Effect of Human Platelet Lysate in Differentiation of Wharton’s Jelly Derived Mesenchymal Stem Cells

Author(s): Rosy Vennila, Raja Sundari M. Sundaram, Sakthivel Selvaraj, Prasanna Srinivasan, Surajit Pathak, Secunda Rupert*, Surendran Rajagopal

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 19 , Issue 8 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Mesenchymal stem cells (MSCs) are highly preferred in clinical therapy for repair and regeneration of diseased tissues for their multipotent properties. Conventionally, MSCs have been cultured in media supplemented with animal derived serum, however, it is ideal to expand MSCs in media containing supplements of human origin for clinical therapy. Currently, a number of human derived products are being studied as an alternative to animal sources. Amongst these, platelet lysate (PL) has gained interest in the culture of MSCs without affecting their phenotypic property.

Objective: In this study, we used various concentration of PL (2.5, 5, 7.5 & 10%) in the growth medium of MSCs to identify the least concentration of PL that could be an effective alternative to animal products.

Methods: MSCs were isolated from Wharton’s Jelly by using explant method and expanded in various concentration of PL supplemented medium against the standard FBS containing medium. WJ-MSCs were characterised as per the minimal criteria proposed by International Society for Cell therapy (ISCT), Proliferation study by BrdU assay, gene expression study by qRT-PCR, sterility test for bacteria, Mycoplasma by PCR and endotoxin detection by LAL assay.

Results: Whartons jelly derived MSCs (WJ-MSCs) cultured using standard medium supplemented with various concentration of PL exhibited enhanced proliferation and differentiation potential, unaltered immunophenotypic property and genetic stability when compared with the commercial medium containing 10% FBS.

Conclusion: The least concentration of PL for an ideal expansion of MSCs was found to be 2.5% and was comparable to FBS.

Keywords: Platelet lysate, human derived supplements, Fetal bovine serum, mesenchymal stem cells, clinical grade MSCs, genetic stability.

Arien-Zakay, H.; Lazarovici, P.; Nagler, A. Tissue regeneration potential in human umbilical cord blood. Best Pract. Res. Clin. Haematol., 2010, 23(2), 291-303.
[http://dx.doi.org/10.1016/j.beha.2010.04.001] [PMID: 20837341]
Shi, Y.; Hu, G.; Su, J.; Li, W.; Chen, Q.; Shou, P. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res., 2010.
Díez, J.M.; Bauman, E.; Gajardo, R.; Jorquera, J.I. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res. Ther., 2015, 6, 28.
[http://dx.doi.org/10.1186/s13287-015-0016-2] [PMID: 25889980]
Lu, L.L.; Liu, Y.J.; Yang, S.G.; Zhao, Q.J.; Wang, X.; Gong, W.; Han, Z.B.; Xu, Z.S.; Lu, Y.X.; Liu, D.; Chen, Z.Z.; Han, Z.C. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 2006, 91(8), 1017-1026.
[PMID: 16870554]
Gstraunthaler, G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX, 2003, 20(4), 275-281.
[PMID: 14671707]
Sundin, M.; Ringdén, O.; Sundberg, B.; Nava, S.; Götherström, C.; Le Blanc, K. No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica, 2007, 92(9), 1208-1215.
[http://dx.doi.org/10.3324/haematol.11446] [PMID: 17666368]
Kievits, F.; Boerenkamp, W.J.; Ivanyi, P. H-2-dependent binding of xenogeneic beta 2-microglobulin from culture media. J. Immunol., 1988, 140(12), 4253-4255.
[PMID: 3286770]
Ben Azouna, N.; Jenhani, F.; Regaya, Z.; Berraeis, L.; Ben Othman, T.; Ducrocq, E.; Domenech, J. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res. Ther., 2012, 3(1), 6.
[http://dx.doi.org/10.1186/scrt97] [PMID: 22333342]
Ferro, F.; Spelat, R.; Beltrami, A.P.; Cesselli, D.; Curcio, F. Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS One, 2012, 7(11)e48945
[http://dx.doi.org/10.1371/journal.pone.0048945] [PMID: 23155430]
Morimoto, N.; Takemoto, S.; Kanda, N.; Ayvazyan, A.; Taira, M.T.; Suzuki, S. The utilization of animal product-free media and autologous serum in an autologous dermal substitute culture. J. Surg. Res., 2011, 171(1), 339-346.
[http://dx.doi.org/10.1016/j.jss.2009.11.724] [PMID: 20189600]
Hemeda, H.; Giebel, B.; Wagner, W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy, 2014, 16, 170-180.
Ecie, B.; Isabella Kurnia, L.; Jeanne Adiwinata, P.; Dewi Wulandari, T.J.; Kanadi, S. Umbilical cord derived mesenchymal stem cell proliferation in various platelet rich plasma and xeno-material containing medium. Int. J. Res. Pharm. Sci., 2015, 6, 7-13.
Bieback, K.; Hecker, A.; Kocaömer, A.; Lannert, H.; Schallmoser, K.; Strunk, D.; Klüter, H. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 2009, 27(9), 2331-2341.
[http://dx.doi.org/10.1002/stem.139] [PMID: 19544413]
Weibric, G.; Buch, R.S.; Kleis, W.K.; Hafner, G.; Hitzler, W.E.; Wagner, W. Quantification of thrombocyte growth factors in platelet concentrates produced by discontinuous cell separation. Growth Factors, 2002, 20(2), 93-97.
[http://dx.doi.org/10.1080/08977190290031950] [PMID: 12148567]
Sánchez, A.R.; Sheridan, P.J.; Kupp, L.I. Is platelet-rich plasma the perfect enhancement factor? A current review. Int. J. Oral Maxillofac. Implants, 2003, 18(1), 93-103.
[PMID: 12608674]
Doucet, C.; Ernou, I.; Zhang, Y.; Llense, J.R.; Begot, L.; Holy, X.; Lataillade, J.J. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J. Cell. Physiol., 2005, 205(2), 228-236.
[http://dx.doi.org/10.1002/jcp.20391] [PMID: 15887229]
Secunda, R.; Vennila, R.; Mohanashankar, A.M.; Rajasundari, M.; Jeswanth, S.; Surendran, R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology, 2015, 67(5), 793-807.
[http://dx.doi.org/10.1007/s10616-014-9718-z] [PMID: 24798808]
Vellasamy, S.; Sandrasaigaran, P.; Vidyadaran, S.; George, E.; Ramasamy, R. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J. Stem Cells, 2012, 4(6), 53-61.
[http://dx.doi.org/10.4252/wjsc.v4.i6.53] [PMID: 22993662]
Pochampally, R. Colony forming unit assays for MSCs. Methods Mol. Biol., 2008, 449, 83-91.
[PMID: 18370085]
Amable, P.R.; Teixeira, M.V.; Carias, R.B.; Granjeiro, J.M.; Borojevic, R. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PLoS One, 2014, 9(8)e104662
[http://dx.doi.org/10.1371/journal.pone.0104662] [PMID: 25115920]
Horn, P.; Bokermann, G.; Cholewa, D.; Bork, S.; Walenda, T.; Koch, C.; Drescher, W.; Hutschenreuther, G.; Zenke, M.; Ho, A.D.; Wagner, W. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy, 2010, 12(7), 888-898.
[http://dx.doi.org/10.3109/14653249.2010.501788] [PMID: 20662607]
Lee, S.; Cho, H.Y.; Bui, H.T.; Kang, D. The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta. BMC Cell Biol., 2014, 15, 42.
[http://dx.doi.org/10.1186/s12860-014-0042-4] [PMID: 25420887]
Birmingham, E.; Niebur, G.L.; McHugh, P.E.; Shaw, G.; Barry, F.P.; McNamara, L.M. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell. Mater., 2012, 23, 13-27.
[http://dx.doi.org/10.22203/eCM.v023a02] [PMID: 22241610]
Capelli, C.; Pedrini, O.; Cassina, G.; Spinelli, O.; Salmoiraghi, S.; Golay, J.; Rambaldi, A.; Giussani, U.; Introna, M. Frequent occurrence of non-malignant genetic alterations in clinical grade mesenchymal stromal cells expanded for cell therapy protocols. Haematologica, 2014, 99(6), e94-e97.
[http://dx.doi.org/10.3324/haematol.2014.104711] [PMID: 24682511]
Tarte, K.; Gaillard, J.; Lataillade, J.J.; Fouillard, L.; Becker, M.; Mossafa, H.; Tchirkov, A.; Rouard, H.; Henry, C.; Splingard, M.; Dulong, J.; Monnier, D.; Gourmelon, P.; Gorin, N.C.; Sensebé, L. Société Française de Greffe de Moelle et Thérapie Cellulaire. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 2010, 115(8), 1549-1553.
[http://dx.doi.org/10.1182/blood-2009-05-219907] [PMID: 20032501]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 11 November, 2019
Page: [1177 - 1191]
Pages: 15
DOI: 10.2174/1871530319666190226165910
Price: $65

Article Metrics

PDF: 34
PRC: 1