.; Lino, M.E.S.; Mudrik, P.S.; Pereira, G.R. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz. J. Pharm. Sci., 2016, 52(3), 527-544.
[http://dx.doi.org/10.1590/s1984-82502016000300018]
[78]
Ng, S.F.; Rouse, J.J.; Sanderson, F.D.; Meidan, V.; Eccleston, G.M. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech, 2010, 11(3), 1432-1441.
[http://dx.doi.org/10.1208/s12249-010-9522-9] [PMID: 20842539]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 23
Year: 2020
Page: [3809 - 3829]
Pages: 21
DOI: 10.2174/0929867326666190227233321
Price: $65

Article Metrics

PDF: 24
HTML: 2
EPUB: 1
PRC: 2