Nanostructured Calcium-based Biomaterials and their Application in Drug Delivery

Author(s): Li-Juan Yi, Jun-Feng Li*, Ming-Guo Ma*, Ying-Jie Zhu*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 31 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

In the past several decades, various types of nanostructured biomaterials have been developed. These nanostructured biomaterials have promising applications in biomedical fields such as bone repair, tissue engineering, drug delivery, gene delivery, antibacterial agents, and bioimaging. Nanostructured biomaterials with high biocompatibility, including calcium phosphate, hydroxyapatite, and calcium silicate, are ideal candidates for drug delivery. This review article is not intended to offer a comprehensive review of the nanostructured biomaterials and their application in drug delivery but rather presents a brief summary of the recent progress in this field. Our recent endeavors in the research of nanostructured biomaterials for drug delivery are also summarized. Special attention is paid to the synthesis and properties of nanostructured biomaterials and their application in drug delivery with the use of typical examples. Finally, we discuss the problems and future perspectives of nanostructured biomaterials in the drug delivery field.

Keywords: Biomaterials, nanostructure, drug delivery, synthesis, properties, applications.

[1]
Frost, S.J.; Mawad, D.; Hook, J.; Lauto, A. Micro and nanostructured biomaterials for sutureless tissue repair. Adv. Healthc. Mater., 2016, 5(4), 401-414.
[http://dx.doi.org/10.1002/adhm.201500589] [PMID: 26725593]
[2]
Cai, Y.R.; Tang, R.K. Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem., 2008, 18, 3775-3787.
[http://dx.doi.org/10.1039/b805407j]
[3]
Doshi, N.; Mitragotri, S. Designer biomaterials for nanomedicine. Adv. Funct. Mater., 2009, 19, 3843-3854.
[http://dx.doi.org/10.1002/adfm.200901538]
[4]
Wei, G.; Ma, P.X. Nanostructured biomaterials for regeneration. Adv. Funct. Mater., 2008, 18(22), 3566-3582.
[http://dx.doi.org/10.1002/adfm.200800662] [PMID: 19946357]
[5]
Satarkar, N.S.; Biswal, D.; Hilt, J.Z. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter, 2010, 6, 2364-2371.
[http://dx.doi.org/10.1039/b925218p]
[6]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[7]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[8]
Zhu, Y.J.; Chen, F. pH-responsive drug-delivery systems. Chem. Asian J., 2015, 10(2), 284-305.
[http://dx.doi.org/10.1002/asia.201402715] [PMID: 25303435]
[9]
Sahdev, P.; Ochyl, L.J.; Moon, J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res., 2014, 31(10), 2563-2582.
[http://dx.doi.org/10.1007/s11095-014-1419-y] [PMID: 24848341]
[10]
Balasundaram, G.; Webster, T.J. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond.), 2006, 1(2), 169-176.
[http://dx.doi.org/10.2217/17435889.1.2.169] [PMID: 17716106]
[11]
Garg, T.; Rath, G.; Goyal, A.K. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J. Drug Target., 2015, 23(3), 202-221.
[http://dx.doi.org/10.3109/1061186X.2014.992899] [PMID: 25539071]
[12]
LeGeros, R.Z. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res., 2002, (395), 81-98.
[http://dx.doi.org/10.1097/00003086-200202000-00009] [PMID: 11937868]
[13]
Luo, Y.; Kirker, K.R.; Prestwich, G.D. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control. Release, 2000, 69(1), 169-184.
[http://dx.doi.org/10.1016/S0168-3659(00)00300-X] [PMID: 11018555]
[14]
Nair, L.S.; Laurencin, C.T. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng. Biotechnol., 2006, 102, 47-90.
[http://dx.doi.org/10.1007/b137240] [PMID: 17089786]
[15]
Pritchard, E.M.; Kaplan, D.L. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin. Drug Deliv., 2011, 8(6), 797-811.
[http://dx.doi.org/10.1517/17425247.2011.568936] [PMID: 21453189]
[16]
Peng, Z.; Miyanji, E.H.; Zhou, Y.; Pardo, J.; Hettiarachchi, S.D.; Li, S.; Blackwelder, P.L.; Skromne, I.; Leblanc, R.M. Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale, 2017, 9(44), 17533-17543.
[http://dx.doi.org/10.1039/C7NR05731H] [PMID: 29110000]
[17]
Uskoković, V.; Uskoković, D.P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 96(1), 152-191.
[http://dx.doi.org/10.1002/jbm.b.31746] [PMID: 21061364]
[18]
Ginebra, M.P.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev., 2012, 64(12), 1090-1110.
[http://dx.doi.org/10.1016/j.addr.2012.01.008] [PMID: 22310160]
[19]
Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater., 2012, 8(4), 1401-1421.
[http://dx.doi.org/10.1016/j.actbio.2011.11.017] [PMID: 22127225]
[20]
Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: a review. J. Control. Release, 2006, 113(2), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.007] [PMID: 16740332]
[21]
Trombetta, R.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng., 2017, 45(1), 23-44.
[http://dx.doi.org/10.1007/s10439-016-1678-3] [PMID: 27324800]
[22]
Dorozhkin, S.V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. Engl., 2002, 41(17), 3130-3146.
[http://dx.doi.org/10.1002/1521-3773(20020902)41:17< 3130:AID-ANIE3130>3.0.CO;2-1] [PMID: 12207375]
[23]
Vallet-Regi, M.; Gonzalez-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem., 2004, 32, 1-31.
[http://dx.doi.org/10.1016/j.progsolidstchem.2004.07.001]
[24]
Ouyang, J.M.; Zheng, H. Progress of biomineralization process of calcium phosphate in bone and teeth. J. Inorg. Mater., 2005, 20, 769-778.
[25]
Paital, S.R.; Dahotre, N.B. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater. Sci. Engineer. R-Reports, 2009, 66(1-3), 1-70.
[http://dx.doi.org/10.1016/j.mser.2009.05.001]]
[26]
Chou, J.; Hao, J.; Ben-Nissan, B.; Milthorpe, B.; Otsuka, M. Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol. Pharm. Bull., 2013, 36(11), 1662-1665.
[http://dx.doi.org/10.1248/bpb.b13-00425] [PMID: 24189408]
[27]
Tang, Q.L.; Zhu, Y.J.; Wu, J.; Chen, F.; Cao, S.W. Calcium phosphate drug nanocarriers with ultrahigh and adjustable drug-loading capacity: one-step synthesis, in situ drug loading and prolonged drug release. Nanomedicine (Lond.), 2011, 7(4), 428-434.
[http://dx.doi.org/10.1016/j.nano.2010.12.005] [PMID: 21215328]
[28]
Zhao, X.Y.; Zhu, Y.J.; Chen, F.; Wu, J. Calcium phosphate nanocarriers dual-loaded with bovine serum albumin and ibuprofen: facile synthesis, sequential drug loading and sustained drug release. Chem. Asian J., 2012, 7(7), 1610-1615.
[http://dx.doi.org/10.1002/asia.201100954] [PMID: 22504936]
[29]
Qi, C.; Zhu, Y.J.; Zhao, X.Y.; Zhao, J.; Chen, F.; Cheng, G.F.; Ruan, Y.J. High surface area carbonate apatite nanorod bundles: surfactant-free sonochemical synthesis and drug loading and release properties. Mater. Res. Bull., 2013, 48, 1536-1540.
[http://dx.doi.org/10.1016/j.materresbull.2012.12.052]
[30]
Zhu, Y.J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 2014, 114(12), 6462-6555.
[http://dx.doi.org/10.1021/cr400366s] [PMID: 24897552]
[31]
Ma, M.G.; Zhu, J.F.; Zhu, Y.J.; Sun, R.C. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials. Chem. Asian J., 2014, 9(9), 2378-2391.
[http://dx.doi.org/10.1002/asia.201402288] [PMID: 24895207]
[32]
Meng, L.Y.; Wang, B.; Ma, M.G.; Lin, K.L. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem., 2016, 1-2, 63-68.
[http://dx.doi.org/10.1016/j.mtchem.2016.11.003]
[33]
Ding, G.J.; Zhu, Y.J.; Qi, C.; Sun, T.W.; Wu, J.; Chen, F. Yolk-shell porous microspheres of calcium phosphate prepared using calcium (L)-lactate and adenosine 5′-triphosphate disodium salt and application in protein/drug delivery. Chemistry, 2015, 21(27), 9868-9876.
[http://dx.doi.org/10.1002/chem.201406547] [PMID: 25982303]
[34]
Zhou, Z.F.; Sun, T.W.; Chen, F.; Zuo, D.Q.; Wang, H.S.; Hua, Y.Q.; Cai, Z.D.; Tan, J. Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation. Biomaterials, 2017, 121, 1-14.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.031] [PMID: 28063979]
[35]
Shyong, Y.J.; Chang, K.C.; Lin, F.H. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf. B Biointerfaces, 2018, 171, 391-397.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.037] [PMID: 30064087]
[36]
Liu, J.F.; Wei, L.; Duolikun, D.; Hou, X.D.; Chen, F.; Liu, J.J.; Zheng, L.P. Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation. RSC Advances, 2018, 8, 25480-25488.
[http://dx.doi.org/10.1039/C8RA03943G]
[37]
Combes, C.; Rey, C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater., 2010, 6(9), 3362-3378.
[http://dx.doi.org/10.1016/j.actbio.2010.02.017] [PMID: 20167295]
[38]
Zhao, J.; Liu, Y.; Sun, W.B.; Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J., 2011, 5, 40.
[http://dx.doi.org/10.1186/1752-153X-5-40] [PMID: 21740535]
[39]
Xu, H.H.K.; Moreau, J.L.; Sun, L.; Chow, L.C. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent. Mater., 2011, 27(8), 762-769.
[http://dx.doi.org/10.1016/j.dental.2011.03.016] [PMID: 21514655]
[40]
Qi, C.; Zhu, Y.J.; Zhao, X.Y.; Lu, B.Q.; Tang, Q.L.; Zhao, J.; Chen, F. Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chemistry, 2013, 19(3), 981-987.
[http://dx.doi.org/10.1002/chem.201202829] [PMID: 23180605]
[41]
Nardecchia, S.; Gutiérrez, M.C.; Serrano, M.C.; Dentini, M.; Barbetta, A.; Ferrer, M.L.; del Monte, F. In situ precipitation of amorphous calcium phosphate and ciprofloxacin crystals during the formation of chitosan hydrogels and its application for drug delivery purposes. Langmuir, 2012, 28(45), 15937-15946.
[http://dx.doi.org/10.1021/la3033435] [PMID: 23088184]
[42]
Pourbaghi-Masouleh, M.; Hosseini, V. Amorphous calcium phosphate nanoparticles could function as a novel cancer therapeutic agent by employing a suitable targeted drug delivery platform. Nanoscale Res. Lett., 2013, 8(1), 449.
[http://dx.doi.org/10.1186/1556-276X-8-449] [PMID: 24172080]
[43]
Ding, G.J.; Zhu, Y.J.; Qi, C.; Lu, B.Q.; Wu, J.; Chen, F. Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. J. Colloid Interface Sci., 2015, 443, 72-79.
[http://dx.doi.org/10.1016/j.jcis.2014.12.004] [PMID: 25535849]
[44]
Ding, G.J.; Zhu, Y.J.; Qi, C.; Lu, B.Q.; Chen, F.; Wu, J. Porous hollow microspheres of amorphous calcium phosphate: soybean lecithin templated microwave-assisted hydrothermal synthesis and application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1823-1830.
[http://dx.doi.org/10.1039/C4TB01862A] [PMID: 32262255]
[45]
Qi, C.; Zhu, Y.J.; Sun, T.W.; Wu, J.; Chen, F. Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate mesoporous microspheres using adenosine 5′-diphosphate and application in pH-responsive drug delivery. Chem. Asian J., 2015, 10(11), 2503-2511.
[http://dx.doi.org/10.1002/asia.201500667] [PMID: 26248600]
[46]
Qi, C.; Zhu, Y.J.; Chen, F. Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery. Chem. Asian J., 2013, 8(1), 88-94.
[http://dx.doi.org/10.1002/asia.201200901] [PMID: 23192854]
[47]
Qi, C.; Zhu, Y.J.; Zhang, Y.G.; Jiang, Y.Y.; Wu, J.; Chen, F. Vesicle-like nanospheres of amorphous calcium phosphate: sonochemical synthesis using the adenosine 5′-triphosphate disodium salt and their application in pH-responsive drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(37), 7347-7354.
[http://dx.doi.org/10.1039/C5TB01340B] [PMID: 32262761]
[48]
Ding, G.J.; Zhu, Y.J.; Cheng, G.F.; Ruan, Y.J.; Qi, C.; Lu, B.Q.; Chen, F.; Wu, J. Porous microspheres of casein/amorphous calcium phosphate nanocomposite: room temperature synthesis and application in drug delivery. Curr. Nanosci., 2016, 12, 70-78.
[http://dx.doi.org/10.2174/1573413711666150730204449]
[49]
Huang, S.; Li, C.; Xiao, Q. Yolk@cage-shell hollow mesoporous monodispersion nanospheres of amorphous calcium phosphate for drug delivery with high loading capacity. Nanoscale Res. Lett., 2017, 12(1), 275.
[http://dx.doi.org/10.1186/s11671-017-2051-7] [PMID: 28410554]
[50]
Yoshikawa, H.; Myoui, A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs, 2005, 8(3), 131-136.
[http://dx.doi.org/10.1007/s10047-005-0292-1] [PMID: 16235028]
[51]
Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater., 2011, 7(7), 2769-2781.
[http://dx.doi.org/10.1016/j.actbio.2011.03.019] [PMID: 21440094]
[52]
Sun, F.; Zhou, H.; Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater., 2011, 7(11), 3813-3828.
[http://dx.doi.org/10.1016/j.actbio.2011.07.002] [PMID: 21784182]
[53]
Ma, M.Y.; Zhu, Y.J.; Li, L.; Cao, S.W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. J. Mater. Chem., 2008, 18, 2722-2727.
[http://dx.doi.org/10.1039/b800389k]
[54]
Wang, K.W.; Zhu, Y.J.; Chen, X.Y.; Zhai, W.Y.; Wang, Q.; Chen, F.; Chang, J.; Duan, Y.R. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: facile preparation and application in anticancer drug cellular delivery. Chem. Asian J., 2010, 5(12), 2477-2482.
[http://dx.doi.org/10.1002/asia.201000463] [PMID: 20865772]
[55]
Qi, C.; Zhu, Y.J.; Lu, B.Q.; Zhao, X.Y.; Zhao, J.; Chen, F. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption. J. Mater. Chem., 2012, 22(42), 22642-22650.
[http://dx.doi.org/10.1039/c2jm35280j]
[56]
Qi, C.; Zhu, Y.J.; Lu, B.Q.; Zhao, X.Y.; Zhao, J.; Chen, F.; Wu, J. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chemistry, 2013, 19(17), 5332-5341.
[http://dx.doi.org/10.1002/chem.201203886] [PMID: 23460360]
[57]
Zhao, X.Y.; Zhu, Y.J.; Qi, C.; Chen, F.; Lu, B.Q.; Zhao, J.; Wu, J. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5′-phosphate as a phosphorus source and application in drug delivery. Chem. Asian J., 2013, 8(6), 1313-1320.
[http://dx.doi.org/10.1002/asia.201300142] [PMID: 23554329]
[58]
Yu, Y.D.; Zhu, Y.J.; Qi, C.; Wu, J. Hydroxyapatite nanorod-assembled hierarchical microflowers: rapid synthesis via microwave hydrothermal transformation of CaHPO4 and their application in protein/drug delivery. Ceram. Int., 2017, 43(8), 6511-6518.
[http://dx.doi.org/10.1016/j.ceramint.2017.02.073]
[59]
Koppala, S.; Swamiappan, S.; Gangarajula, Y.; Xu, L.; Sadasivuni, K.K.; Ponnamma, D.; Rajagopalan, V. Calcium deficiency in hydroxyapatite and its drug delivery applications. Micro & Nano Lett., 2018, 13(4), 562-564.
[http://dx.doi.org/10.1049/mnl.2016.0675]
[60]
Ignjatović, N.L.; Sakač, M.; Kuzminac, I.; Kojić, V.; Marković, S.; Vasiljević-Radović, D.; Wu, V.M.; Uskoković, V.; Uskoković, D.P. Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 6957-6968.
[http://dx.doi.org/10.1039/C8TB01995A] [PMID: 30931125]
[61]
Murata, T.; Kutsuna, T.; Kurohara, K.; Shimizu, K.; Tomeoku, A.; Arai, N. Evaluation of a new hydroxyapatite nanoparticle as a drug delivery system to oral squamous cell carcinoma cells. Anticancer Res., 2018, 38(12), 6715-6720.
[http://dx.doi.org/10.21873/anticanres.13040] [PMID: 30504381]
[62]
Yang, P.; Quan, Z.; Li, C.; Kang, X.; Lian, H.; Lin, J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 29(32), 4341-4347.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.042] [PMID: 18715638]
[63]
Stanic, V.; Dimitrijevic, S.; Antic-Stankovic, J.; Mitric, M.; Jokic, B.; Plecas, I.B.; Raicevic, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci., 2010, 256, 6083-6089.
[http://dx.doi.org/10.1016/j.apsusc.2010.03.124]
[64]
Stanic, V.; Janackovic, D.; Dimitrijevic, S.; Tanaskovic, S.B.; Mitric, M.; Pavlovic, M.S.; Krstic, A.; Jovanovic, D.; Raicevic, S. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl. Surf. Sci., 2011, 257, 4510-4518.
[http://dx.doi.org/10.1016/j.apsusc.2010.12.113]
[65]
Chen, F.; Huang, P.; Zhu, Y.J.; Wu, J.; Zhang, C.L.; Cui, D.X. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials, 2011, 32(34), 9031-9039.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.032] [PMID: 21875748]
[66]
Chen, F.; Zhu, Y.J.; Zhang, K.H.; Wu, J.; Wang, K.W.; Tang, Q.L.; Mo, X.M. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett., 2011, 6(1), 67.
[http://dx.doi.org/10.1186/1556-276X-6-67] [PMID: 21711603]
[67]
Chen, F.; Huang, P.; Zhu, Y.J.; Wu, J.; Cui, D.X. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials, 2012, 33(27), 6447-6455.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.059] [PMID: 22721725]
[68]
Chen, F.; Huang, P.; Qi, C.; Lu, B.Q.; Zhao, X.Y.; Li, C.; Wu, J.; Cui, D.X.; Zhu, Y.J. Multifunctional biodegradable mesoporous microspheres of Eu3+-doped amorphous calcium phosphate: microwave-assisted preparation, pH-sensitive drug release, and bioimaging application. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(41), 7132-7140.
[http://dx.doi.org/10.1039/C4TB01193G] [PMID: 32261791]
[69]
Shang, H.B.; Chen, F.; Wu, J.; Qi, C.; Lu, B.Q.; Chen, X.; Zhu, Y.J. Multifunctional biodegradable terbium-doped calcium phosphate nanoparticles: facile preparation, pH-sensitive drug release and in vitro bioimaging. RSC Advances, 2014, 4, 53122-53129.
[http://dx.doi.org/10.1039/C4RA09902H]
[70]
Yu, W.; Sun, T.W.; Qi, C.; Ding, Z.; Zhao, H.; Chen, F.; Chen, D.; Zhu, Y.J.; Shi, Z.; He, Y. Strontium-doped amorphous calcium phosphate porous microspheres synthesized through a microwave-hydrothermal method using fructose 1,6-bisphosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. ACS Appl. Mater. Interfaces, 2017, 9(4), 3306-3317.
[http://dx.doi.org/10.1021/acsami.6b12325] [PMID: 28068758]
[71]
Lu, Y.R.; Gou, M.Y.; Zhang, L.Y.; Li, L.; Wang, T.T.; Wang, C.G.; Su, Z.M. Facile one-pot synthesis of hollow mesoporous fluorescent Gd2O3:Eu/calcium phosphate nanospheres for simultaneous dual-modal imaging and pH-responsive drug delivery. Dyes Pigm., 2017, 147, 514-522.
[http://dx.doi.org/10.1016/j.dyepig.2017.08.043]
[72]
Yu, W.; Sun, T.W.; Ding, Z.; Qi, C.; Zhao, H.; Chen, F.; Shi, Z.; Zhu, Y.J.; Chen, D.; He, Y. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 1039-1052.
[http://dx.doi.org/10.1039/C6TB02747D] [PMID: 32263882]
[73]
Kim, H.; Mondal, S.; Bharathiraja, S.; Manivasagan, P.; Moorthy, M.S.; Oh, J. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram. Int., 2018, 44, 6062-6071.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.235]
[74]
Jain, S.K.; Awasthi, A.M.; Jain, N.K.; Agrawal, G.P. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. J. Control. Release, 2005, 107(2), 300-309.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.007] [PMID: 16095748]
[75]
Xu, S.; Lin, K.; Wang, Z.; Chang, J.; Wang, L.; Lu, J.; Ning, C. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17), 2588-2596.
[http://dx.doi.org/10.1016/j.biomaterials.2008.03.013] [PMID: 18378303]
[76]
Li, H.; Chang, J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater., 2013, 9(2), 5379-5389.
[http://dx.doi.org/10.1016/j.actbio.2012.10.019] [PMID: 23088882]
[77]
Zhu, Y.J.; Sham, T.K. The potential of calcium silicate hydrate as a carrier of ibuprofen. Expert Opin. Drug Deliv., 2014, 11(9), 1337-1342.
[http://dx.doi.org/10.1517/17425247.2014.923399] [PMID: 24857363]
[78]
Wu, J.; Zhu, Y.J.; Cao, S.W.; Chen, F. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity. Adv. Mater., 2010, 22(6), 749-753.
[http://dx.doi.org/10.1002/adma.200903020] [PMID: 20217783]
[79]
Wu, J.; Zhu, Y.J.; Chen, F. Calcium silicate hydrate ultrathin nanosheets with large specific surface areas: synthesis, crystallization, layered self-assembly and applications as excellent adsorbents for drug, protein and metal ions. Small, 2013, 9, 2911-2925.
[http://dx.doi.org/10.1002/smll.201300097] [PMID: 23585365]
[80]
Guo, X.; Wu, J.; Yiu, Y.M.; Hu, Y.; Zhu, Y.J.; Sham, T.K. Drug-nanocarrier interaction-tracking the local structure of calcium silicate upon ibuprofen loading with X-ray absorption near edge structure (XANES). Phys. Chem. Chem. Phys., 2013, 15(36), 15033-15040.
[http://dx.doi.org/10.1039/c3cp50699a] [PMID: 23925643]
[81]
Guo, X.; Wang, Z.; Wu, J.; Wang, J.; Zhu, Y.J.; Sham, T.K. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate-an X-ray spectromicroscopy study. Nanoscale, 2015, 7(15), 6767-6773.
[http://dx.doi.org/10.1039/C4NR07471H] [PMID: 25804516]
[82]
Guo, X.; Wang, Z.; Wu, J.; Yiu, Y.M.; Hu, Y.; Zhu, Y.J.; Sham, T.K. Tracking drug loading capacities of calcium silicate hydrate carrier: a comparative X-ray absorption near edge structures study. J. Phys. Chem. B, 2015, 119(31), 10052-10059.
[http://dx.doi.org/10.1021/acs.jpcb.5b04115] [PMID: 26162602]
[83]
Guo, X.X.; Wang, Z.Q.; Wu, J.; Hu, Y.F.; Wang, J.; Zhu, Y.J.; Sham, T.K. Tracking the transformations of mesoporous microspheres of calcium silicate hydrate at the nanoscale upon ibuprofen release: a XANES and STXM study. CrystEngComm, 2015, 17, 4117-4124.
[http://dx.doi.org/10.1039/C5CE00500K]
[84]
Ignjatović, N.; Tomić, S.; Dakić, M.; Miljković, M.; Plavsić, M.; Uskoković, D. Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials, 1999, 20(9), 809-816.
[http://dx.doi.org/10.1016/S0142-9612(98)00234-8] [PMID: 10226707]
[85]
Azevedo, M.C.; Reis, R.L.; Claase, M.B.; Grijpma, D.W.; Feijen, J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J. Mater. Sci. Mater. Med., 2003, 14(2), 103-107.
[http://dx.doi.org/10.1023/A:1022051326282] [PMID: 15348480]
[86]
Pérez, R.A.; Won, J.E.; Knowles, J.C.; Kim, H.W. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev., 2013, 65(4), 471-496.
[http://dx.doi.org/10.1016/j.addr.2012.03.009] [PMID: 22465488]
[87]
Meng, L.Y.; Wang, B.; Ma, M.G.; Zhu, J.F. Cellulose-based nanocarriers as platforms for cancer therapy. Curr. Pharm. Des., 2017, 23(35), 5292-5300.
[http://dx.doi.org/10.2174/1381612823666171031111950] [PMID: 29086678]
[88]
Tang, Q.L.; Zhu, Y.J.; Duan, Y.R.; Wang, Q.; Wang, K.W.; Cao, S.W.; Chen, F.; Wu, J. Porous nanocomposites of PEG-PLA/calcium phosphate: room-temperature synthesis and its application in drug delivery. Dalton Trans., 2010, 39(18), 4435-4439.
[http://dx.doi.org/10.1039/b925779a] [PMID: 20422101]
[89]
Wang, K.W.; Zhu, Y.J.; Chen, F.; Cao, S.W. Calcium phosphate/block copolymer hybrid porous nanospheres: preparation and application in drug delivery. Mater. Lett., 2010, 64(21), 2299-2301.
[http://dx.doi.org/10.1016/j.matlet.2010.07.060]
[90]
Zhao, X.Y.; Zhu, Y.J.; Chen, F.; Lu, B.Q.; Qi, C.; Zhao, J.; Wu, J. Calcium phosphate hybrid nanoparticles: self-assembly formation, characterization, and application as an anticancer drug nanocarrier. Chem. Asian J., 2013, 8(6), 1306-1312.
[http://dx.doi.org/10.1002/asia.201300083] [PMID: 23589508]
[91]
Wu, J.; Zhu, Y.J.; Chen, F.; Zhao, X.Y.; Zhao, J.; Qi, C. Amorphous calcium silicate hydrate/block copolymer hybrid nanoparticles: synthesis and application as drug carriers. Dalton Trans., 2013, 42(19), 7032-7040.
[http://dx.doi.org/10.1039/c3dt50143d] [PMID: 23511873]
[92]
Gil, S.; Mano, J.F. Magnetic composite biomaterials for tissue engineering. Biomater. Sci., 2014, 2(6), 812-818.
[http://dx.doi.org/10.1039/C4BM00041B] [PMID: 32481815]
[93]
Diez-Pascual, A.M.; Diez-Vicente, A.L. Magnetic Fe3O4@poly(propylene fumarate-co- ethylene glycol) core-shell biomaterials. RSC Advances, 2017, 7, 10221-10234.
[http://dx.doi.org/10.1039/C6RA27446C]
[94]
Ma, M.G.; Zhu, J.F.; Li, S.M.; Jia, N.; Sun, R.C. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability. Mater. Sci. Eng. C, 2012, 32(6), 1511-1517.
[http://dx.doi.org/10.1016/j.msec.2012.04.033] [PMID: 24364953]
[95]
Chen, F.; Li, C.; Zhu, Y.J.; Zhao, X.Y.; Lu, B.Q.; Wu, J. Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe3O4 nanoparticles: microwave-assisted rapid synthesis and application in pH-responsive drug release. Biomater. Sci., 2013, 1(10), 1074-1081.
[http://dx.doi.org/10.1039/c3bm60086f] [PMID: 32481873]
[96]
Lu, B.Q.; Zhu, Y.J.; Ao, H.Y.; Qi, C.; Chen, F. Synthesis and characterization of magnetic iron oxide/calcium silicate mesoporous nanocomposites as a promising vehicle for drug delivery. ACS Appl. Mater. Interfaces, 2012, 4(12), 6969-6974.
[http://dx.doi.org/10.1021/am3021284] [PMID: 23210766]
[97]
Lu, B.Q.; Zhu, Y.J.; Cheng, G.F.; Ruan, Y.J. Synthesis and application in drug delivery of hollow-core-double-shell magnetic iron oxide/silica/calcium silicate nanocomposites. Mater. Lett., 2013, 104, 53-56.
[http://dx.doi.org/10.1016/j.matlet.2013.04.005]
[98]
Lu, B.Q.; Zhu, Y.J.; Chen, F.; Qi, C.; Zhao, X.Y.; Zhao, J. Core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate: synthesis using adenosine 5′-triphosphate and application in pH-responsive drug delivery. Chem. Asian J., 2014, 9(10), 2908-2914.
[http://dx.doi.org/10.1002/asia.201402319] [PMID: 25100227]
[99]
Li, G.; Chen, Y.; Zhang, L.; Zhang, M.; Li, S.; Li, L.; Wang, T.; Wang, C. Facile Approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk-shell nanoparticles for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-Micro Lett., 2018, 10(1), 7.
[http://dx.doi.org/10.1007/s40820-017-0155-3] [PMID: 30393656]
[100]
Zhang, Y.G.; Zhu, Y.J.; Chen, F.; Sun, T.W. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(21), 3898-3906.
[http://dx.doi.org/10.1039/C6TB02576E] [PMID: 32264251]
[101]
Yao, C.; Zhu, J.; Xie, A.; Shen, Y.; Li, H.; Zheng, B.; Wei, Y. Graphene oxide and creatine phosphate disodium dual template-directed synthesis of GO/hydroxyapatite and its application in drug delivery. Mater. Sci. Eng. C, 2017, 73, 709-715.
[http://dx.doi.org/10.1016/j.msec.2016.11.083] [PMID: 28183664]
[102]
Sarkar, C.; Chowdhuri, A.R.; Kumar, A.; Laha, D.; Garai, S.; Chakraborty, J.; Sahu, S.K. One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydr. Polym., 2018, 181, 710-718.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.091] [PMID: 29254027]
[103]
Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C, 2018, 83, 90-98.
[http://dx.doi.org/10.1016/j.msec.2017.11.012] [PMID: 29208292]
[104]
Pajchel, L.; Kolodziejski, W. Synthesis and characterization of MCM-48/hydroxyapatite composites for drug delivery: ibuprofen incorporation, location and release studies. Mater. Sci. Eng. C, 2018, 91, 734-742.
[http://dx.doi.org/10.1016/j.msec.2018.06.028] [PMID: 30033308]
[105]
Thenmozhi, R.; Moorthy, M.S.; Sivaguru, J.; Manivasagan, P.; Bharathiraja, S.; Oh, Y.O.; Oh, J. Synthesis of silica-coated magnetic hydroxyapatite composites for drug delivery applications. J. Nanosci. Nanotechnol., 2019, 19(4), 1951-1958.
[http://dx.doi.org/10.1166/jnn.2019.15399] [PMID: 30486935]
[106]
Ren, Y.; Babaie, E.; Lin, B.; Bhaduri, S.B. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy. Biomed. Mater., 2017, 12(4)045026
[http://dx.doi.org/10.1088/1748-605X/aa78c0] [PMID: 28604359]
[107]
Qi, C.; Zhu, Y.J.; Lu, B.Q.; Ding, G.J.; Sun, T.W.; Chen, F.; Wu, J. Microwave-assisted rapid synthesis of magnesium phosphate hydrate nanosheets and their application in drug delivery and protein adsorption. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(48), 8576-8586.
[http://dx.doi.org/10.1039/C4TB01473A] [PMID: 32262216]
[108]
Qi, C.; Zhu, Y.J.; Chen, F.; Wu, J. Porous microspheres of magnesium whitlockite and amorphous calcium magnesium phosphate: microwave-assisted rapid synthesis using creatine phosphate, and application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7775-7786.
[http://dx.doi.org/10.1039/C5TB01106J] [PMID: 32264586]
[109]
Sun, T.W.; Zhu, Y.J.; Qi, C.; Chen, F.; Jiang, Y.Y.; Zhang, Y.G.; Wu, J.; Wu, C. Templated solvothermal synthesis of magnesium silicate hollow nanospheres with ultrahigh specific surface area and their application in high-performance protein adsorption and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(19), 3257-3268.
[http://dx.doi.org/10.1039/C5TB02632F] [PMID: 32263261]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 31
Year: 2020
Published on: 10 September, 2020
Page: [5189 - 5212]
Pages: 24
DOI: 10.2174/0929867326666190222193357
Price: $65

Article Metrics

PDF: 25
HTML: 1