A Suitable Immunosensor for Chloramphenicol Determination: Study of Two Different Competitive Formats

Author(s): Elisabetta Martini, Mauro Tomassetti*, Riccardo Angeloni, Mauro Castrucci, Luigi Campanella

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: A deep analytical study was performed on two different formats based on a “competitive” ELISA-type assay to develop a suitable, sensitive and cheap immune device for chloramphenicol determination that could be advantageously applied to the analysis of real matrices (pharmaceutical, food and environmental).

Methods: To this purpose peroxidase enzyme as a marker and an amperometric electrode for hydrogen peroxide, as a transducer, were used. Through the first competitive format, chloramphenicol determination was based on the competition between chloramphenicol and conjugated with biotin-avidinperoxidase chloramphenicol, both free in solution, for anti-chloramphenicol immobilized in the membrane, while the second competitive format was based on the competition between free in solution chloramphenicol and immobilized in membrane one, for anti-chloramphenicol biotin-avidin-peroxidase conjugated free in solution.

Results: The immunosensor was optimized by comparing the two used different “competitive” working formats on the basis of respective Kaff values, that were found to be about 105 and 104 (mol L-1)-1. The developed immune device displayed good selectivity for Chloramphenicol and LOD (limit of detection) was of the order of 10-9 mol L-1. The immunosensor was also used to test the presence of Chloramphenicol in real matrices such as cow milk, river wastewater and pharmaceutical formulations; recovery tests, using the standard addition method, gave satisfactory results.

Conclusion: The results proved the validity of this immune device based on the competition between chloramphenicol and conjugated chloramphenicol obtained using biotin-avidin-peroxidase format, by which it is possible to carry out the analysis of chloramphenicol in milk and in river waste-waters with a % RSD ≤ 5 and with recovery values between 96% and 103%.

Keywords: Chloramphenicol antibiotic, immunosensor, competitive format method optimization, cow milk, river waste-water, pharmaceutical formulation, analysis.

[1]
Gottlieb, D.; Legator, M. The growth and metabolic behavior of Streptomyces Venezuelae in liquid culture. Mycologia, 1953, 45(4), 507-515.
[http://dx.doi.org/10.1080/00275514.1953.12024290]
[2]
Malhadas, C.; Malheiro, R.; Pereira, J.A.; de Pinho, P.G.; Baptista, P. Antimicrobial activity of endophytic fungi from olive tree leaves. World J. Microbiol. Biotechnol., 2017, 33(3), 46-50.
[http://dx.doi.org/10.1007/s11274-017-2216-7] [PMID: 28168624]
[3]
Duan, Y.; Wang, L.; Gao, Z.; Wang, H.; Zhang, H.; Li, H. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR. Talanta, 2017, 165, 671-676.
[http://dx.doi.org/10.1016/j.talanta.2016.12.090] [PMID: 28153315]
[4]
Cagini, C.; Dragoni, A.; Orsolini, G.; Fiore, T.; Beccasio, A.; Spadea, L.; Moretti, A.; Mencacci, A. Aqueous humor antimicrobial activity: in vitro analysis after topical 0.5% chloramphenicol application. Curr. Eye Res., 2017, 42(6), 847-851.
[http://dx.doi.org/10.1080/02713683.2016.1256414] [PMID: 28085501]
[5]
Karaseva, N.A.; Ermolaeva, T.N. A piezoelectric immunosensor for chloramphenicol detection in food. Talanta, 2012, 93, 44-48.
[http://dx.doi.org/10.1016/j.talanta.2011.12.047] [PMID: 22483874]
[6]
Mottier, P.; Parisod, V.; Gremaud, E.; Guy, P.A.; Stadler, R.H. Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 2003, 994(1-2), 75-84.
[http://dx.doi.org/10.1016/S0021-9673(03)00484-9] [PMID: 12779220]
[7]
Gantverg, A.; Shishani, I.; Hoffman, M. Determination of chloramphenicol in animal tissues and urine liquid chromatography-tandem mass spectrometry versus gas chromatography-mass spectrometry. Anal. Chim. Acta, 2003, 483(1-2), 125-135.
[http://dx.doi.org/10.1016/S0003-2670(02)01566-0]
[8]
Han, J.; Wang, Y.; Yu, C.L.; Yan, Y.S.; Xie, X.Q. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography. Anal. Bioanal. Chem., 2011, 399(3), 1295-1304.
[http://dx.doi.org/10.1007/s00216-010-4376-2] [PMID: 21063686]
[9]
Gikas, E.; Kormali, P.; Tsipi, D.; Tsarbopoulos, A. Development of a rapid and sensitive SPE-LC-ESI MS/MS method for the determination of chloramphenicol in seafood. J. Agric. Food Chem., 2004, 52(5), 1025-1030.
[http://dx.doi.org/10.1021/jf030485l] [PMID: 14995092]
[10]
Forti, A.F.; Campana, G.; Simonella, A.; Multari, M.; Scortichini, G. Determination of chloramphenicol in honey by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2005, 529(1-2), 257-263.
[http://dx.doi.org/10.1016/j.aca.2004.10.059]
[11]
Wang, H.; Zhou, X.J.; Liu, Y.Q.; Yang, H.M.; Guo, Q.L. Simultaneous determination of chloramphenicol and aflatoxin M1 residues in milk by triple quadrupole liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 2011, 59(8), 3532-3538.
[http://dx.doi.org/10.1021/jf2006062] [PMID: 21405145]
[12]
Singer, C.J.; Katz, S.E. Microbiological assay for chloramphenicol residues. J. Assoc. Off. Anal. Chem., 1985, 68(5), 1037-1041.
[http://dx.doi.org/10.1093/jaoac/68.5.1037] [PMID: 3877048]
[13]
Yamato, S.; Sugihara, H.; Shimada, K. An enzymatic assay of chloramphenicol coupled with fluorescence reaction. Chem. Pharm. Bull. (Tokyo), 1990, 38(8), 2290-2292.
[http://dx.doi.org/10.1248/cpb.38.2290] [PMID: 2279294]
[14]
Wang, L.; Zhang, Y.; Gao, X.; Duan, Z.; Wang, S. Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system. J. Agric. Food Chem., 2010, 58(6), 3265-3270.
[http://dx.doi.org/10.1021/jf903940h] [PMID: 20192212]
[15]
Gao, H.; Pan, D.; Gan, N.; Cao, J.; Sun, Y.; Wu, Z.; Zeng, X. An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Mikrochim. Acta, 2015, 182(15-16), 2551-2559.
[http://dx.doi.org/10.1007/s00604-015-1632-3]
[16]
Zhang, S.; Zhang, Z.; Shi, W.; Eremin, S.A.; Shen, J. Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. J. Agric. Food Chem., 2006, 54(16), 5718-5722.
[http://dx.doi.org/10.1021/jf060275j] [PMID: 16881668]
[17]
Park, I.S.; Kim, D.K.; Adanyi, N.; Varadi, M.; Kim, N. Development of a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosens. Bioelectron., 2004, 19(7), 667-674.
[http://dx.doi.org/10.1016/S0956-5663(03)00268-9] [PMID: 14709384]
[18]
Levi, R.; McNiven, S.; Piletsky, S.A.; Cheong, S.H.; Yano, K.; Karube, I. Optical detection of chloramphenicol using molecularly imprinted polymers. Anal. Chem., 1997, 69(11), 2017-2021.
[http://dx.doi.org/10.1021/ac960983b] [PMID: 21639240]
[19]
Tomassetti, M.; Angeloni, R.; Merola, G.; Castrucci, M.; Campanella, L. Catalytic fuel cell used as an analytical tool for methanol and ethanol determination. Application to ethanol determination in alcoholic beverages. Electrochim. Acta, 2016, 191, 1001-1009.
[http://dx.doi.org/10.1016/j.electacta.2015.12.171]
[20]
Tomassetti, M.; Angeloni, R.; Martini, E.; Castrucci, M.; Campanella, L. Enzymatic DMFC device used for direct analysis of chloramphenicol and a comparison with the competitive immunosensor method. Sens. Actuators B Chem., 2018, 255(2), 1545-1552.
[http://dx.doi.org/10.1016/j.snb.2017.08.166]
[21]
Yuan, J.; Oliver, R.; Aguilar, M.I.; Wu, Y. Surface plasmon resonance assay for chloramphenicol. Anal. Chem., 2008, 80(21), 8329-8333.
[http://dx.doi.org/10.1021/ac801301p] [PMID: 18837517]
[22]
Merola, G.; Martini, E.; Tomassetti, M.; Campanella, L. New immunosensor for β-lactam antibiotics determination in river waste waters. Sens. Actuators B Chem., 2014, 199, 301-313.
[http://dx.doi.org/10.1016/j.snb.2014.03.083]
[23]
Campanella, L.; Tomassetti, M.; Sbrilli, R. Benzylpenicillinate liquid membrane ion-selective electrode: preparation and application to real matrix (Drug). Ann Chim-Rome, 1986, 76, 483-497.
[24]
Duk, M.; Lisowska, E.; Wu, J.H.; Wu, A.M. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem., 1994, 221(2), 266-272.
[http://dx.doi.org/10.1006/abio.1994.1410] [PMID: 7810865]
[25]
Rao, S.V.; Anderson, K.W.; Bachas, L.G. Controlled layer-by-layer immobilization of horseradish peroxidase. Biotechnol. Bioeng, 1999, 65(4), 389-396.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19991120)65:4<389::AID-BIT3>3.0.CO;2-V] [PMID: 10506414]
[26]
Green, N.M. A spectrophotometric assay for avidin aand biotin based binding of dyes by avidin. Biochem. J., 1965, 94(3), 23C-24C.
[http://dx.doi.org/10.1042/bj0940023C] [PMID: 14340040]
[27]
Campanella, L.; Lelo, D.; Martini, E.; Tomassetti, M. Immunoglobulin G determination in human serum and milk using an immunosensor of new conception fitted with an enzyme probe as transducer. Sensors (Basel), 2008, 8(10), 6727-6746.
[http://dx.doi.org/10.3390/s8106727] [PMID: 27873895]
[28]
Merola, G.; Martini, E.; Tomassetti, M.; Campanella, L. Simple and suitable immunosensor for β-lactam antibiotics analysis in real matrixes: milk, serum, urine. J. Pharm. Biomed. Anal., 2015, 106, 186-196.
[http://dx.doi.org/10.1016/j.jpba.2014.08.005] [PMID: 25178531]
[29]
Campanella, L.; Martini, E.; Pintore, M.; Tomassetti, M. Determination of lactoferrin and immunoglobulin g in animal milks by new immunosensors. Sensors (Basel), 2009, 9(3), 2202-2221.
[http://dx.doi.org/10.3390/s90302202] [PMID: 22574009]
[30]
Yagisawa, S.; Tanimori, H.; Kitagawa, T. Determination of an antibody-antigen binding constant by enzyme immunoassay and a theory for analysis of competitive binding of two ligands to heterogeneous receptor. J. Biochem., 1986, 99(3), 793-802.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135539] [PMID: 3086297]
[31]
Hamnett, A. Mechanism and electro catalysis in the direct methanol fuel cell. Catal. Today, 1997, 38(4), 445-457.
[http://dx.doi.org/10.1016/S0920-5861(97)00054-0]
[32]
Fernández, F.; Hegnerová, K.; Piliarik, M.; Sanchez-Baeza, F.; Homola, J.; Marco, M.P. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens. Bioelectron., 2010, 26(4), 1231-1238.
[http://dx.doi.org/10.1016/j.bios.2010.06.012] [PMID: 20637590]
[33]
Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin 2010.
[34]
Choi, K.; Kim, Y.; Jung, J.; Kim, M.H.; Kim, C.S.; Kim, N.H.; Park, J. Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environ. Toxicol. Chem., 2008, 27(3), 711-719.
[http://dx.doi.org/10.1897/07-143.1] [PMID: 17944547]
[35]
Tomassetti, M.; Martini, E.; Campanella, L.; Favero, G.; Sanzó, G.; Mazzei, F. A new surface plasmon resonance immunosensor for triazine pesticide determination in bovine milk: a comparison with conventional amperometric and screen-printed immunodevices. Sensors (Basel), 2015, 15(5), 10255-10270.
[http://dx.doi.org/10.3390/s150510255] [PMID: 25942643]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Page: [412 - 423]
Pages: 12
DOI: 10.2174/1573412915666190225163036
Price: $65

Article Metrics

PDF: 15
HTML: 2