Elemental Impurities Determination by ICP-AES / ICP-MS: A review of Theory, Interpretation of Concentration Limits, Analytical Method Development Challenges and Validation Criterion for Pharmaceutical Dosage Forms

Author(s): Lakshmi Narasimha Rao Katakam*, Hassan Y. Aboul-Enein*

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Inductively coupled plasma is a new technique employed for the determination of elemental impurities in pharmaceutical ingredients viz. raw materials, drug substance, and drug product dosage forms. New US FDA and EMA regulations came into effect from Jan 2018 as industry standard requirements for the determination of inorganic elemental impurities using ICP-OES/AES or ICP-MS analytical techniques. The method development was optimized for the determination of the listed elements as per USP <232> <233> elemental impurities-limits and procedures. It also demonstrates the validation of the method and verification/transfer of the method which also provides an insight into the presence of free elemental atomics of the gaseous form of the sample (drug substance, drug product or excipients), thus helping in determining the concentration of the element of interest. Also, the regulatory guidance is very general and does not explain the sample specifications for the individual element concentrations. Thus, this review emphasizes the routine instrumental maintenance, analytical method development challenges, trends in the performance of analytical method validation and verification/ transfer activities of the various pharmaceutical dosage forms outlined with acceptance criterion.

Keywords: Elemental (Inorganic) impurities, instrument maintenance, analytical method validation, ICP-OES/AES vs. ICPMS, permitted daily exposure, pharmaceutical dosage forms.

[1]
Zaidi, K. Heavy metals and Elemental Impurities-Limits / Procedures. United States Pharmacopeia, USP41–NF36, 2018. Vol. 4, pp. 6145-6155. Chapter 231, 232 and 233
[2]
Tyler, G.; Yvon, J. In Horiba Group ICP-OES, ICP-MS and AAS Techniques Compared Technical Note 05, 1-11., https://pdfs.semanticscholar.org/3a99/7ca1a20b00e68003ca0493 7b2035d0d76a5d.pdf [Accessed on: May 5, 2018].
[3]
Zaidi, K. Plasma Spectrochemistry. United States Pharmacopeia, USP41–NF36 2018. Vol.5, p. 6482-6485/7956-7963. Chapter 730/1730.
[4]
Biba, E. Atomic Absorption Spectroscopy. United States Pharmacopeia, USP41–NF36; 2018. Vol.4, pp. 6644-6648. Chapter 852.
[5]
Guideline for Elemental Impurities International Conference on Harmonization, Q3D, 2014. pp. 1-78. Current Step 4 version.
[6]
Guidance for Industry. United States Department of Health and Human Services Q3D Elemental Impurities, 2015, 1-78.
[7]
Liba, A.; Ed McCurdy, E.; Ashdown, R. Agilent Technologies. Proposed new ICH and USP methods for elemental impurities. The application of ICP-MS and ICP-OES for pharmaceutical analysis, 2014. 1-12. Publication No: 5990-9382EN.
[8]
Cardoso, A.H. Impurities in Drug Substance and Drug products. United States Pharmacopeia, USP41–NF36, 2018. Vol.5, pp. 7152-7155. Chapter 1086.
[9]
Monaga, M. Elemental Contaminants in Dietary Supplements United States Pharmacopeia, USP41–NF36;, 2018. Vol.5, pp. 8186-8190. Chapter 2232.
[10]
Bolann, B.J.; Rahil-Khazen, R.; Henriksen, H.; Isrenn, R.; Ulvik, R.J. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory. Scand. J. Clin. Lab. Invest., 2007, 67(4), 353-366.
[http://dx.doi.org/10.1080/00365510601095281] [PMID: 17558890]
[11]
Chen, H.; Liang, P.; Hu, B.; Zhao, L.; Sun, D.H.; Wang, X.R. [The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry in the trace elements and speciation analysis of traditional Chinese Medicine]. Guangpuxue Yu Guangpu Fenxi, 2002, 22(6), 1019-1024.
[PMID: 12914188]
[12]
Li, F.; Liao, Z.; Ding, J.; Qin, Y.; Shuai, Q.; Jiang, Z. [Study on simultaneous determination of multiplex trace elements in Chinese herbal medicine loulu by ICP-AES]. Guangpuxue Yu Guangpu Fenxi, 2000, 20(1), 58-60.
[PMID: 12953450]
[13]
Yoshinaga, J. Inductively coupled plasma atomic emission spectrometry and ICP mass spectrometry. Nihon Rinsho, 1996, 54(1), 202-206.
[PMID: 8587191]
[14]
Shiraishi, K.; McInroy, J.F.; Igarashi, Y. Simultaneous multielement analysis of diet samples by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. J. Nutr. Sci. Vitaminol. (Tokyo), 1990, 36(1), 81-86.
[http://dx.doi.org/10.3177/jnsv.36.81] [PMID: 2362226]
[15]
Gonzálvez, A.; Armenta, S.; Pastor, A.; de la Guardia, M. Searching the most appropriate sample pretreatment for the elemental analysis of wines by inductively coupled plasma-based techniques. J. Agric. Food Chem., 2008, 56(13), 4943-4954.
[http://dx.doi.org/10.1021/jf800286y] [PMID: 18553915]
[16]
Hasegawa, T.; Matsuura, H.; Inagaki, K.; Haraguchi, H. Major-to-ultratrace elements in bone-marrow fluid as determined by ICP-AES and ICP-MS. Anal. Sci., 2003, 19(1), 147-150.
[http://dx.doi.org/10.2116/analsci.19.147] [PMID: 12558039]
[17]
Rahil-Khazen, R.; Henriksen, H.; Bolann, B.J.; Ulvik, R.J. Validation of inductively coupled plasma atomic emission spectrometry technique (ICP-AES) for multi-element analysis of trace elements in human serum. Scand. J. Clin. Lab. Invest., 2000, 60(8), 677-686.
[http://dx.doi.org/10.1080/00365510050216402] [PMID: 11218150]
[18]
Št’astná, M.; Nĕmcová, I.; Zýka, J. ICP-MS for the determination of trace elements in clinical samples. Anal. Lett., 1999, 32, 2531-2543.
[http://dx.doi.org/10.1080/00032719908542986]
[19]
Nunes, J.A.; Batista, B.L.; Rodrigues, J.L.; Caldas, N.M.; Neto, J.A.; Barbosa, F., Jr A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population. J. Toxicol. Environ. Health A, 2010, 73(13-14), 878-887.
[http://dx.doi.org/10.1080/15287391003744807] [PMID: 20563921]
[20]
Chahrour, O.; Malone, J.; Collins, M.; Salmon, V.; Greenan, C.; Bombardier, A.; Ma, Z.; Dunwoody, N. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉. J. Pharm. Biomed. Anal., 2017, 145, 84-90.
[http://dx.doi.org/10.1016/j.jpba.2017.06.045] [PMID: 28654780]
[21]
Van de Wiel, H.J. Determination of elements by ICP-AES and ICP-MS. Horizontal-19, 2003, 1-37.https://www.ecn.nl/docs/society/horizontal/hor_desk_19_icp.pdf
[22]
Helaluddin, A.B.M.; Khalid, R.S.; Alaama, M.; Abbas, S.A. Main analytical techniques used for elemental impurities in various matrices. Trop. J. Pharm. Res., 2016, 15(2), 427-434.
[http://dx.doi.org/10.4314/tjpr.v15i2.29]
[23]
Guidance for Industry. United States Department of Health and Human Services Food and Drug Administration. Procedures and Methods Validation for Drugs and Biologics; Pharmaceutical Quality / CMC, 2015, pp. 1-15.
[24]
Horacio, N. Validation of Compendia Procedures In: United States Pharmacopeia, USP41–NF36; , 2018. Vol.5, pp. 7665-7671. Chapter 1225
[25]
Validation of Analytical Procedures International Conference on Harmonization, Q2 (R1), 2005. pp. 1-13. Current Step 4 version.
[26]
United States Government Publishing Offices Code of Federal Regulations (annual edition),, 2018 [May 5, 2018]; 21 CFR 211.194(a)(2).
[27]
Pappa, H.N. Verification of Compendia Procedures United States Pharmacopeia, USP41–NF36;, 2018. Vol.5, pp. 7671-7672. Chapter 1226.
[28]
General notices and requirements. Testing practices and procedures of United States Pharmacopeia, 2018, Vol. 1(6), 3-9. USP41–NF36.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Page: [392 - 403]
Pages: 12
DOI: 10.2174/1573412915666190225160512
Price: $65

Article Metrics

PDF: 23
HTML: 3