Genotype Driven Therapy for Non-Small Cell Lung Cancer: Resistance, Pan Inhibitors and Immunotherapy

Author(s): Sitanshu S. Singh, Achyut Dahal, Leeza Shrestha, Seetharama D. Jois*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 32 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.

Keywords: Non-small Cell Lung Cancer (NSCLC), EGFR, HER2, KRAS, ALK, resistance, Tyrosine Kinase Inhibitors (TKIs), PD-1-PD-L1.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Milano, M.T.; Strawderman, R.L.; Venigalla, S.; Ng, K.; Travis, L.B. Non-small-cell lung cancer after breast cancer: a population-based study of clinicopathologic characteristics and survival outcomes in 3529 women. J. Thorac. Oncol., 2014, 9(8), 1081-1090.
[http://dx.doi.org/10.1097/JTO.0000000000000213] [PMID: 25157761]
[4]
Kenfield, S.A.; Wei, E.K.; Stampfer, M.J.; Rosner, B.A.; Colditz, G.A. Comparison of aspects of smoking among the four histological types of lung cancer. Tob. Control, 2008, 17(3), 198-204.
[http://dx.doi.org/10.1136/tc.2007.022582] [PMID: 18390646]
[5]
Sun, S.; Schiller, J.H.; Gazdar, A.F. Lung cancer in never smokers--a different disease. Nat. Rev. Cancer, 2007, 7(10), 778-790.
[http://dx.doi.org/10.1038/nrc2190] [PMID: 17882278]
[6]
Vineis, P.; Airoldi, L.; Veglia, F.; Olgiati, L.; Pastorelli, R.; Autrup, H.; Dunning, A.; Garte, S.; Gormally, E.; Hainaut, P.; Malaveille, C.; Matullo, G.; Peluso, M.; Overvad, K.; Tjonneland, A.; Clavel-Chapelon, F.; Boeing, H.; Krogh, V.; Palli, D.; Panico, S.; Tumino, R.; Bueno-De-Mesquita, B.; Peeters, P.; Berglund, G.; Hallmans, G.; Saracci, R.; Riboli, E. Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study. BMJ, 2005, 330(7486), 277.
[http://dx.doi.org/10.1136/bmj.38327.648472.82] [PMID: 15681570]
[7]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[8]
Calikusu, Z.; Yildirim, Y.; Akcali, Z.; Sakalli, H.; Bal, N.; Unal, I.; Ozyilkan, O. The effect of HER2 expression on cisplatin-based chemotherapy in advanced non-small cell lung cancer patients. J. Exp. Clin. Cancer Res., 2009, 28, 97.
[http://dx.doi.org/10.1186/1756-9966-28-97] [PMID: 19575783]
[9]
Rothschild, S.I. Targeted therapies in non-small cell lung cancer-beyond EGFR and ALK. Cancers (Basel), 2015, 7(2), 930-949.
[http://dx.doi.org/10.3390/cancers7020816] [PMID: 26018876]
[10]
Pao, W.; Hutchinson, K.E. Chipping away at the lung cancer genome. Nat. Med., 2012, 18(3), 349-351.
[http://dx.doi.org/10.1038/nm.2697] [PMID: 22395697]
[11]
Somasundaram, A.; Socinski, M.A.; Burns, T.F. Personalized treatment of EGFR mutant and ALK-positive patients in NSCLC. Expert Opin. Pharmacother., 2014, 15(18), 2693-2708.
[http://dx.doi.org/10.1517/14656566.2014.971013] [PMID: 25381900]
[12]
Roberts, P.J.; Stinchcombe, T.E.; Der, C.J.; Socinski, M.A. Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy? J. Clin. Oncol., 2010, 28(31), 4769-4777.
[http://dx.doi.org/10.1200/JCO.2009.27.4365] [PMID: 20921461]
[13]
Ladanyi, M.; Pao, W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod. Pathol., 2008, 21(Suppl. 2), S16-S22.
[http://dx.doi.org/10.1038/modpathol.3801018] [PMID: 18437168]
[14]
Boolell, V.; Alamgeer, M.; Watkins, D.N.; Ganju, V. The evolution of therapies in non-small cell lung cancer. Cancers (Basel), 2015, 7(3), 1815-1846.
[http://dx.doi.org/10.3390/cancers7030864] [PMID: 26371045]
[15]
Bahce, I.; Yaqub, M.; Smit, E.F.; Lammertsma, A.A.; van Dongen, G.A.; Hendrikse, N.H. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET. Lung Cancer, 2017, 107, 1-13.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.025] [PMID: 27319335]
[16]
Tetsu, O.; Hangauer, M.J.; Phuchareon, J.; Eisele, D.W.; McCormick, F. Drug resistance to EGFR inhibitors in lung cancer. Chemotherapy, 2016, 61(5), 223-235.
[http://dx.doi.org/10.1159/000443368] [PMID: 26910730]
[17]
Chong, C.R.; Jänne, P.A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med., 2013, 19(11), 1389-1400.
[http://dx.doi.org/10.1038/nm.3388] [PMID: 24202392]
[18]
Tanizaki, J.; Okamoto, I.; Sakai, K.; Nakagawa, K. Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br. J. Cancer, 2011, 105(6), 807-813.
[http://dx.doi.org/10.1038/bjc.2011.322] [PMID: 21847121]
[19]
Iida, M.; Bahrar, H.; Brand, T.M.; Pearson, H.E.; Coan, J.P.; Orbuch, R.A.; Flanigan, B.G.; Swick, A.D.; Prabakaran, P.J.; Lantto, J.; Horak, I.D.; Kragh, M.; Salgia, R.; Kimple, R.J.; Wheeler, D.L. Targeting the HER family with pan-HER effectively overcomes resistance to cetuximab. Mol. Cancer Ther., 2016, 15(9), 2175-2186.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0012] [PMID: 27422810]
[20]
Golding, B.; Luu, A.; Jones, R.; Viloria-Petit, A.M. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol. Cancer, 2018, 17(1), 52.
[http://dx.doi.org/10.1186/s12943-018-0810-4] [PMID: 29455675]
[21]
Köhler, J. Second-Line Treatment of NSCLC-The Pan-ErbB inhibitor afatinib in times of shifting paradigms. Second-line treatment of NSCLC-the pan-ErbB Inhibitor afatinib in times of shifting paradigms. Front. Med. (Lausanne), 2017, 4, 9.
[http://dx.doi.org/10.3389/fmed.2017.00009] [PMID: 28243590]
[22]
Landi, L.; Cappuzzo, F. HER2 and lung cancer. Expert Rev. Anticancer Ther., 2013, 13(10), 1219-1228.
[http://dx.doi.org/10.1586/14737140.2013.846830] [PMID: 24134423]
[23]
Yousefi, H.; Yuan, J.; Keshavarz-Fathi, M.; Murphy, J.F.; Rezaei, N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol., 2017, 13(10), 1001-1015.
[http://dx.doi.org/10.1080/1744666X.2017.1366315] [PMID: 28795649]
[24]
Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181.
[http://dx.doi.org/10.1038/nrc2088] [PMID: 17318210]
[25]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[26]
Kanthala, S.; Pallerla, S.; Jois, S. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors. Future Oncol., 2015, 11(5), 865-878.
[http://dx.doi.org/10.2217/fon.14.312] [PMID: 25757687]
[27]
Ferguson, K.M. Structure-based view of epidermal growth factor receptor regulation. Annu. Rev. Biophys., 2008, 37, 353-373.
[http://dx.doi.org/10.1146/annurev.biophys.37.032807.125829] [PMID: 18573086]
[28]
Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat. Rev. Clin. Oncol., 2011, 9(1), 16-32.
[http://dx.doi.org/10.1038/nrclinonc.2011.177] [PMID: 22124364]
[29]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[30]
Lee-Hoeflich, S.T.; Crocker, L.; Yao, E.; Pham, T.; Munroe, X.; Hoeflich, K.P.; Sliwkowski, M.X.; Stern, H.M. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res., 2008, 68(14), 5878-5887.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0380] [PMID: 18632642]
[31]
Shankaran, H.; Wiley, H.S.; Resat, H. Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response. Biophys. J., 2006, 90(11), 3993-4009.
[http://dx.doi.org/10.1529/biophysj.105.080580] [PMID: 16533841]
[32]
Tao, R.H.; Maruyama, I.N.; All, E.G.F. All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. J. Cell Sci., 2008, 121(Pt 19), 3207-3217.
[http://dx.doi.org/10.1242/jcs.033399] [PMID: 18782861]
[33]
Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer, 2010, 10(11), 760-774.
[http://dx.doi.org/10.1038/nrc2947] [PMID: 20966921]
[34]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11(8), 473-481.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[35]
Li, J.; Deng, H.; Hu, M.; Fang, Y.; Vaughn, A.; Cai, X.; Xu, L.; Wan, W.; Li, Z.; Chen, S.; Yang, X.; Wu, S.; Xiao, J. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR. Oncotarget, 2015, 6(9), 6749-6761.
[http://dx.doi.org/10.18632/oncotarget.3155] [PMID: 25730907]
[36]
Chi, F.; Wu, R.; Jin, X.; Jiang, M.; Zhu, X. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway. OncoTargets Ther., 2016, 9, 2709-2716.
[PMID: 27217781]
[37]
Peters, S.; Zimmermann, S. Targeted therapy in NSCLC driven by HER2 insertions. Transl. Lung Cancer Res., 2014, 3(2), 84-88.
[PMID: 25806285]
[38]
Garrido-Castro, A.C.; Felip, E. HER2 driven non-small cell lung cancer (NSCLC): potential therapeutic approaches. Transl. Lung Cancer Res., 2013, 2(2), 122-127.
[PMID: 25806223]
[39]
Spector, N.L.; Blackwell, K.L. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol., 2009, 27(34), 5838-5847.
[http://dx.doi.org/10.1200/JCO.2009.22.1507] [PMID: 19884552]
[40]
Mazières, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M.; Besse, B.; Blons, H.; Mansuet-Lupo, A.; Urban, T.; Moro-Sibilot, D.; Dansin, E.; Chouaid, C.; Wislez, M.; Diebold, J.; Felip, E.; Rouquette, I.; Milia, J.D.; Gautschi, O. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol., 2013, 31(16), 1997-2003.
[http://dx.doi.org/10.1200/JCO.2012.45.6095] [PMID: 23610105]
[41]
Singh, S.S.; Jois, S.D. Homo- and heterodimerization of proteins in cell signaling: inhibition and drug design. Adv. Protein Chem. Struct. Biol., 2018, 111, 1-59.
[http://dx.doi.org/10.1016/bs.apcsb.2017.08.003] [PMID: 29459028]
[42]
Wang, S.E.; Narasanna, A.; Perez-Torres, M.; Xiang, B.; Wu, F.Y.; Yang, S.; Carpenter, G.; Gazdar, A.F.; Muthuswamy, S.K.; Arteaga, C.L. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell, 2006, 10(1), 25-38.
[http://dx.doi.org/10.1016/j.ccr.2006.05.023] [PMID: 16843263]
[43]
Ricciardi, G.R.; Russo, A.; Franchina, T.; Ferraro, G.; Zanghì, M.; Picone, A.; Scimone, A.; Adamo, V. NSCLC and HER2: between lights and shadows. J. Thorac. Oncol., 2014, 9(12), 1750-1762.
[http://dx.doi.org/10.1097/JTO.0000000000000379] [PMID: 25247338]
[44]
Brabender, J.; Danenberg, K.D.; Metzger, R.; Schneider, P.M.; Park, J.; Salonga, D.; Hölscher, A.H.; Danenberg, P.V. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin. Cancer Res., 2001, 7(7), 1850-1855.
[PMID: 11448895]
[45]
Mar, N.; Vredenburgh, J.J.; Wasser, J.S. Targeting HER2 in the treatment of non-small cell lung cancer. Lung Cancer, 2015, 87(3), 220-225.
[http://dx.doi.org/10.1016/j.lungcan.2014.12.018] [PMID: 25601485]
[46]
Heinmöller, P.; Gross, C.; Beyser, K.; Schmidtgen, C.; Maass, G.; Pedrocchi, M.; Rüschoff, J. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin. Cancer Res., 2003, 9(14), 5238-5243.
[PMID: 14614004]
[47]
Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J. Thorac. Oncol., 2016, 11(3), 414-419.
[http://dx.doi.org/10.1016/j.jtho.2015.10.025] [PMID: 26723242]
[48]
Fichter, C.D.; Przypadlo, C.M.; Buck, A.; Herbener, N.; Riedel, B.; Schäfer, L.; Nakagawa, H.; Walch, A.; Reinheckel, T.; Werner, M.; Lassmann, S. A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. J. Pathol., 2017, 243(4), 481-495.
[http://dx.doi.org/10.1002/path.4987] [PMID: 28940194]
[49]
Arcila, M.E.; Chaft, J.E.; Nafa, K.; Roy-Chowdhuri, S.; Lau, C.; Zaidinski, M.; Paik, P.K.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Cancer Res., 2012, 18(18), 4910-4918.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0912] [PMID: 22761469]
[50]
Takezawa, K.; Pirazzoli, V.; Arcila, M.E.; Nebhan, C.A.; Song, X.; de Stanchina, E.; Ohashi, K.; Janjigian, Y.Y.; Spitzler, P.J.; Melnick, M.A.; Riely, G.J.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Politi, K.; Pao, W. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov., 2012, 2(10), 922-933.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0108] [PMID: 22956644]
[51]
Serra, V.; Vivancos, A.; Puente, X.S.; Felip, E.; Silberschmidt, D.; Caratù, G.; Parra, J.L.; De Mattos-Arruda, L.; Grueso, J.; Hernández-Losa, J.; Arribas, J.; Prudkin, L.; Nuciforo, P.; Scaltriti, M.; Seoane, J.; Baselga, J. Clinical response to a lapatinib-based therapy for a Li-Fraumeni syndrome patient with a novel HER2V659E mutation. Cancer Discov., 2013, 3(11), 1238-1244.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0132] [PMID: 23950206]
[52]
Ou, S.I.; Schrock, A.B.; Bocharov, E.V.; Klempner, S.J.; Haddad, C.K.; Steinecker, G.; Johnson, M.; Gitlitz, B.J.; Chung, J.; Campregher, P.V.; Ross, J.S.; Stephens, P.J.; Miller, V.A.; Suh, J.H.; Ali, S.M.; Velcheti, V. HER2 transmembrane domain (TMD) mutations (V659/G660) that stabilize homo- and heterodimerization are rare oncogenic drivers in lung adenocarcinoma that respond to afatinib. J. Thorac. Oncol., 2017, 12(3), 446-457.
[http://dx.doi.org/10.1016/j.jtho.2016.11.2224] [PMID: 27903463]
[53]
Iida, M.; Brand, T.M.; Starr, M.M.; Huppert, E.J.; Luthar, N.; Bahrar, H.; Coan, J.P.; Pearson, H.E.; Salgia, R.; Wheeler, D.L. Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy. Mol. Cancer, 2014, 13, 242.
[http://dx.doi.org/10.1186/1476-4598-13-242] [PMID: 25344208]
[54]
Wheeler, D.L.; Huang, S.; Kruser, T.J.; Nechrebecki, M.M.; Armstrong, E.A.; Benavente, S.; Gondi, V.; Hsu, K.T.; Harari, P.M. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008, 27(28), 3944-3956.
[http://dx.doi.org/10.1038/onc.2008.19] [PMID: 18297114]
[55]
Ou, S.H. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit. Rev. Oncol. Hematol., 2012, 83(3), 407-421.
[http://dx.doi.org/10.1016/j.critrevonc.2011.11.010] [PMID: 22257651]
[56]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; Pazdur, R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist, 2003, 8(4), 303-306.
[http://dx.doi.org/10.1634/theoncologist.8-4-303] [PMID: 12897327]
[57]
Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; van Kooten, M.; Dediu, M.; Findlay, B.; Tu, D.; Johnston, D.; Bezjak, A.; Clark, G.; Santabarbara, P.; Seymour, L. National Cancer Institute of Canada Clinical Trials, G. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med., 2005, 353(2), 123-132.
[http://dx.doi.org/10.1056/NEJMoa050753] [PMID: 16014882]
[58]
Ke, E.E.; Wu, Y.L. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends Pharmacol. Sci., 2016, 37(11), 887-903.
[http://dx.doi.org/10.1016/j.tips.2016.09.003] [PMID: 27717507]
[59]
Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med. (Lausanne), 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076] [PMID: 28149837]
[60]
Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; Lu, S.; Zhang, L.; Hu, C.; Hu, C.; Luo, Y.; Chen, L.; Ye, M.; Huang, J.; Zhi, X.; Zhang, Y.; Xiu, Q.; Ma, J.; Zhang, L.; You, C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol., 2011, 12(8), 735-742.
[http://dx.doi.org/10.1016/S1470-2045(11)70184-X] [PMID: 21783417]
[61]
Gatzemeier, U.; Pluzanska, A.; Szczesna, A.; Kaukel, E.; Roubec, J.; De Rosa, F.; Milanowski, J.; Karnicka-Mlodkowski, H.; Pesek, M.; Serwatowski, P.; Ramlau, R.; Janaskova, T.; Vansteenkiste, J.; Strausz, J.; Manikhas, G.M.; Von Pawel, J. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva lung cancer investigation trial. J. Clin. Oncol., 2007, 25(12), 1545-1552.
[http://dx.doi.org/10.1200/JCO.2005.05.1474] [PMID: 17442998]
[62]
Liao, B.C.; Lin, C.C.; Yang, J.C. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol., 2015, 27(2), 94-101.
[http://dx.doi.org/10.1097/CCO.0000000000000164] [PMID: 25611025]
[63]
Engelman, J.A.; Zejnullahu, K.; Gale, C.M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K.K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885] [PMID: 18089823]
[64]
Marquez-Medina, D.; Popat, S. Afatinib: a second-generation EGF receptor and ErbB tyrosine kinase inhibitor for the treatment of advanced non-small-cell lung cancer. Future Oncol., 2015, 11(18), 2525-2540.
[http://dx.doi.org/10.2217/fon.15.183] [PMID: 26314834]
[65]
Stasi, I.; Cappuzzo, F. Second generation tyrosine kinase inhibitors for the treatment of metastatic non-small-cell lung cancer. Transl. Respir. Med., 2014, 2, 2.
[http://dx.doi.org/10.1186/2213-0802-2-2] [PMID: 25505694]
[66]
Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(1), i10-i19.
[67]
Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther., 2012, 343(2), 342-350.
[http://dx.doi.org/10.1124/jpet.112.197756] [PMID: 22888144]
[68]
Suzawa, K.; Toyooka, S.; Sakaguchi, M.; Morita, M.; Yamamoto, H.; Tomida, S.; Ohtsuka, T.; Watanabe, M.; Hashida, S.; Maki, Y.; Soh, J.; Asano, H.; Tsukuda, K.; Miyoshi, S. Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancers harboring HER2 oncogene alterations. Cancer Sci., 2016, 107(1), 45-52.
[http://dx.doi.org/10.1111/cas.12845] [PMID: 26545934]
[69]
De Grève, J.; Teugels, E.; Geers, C.; Decoster, L.; Galdermans, D.; De Mey, J.; Everaert, H.; Umelo, I.; In’t Veld, P.; Schallier, D. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer, 2012, 76(1), 123-127.
[http://dx.doi.org/10.1016/j.lungcan.2012.01.008] [PMID: 22325357]
[70]
Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; Xu, C.R.; Massey, D.; Kim, M.; Shi, Y.; Geater, S.L. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol., 2014, 15(2), 213-222.
[http://dx.doi.org/10.1016/S1470-2045(13)70604-1] [PMID: 24439929]
[71]
Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[72]
Soria, J.C.; Felip, E.; Cobo, M.; Lu, S.; Syrigos, K.; Lee, K.H.; Göker, E.; Georgoulias, V.; Li, W.; Isla, D.; Guclu, S.Z.; Morabito, A.; Min, Y.J.; Ardizzoni, A.; Gadgeel, S.M.; Wang, B.; Chand, V.K.; Goss, G.D. LUX-Lung 8 Investigators. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol., 2015, 16(8), 897-907.
[http://dx.doi.org/10.1016/S1470-2045(15)00006-6] [PMID: 26156651]
[73]
Sequist, L.V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; Ananthakrishnan, R.; Quinn, S.; Soria, J.C. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(18), 3076-3083.
[http://dx.doi.org/10.1200/JCO.2009.27.9414] [PMID: 20479403]
[74]
Jänne, P.A.; Boss, D.S.; Camidge, D.R.; Britten, C.D.; Engelman, J.A.; Garon, E.B.; Guo, F.; Wong, S.; Liang, J.; Letrent, S.; Millham, R.; Taylor, I.; Eckhardt, S.G.; Schellens, J.H. Phase I dose-escalation study of the pan-HER inhibitor, PF299804, in patients with advanced malignant solid tumors. Clin. Cancer Res., 2011, 17(5), 1131-1139.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1220] [PMID: 21220471]
[75]
Ramalingam, S.S.; Blackhall, F.; Krzakowski, M.; Barrios, C.H.; Park, K.; Bover, I.; Seog Heo, D.; Rosell, R.; Talbot, D.C.; Frank, R.; Letrent, S.P.; Ruiz-Garcia, A.; Taylor, I.; Liang, J.Q.; Campbell, A.K.; O’Connell, J.; Boyer, M. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(27), 3337-3344.
[http://dx.doi.org/10.1200/JCO.2011.40.9433] [PMID: 22753918]
[76]
Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res., 2013, 19(8), 2240-2247.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2246] [PMID: 23470965]
[77]
Wang, S.; Cang, S.; Liu, D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol., 2016, 9, 34.
[http://dx.doi.org/10.1186/s13045-016-0268-z] [PMID: 27071706]
[78]
Barnes, T.A.; O’Kane, G.M.; Vincent, M.D.; Leighl, N.B. Third-generation tyrosine kinase inhibitors targeting epidermal growth factor receptor mutations in non-small cell lung cancer. Front. Oncol., 2017, 7, 113.
[http://dx.doi.org/10.3389/fonc.2017.00113] [PMID: 28620581]
[79]
Tan, C.S.; Kumarakulasinghe, N.B.; Huang, Y.Q.; Ang, Y.L.E.; Choo, J.R.; Goh, B.C.; Soo, R.A. Third generation EGFR TKIs: current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0] [PMID: 29455654]
[80]
Jänne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699.
[http://dx.doi.org/10.1056/NEJMoa1411817] [PMID: 25923549]
[81]
Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S.E.; Cantarini, M.; Barrett, J.C.; Jänne, P.A.; Oxnard, G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med., 2015, 21(6), 560-562.
[http://dx.doi.org/10.1038/nm.3854] [PMID: 25939061]
[82]
Chabon, J.J.; Simmons, A.D.; Lovejoy, A.F.; Esfahani, M.S.; Newman, A.M.; Haringsma, H.J.; Kurtz, D.M.; Stehr, H.; Scherer, F.; Karlovich, C.A.; Harding, T.C.; Durkin, K.A.; Otterson, G.A.; Purcell, W.T.; Camidge, D.R.; Goldman, J.W.; Sequist, L.V.; Piotrowska, Z.; Wakelee, H.A.; Neal, J.W.; Alizadeh, A.A.; Diehn, M. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun., 2016, 7, 11815.
[http://dx.doi.org/10.1038/ncomms11815] [PMID: 27283993]
[83]
Knebel, F.H.; Bettoni, F.; Shimada, A.K.; Cruz, M.; Alessi, J.V.; Negrão, M.V.; Reis, L.F.L.; Katz, A.; Camargo, A.A. Sequential liquid biopsies reveal dynamic alterations of EGFR driver mutations and indicate EGFR amplification as a new mechanism of resistance to osimertinib in NSCLC. Lung Cancer, 2017, 108, 238-241.
[http://dx.doi.org/10.1016/j.lungcan.2017.04.004] [PMID: 28625643]
[84]
Ou, S.I.; Agarwal, N.; Ali, S.M. High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression. Lung Cancer, 2016, 98, 59-61.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.015] [PMID: 27393507]
[85]
Planchard, D.; Loriot, Y.; André, F.; Gobert, A.; Auger, N.; Lacroix, L.; Soria, J.C. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann. Oncol., 2015, 26(10), 2073-2078.
[http://dx.doi.org/10.1093/annonc/mdv319] [PMID: 26269204]
[86]
Kim, T.M.; Song, A.; Kim, D.W.; Kim, S.; Ahn, Y.O.; Keam, B.; Jeon, Y.K.; Lee, S.H.; Chung, D.H.; Heo, D.S. Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J. Thorac. Oncol., 2015, 10(12), 1736-1744.
[http://dx.doi.org/10.1097/JTO.0000000000000688] [PMID: 26473643]
[87]
Wang, S.; Song, Y.; Liu, D. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett., 2017, 385, 51-54.
[http://dx.doi.org/10.1016/j.canlet.2016.11.008] [PMID: 27840244]
[88]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[89]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[90]
Goldstein, N.I.; Prewett, M.; Zuklys, K.; Rockwell, P.; Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res., 1995, 1(11), 1311-1318.
[PMID: 9815926]
[91]
Kurai, J.; Chikumi, H.; Hashimoto, K.; Yamaguchi, K.; Yamasaki, A.; Sako, T.; Touge, H.; Makino, H.; Takata, M.; Miyata, M.; Nakamoto, M.; Burioka, N.; Shimizu, E. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin. Cancer Res., 2007, 13(5), 1552-1561.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1726] [PMID: 17332301]
[92]
Butts, C.A.; Bodkin, D.; Middleman, E.L.; Englund, C.W.; Ellison, D.; Alam, Y.; Kreisman, H.; Graze, P.; Maher, J.; Ross, H.J.; Ellis, P.M.; McNulty, W.; Kaplan, E.; Pautret, V.; Weber, M.R.; Shepherd, F.A. Randomized phase II study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer. J. Clin. Oncol., 2007, 25(36), 5777-5784.
[http://dx.doi.org/10.1200/JCO.2007.13.0856] [PMID: 18089875]
[93]
Rosell, R.; Robinet, G.; Szczesna, A.; Ramlau, R.; Constenla, M.; Mennecier, B.C.; Pfeifer, W.; O’Byrne, K.J.; Welte, T.; Kolb, R.; Pirker, R.; Chemaissani, A.; Perol, M.; Ranson, M.R.; Ellis, P.A.; Pilz, K.; Reck, M. Randomized phase II study of cetuximab plus cisplatin/vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer. Ann. Oncol., 2008, 19(2), 362-369.
[http://dx.doi.org/10.1093/annonc/mdm474] [PMID: 17947225]
[94]
Lynch, T.J.; Patel, T.; Dreisbach, L.; McCleod, M.; Heim, W.J.; Hermann, R.C.; Paschold, E.; Iannotti, N.O.; Dakhil, S.; Gorton, S.; Pautret, V.; Weber, M.R.; Woytowitz, D. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J. Clin. Oncol., 2010, 28(6), 911-917.
[http://dx.doi.org/10.1200/JCO.2009.21.9618] [PMID: 20100966]
[95]
Pirker, R.; Pereira, J.R.; Szczesna, A.; von Pawel, J.; Krzakowski, M.; Ramlau, R.; Vynnychenko, I.; Park, K.; Yu, C.T.; Ganul, V.; Roh, J.K.; Bajetta, E.; O’Byrne, K.; de Marinis, F.; Eberhardt, W.; Goddemeier, T.; Emig, M.; Gatzemeier, U.; Team, F.S. FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet, 2009, 373(9674), 1525-1531.
[http://dx.doi.org/10.1016/S0140-6736(09)60569-9] [PMID: 19410716]
[96]
Ramalingam, S.S.; Lee, J.W.; Belani, C.P.; Aisner, S.C.; Kolesar, J.; Howe, C.; Velasco, M.R.; Schiller, J.H. Cetuximab for the treatment of advanced bronchioloalveolar carcinoma (BAC): an eastern cooperative oncology group phase II study (ECOG 1504). J. Clin. Oncol., 2011, 29(13), 1709-1714.
[http://dx.doi.org/10.1200/JCO.2010.33.4094] [PMID: 21422434]
[97]
Kim, E.S.; Neubauer, M.; Cohn, A.; Schwartzberg, L.; Garbo, L.; Caton, J.; Robert, F.; Reynolds, C.; Katz, T.; Chittoor, S.; Simms, L.; Saxman, S. Docetaxel or pemetrexed with or without cetuximab in recurrent or progressive non-small-cell lung cancer after platinum-based therapy: a phase 3, open-label, randomised trial. Lancet Oncol., 2013, 14(13), 1326-1336.
[http://dx.doi.org/10.1016/S1470-2045(13)70473-X] [PMID: 24231627]
[98]
Regales, L.; Gong, Y.; Shen, R.; de Stanchina, E.; Vivanco, I.; Goel, A.; Koutcher, J.A.; Spassova, M.; Ouerfelli, O.; Mellinghoff, I.K.; Zakowski, M.F.; Politi, K.A.; Pao, W. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J. Clin. Invest., 2009, 119(10), 3000-3010.
[http://dx.doi.org/10.1172/JCI38746] [PMID: 19759520]
[99]
Janjigian, Y.Y.; Smit, E.F.; Groen, H.J.; Horn, L.; Gettinger, S.; Camidge, D.R.; Riely, G.J.; Wang, B.; Fu, Y.; Chand, V.K.; Miller, V.A.; Pao, W. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov., 2014, 4(9), 1036-1045.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0326] [PMID: 25074459]
[100]
Bianco, R.; Troiani, T.; Tortora, G.; Ciardiello, F. Intrinsic and acquired resistance to EGFR inhibitors in human cancer therapy. Endocr. Relat. Cancer, 2005, 12(Suppl. 1), S159-S171.
[http://dx.doi.org/10.1677/erc.1.00999] [PMID: 16113092]
[101]
Samakoglu, S.; Deevi, D.S.; Li, H.; Wang, S.; Murphy, M.; Bao, C.; Bassi, R.; Prewett, M.; Tonra, J.R. Preclinical rationale for combining an EGFR antibody with cisplatin/gemcitabine for the treatment of NSCLC. Cancer Genomics Proteomics, 2012, 9(2), 77-92.
[PMID: 22399498]
[102]
Paz-Ares, L.; Mezger, J.; Ciuleanu, T.E.; Fischer, J.R.; von Pawel, J.; Provencio, M.; Kazarnowicz, A.; Losonczy, G.; de Castro, G., Jr; Szczesna, A.; Crino, L.; Reck, M.; Ramlau, R.; Ulsperger, E.; Schumann, C.; Miziara, J.E.; Lessa, A.E.; Dediu, M.; Bálint, B.; Depenbrock, H.; Soldatenkova, V.; Kurek, R.; Hirsch, F.R.; Thatcher, N.; Socinski, M.A. INSPIRE investigators Necitumumab plus pemetrexed and cisplatin as first-line therapy in patients with stage IV non-squamous non-small-cell lung cancer (INSPIRE): an open-label, randomised, controlled phase 3 study. Lancet Oncol., 2015, 16(3), 328-337.
[http://dx.doi.org/10.1016/S1470-2045(15)70046-X] [PMID: 25701171]
[103]
Thatcher, N.; Hirsch, F.R.; Luft, A.V.; Szczesna, A.; Ciuleanu, T.E.; Dediu, M.; Ramlau, R.; Galiulin, R.K.; Bálint, B.; Losonczy, G.; Kazarnowicz, A.; Park, K.; Schumann, C.; Reck, M.; Depenbrock, H.; Nanda, S.; Kruljac-Letunic, A.; Kurek, R.; Paz-Ares, L.; Socinski, M.A.; Investigators, S. SQUIRE Investigators Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol., 2015, 16(7), 763-774.
[http://dx.doi.org/10.1016/S1470-2045(15)00021-2] [PMID: 26045340]
[104]
Reck, M.; Socinski, M.A.; Luft, A.; Szczęsna, A.; Dediu, M.; Ramlau, R.; Losonczy, G.; Molinier, O.; Schumann, C.; Gralla, R.J.; Bonomi, P.; Brown, J.; Soldatenkova, V.; Chouaki, N.; Obasaju, C.; Peterson, P.; Thatcher, N. The effect of necitumumab in combination with gemcitabine plus cisplatin on tolerability and on quality of life: results from the phase 3 SQUIRE trial. J. Thorac. Oncol., 2016, 11(6), 808-818.
[http://dx.doi.org/10.1016/j.jtho.2016.03.002] [PMID: 26980471]
[105]
Thakur, M.K.; Wozniak, A.J. Spotlight on necitumumab in the treatment of non-small-cell lung carcinoma. Lung Cancer (Auckl.), 2017, 8, 13-19.
[http://dx.doi.org/10.2147/LCTT.S104207] [PMID: 28293124]
[106]
Ramakrishnan, M.S.; Eswaraiah, A.; Crombet, T.; Piedra, P.; Saurez, G.; Iyer, H.; Arvind, A.S. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs, 2009, 1(1), 41-48.
[http://dx.doi.org/10.4161/mabs.1.1.7509] [PMID: 20046573]
[107]
Lee, J.Y.; Sun, J.M.; Lim, S.H.; Kim, H.S.; Yoo, K.H.; Jung, K.S.; Song, H.N.; Ku, B.M.; Koh, J.; Bae, Y.H.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. A phase Ib/II study of afatinib in combination with nimotuzumab in non-small cell lung cancer patients with Acquired resistance to gefitinib or erlotinib. Clin. Cancer Res., 2016, 22(9), 2139-2145.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1653] [PMID: 26667485]
[108]
Azzoli, C.G.; Krug, L.M.; Miller, V.A.; Kris, M.G.; Mass, R. Trastuzumab in the treatment of non-small cell lung cancer. Semin. Oncol., 2002, 29(1)(Suppl. 4), 59-65.
[http://dx.doi.org/10.1053/sonc.2002.31526] [PMID: 11894015]
[109]
Nahta, R.; Esteva, F.J. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res., 2006, 8(6), 215.
[http://dx.doi.org/10.1186/bcr1612] [PMID: 17096862]
[110]
Lara, P.N., Jr; Laptalo, L.; Longmate, J.; Lau, D.H.; Gandour-Edwards, R.; Gumerlock, P.H.; Doroshow, J.H.; Gandara, D.R.; California Cancer, C. California cancer consortium. Trastuzumab plus docetaxel in HER2/neu-positive non-small-cell lung cancer: A California cancer consortium screening and phase II trial. Clin. Lung Cancer, 2004, 5(4), 231-236.
[http://dx.doi.org/10.3816/CLC.2004.n.004] [PMID: 14967075]
[111]
Cappuzzo, F.; Bemis, L.; Varella-Garcia, M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N. Engl. J. Med., 2006, 354(24), 2619-2621.
[http://dx.doi.org/10.1056/NEJMc060020] [PMID: 16775247]
[112]
Gatzemeier, U.; Groth, G.; Butts, C.; Van Zandwijk, N.; Shepherd, F.; Ardizzoni, A.; Barton, C.; Ghahramani, P.; Hirsh, V. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann. Oncol., 2004, 15(1), 19-27.
[http://dx.doi.org/10.1093/annonc/mdh031] [PMID: 14679114]
[113]
Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol., 2011, 12(2), 175-180.
[http://dx.doi.org/10.1016/S1470-2045(10)70087-5] [PMID: 21277552]
[114]
Purba, E.R.; Saita, E.I.; Maruyama, I.N. Activation of the EGF receptor by ligand binding and oncogenic mutations: the “rotation model”. Cells, 2017, 6(2), E13.
[http://dx.doi.org/10.3390/cells6020013] [PMID: 28574446]
[115]
Roengvoraphoj, M.; Tsongalis, G.J.; Dragnev, K.H.; Rigas, J.R. Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell lung cancer: focus on epidermal growth factor receptor mutation testing and mutation-positive patients. Cancer Treat. Rev., 2013, 39(8), 839-850.
[http://dx.doi.org/10.1016/j.ctrv.2013.05.001] [PMID: 23768755]
[116]
Riely, G.J.; Pao, W.; Pham, D.; Li, A.R.; Rizvi, N.; Venkatraman, E.S.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M.; Miller, V.A. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin. Cancer Res., 2006, 12(3 Pt 1), 839-844.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1846] [PMID: 16467097]
[117]
Zhu, J.Q.; Zhong, W.Z.; Zhang, G.C.; Li, R.; Zhang, X.C.; Guo, A.L.; Zhang, Y.F.; An, S.J.; Mok, T.S.; Wu, Y.L. Better survival with EGFR exon 19 than exon 21 mutations in gefitinib-treated non-small cell lung cancer patients is due to differential inhibition of downstream signals. Cancer Lett., 2008, 265(2), 307-317.
[http://dx.doi.org/10.1016/j.canlet.2008.02.064] [PMID: 18407408]
[118]
Yasuda, H.; Kobayashi, S.; Costa, D.B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol., 2012, 13(1), e23-e31.
[http://dx.doi.org/10.1016/S1470-2045(11)70129-2] [PMID: 21764376]
[119]
Oxnard, G.R.; Arcila, M.E.; Sima, C.S.; Riely, G.J.; Chmielecki, J.; Kris, M.G.; Pao, W.; Ladanyi, M.; Miller, V.A. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin. Cancer Res., 2011, 17(6), 1616-1622.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2692] [PMID: 21135146]
[120]
Jackman, D.; Pao, W.; Riely, G.J.; Engelman, J.A.; Kris, M.G.; Jänne, P.A.; Lynch, T.; Johnson, B.E.; Miller, V.A. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(2), 357-360.
[http://dx.doi.org/10.1200/JCO.2009.24.7049] [PMID: 19949011]
[121]
Hammerman, P.S.; Jänne, P.A.; Johnson, B.E. Resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res., 2009, 15(24), 7502-7509.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0189] [PMID: 20008850]
[122]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[123]
Pérez-Ramírez, C.; Cañadas-Garre, M.; Jiménez-Varo, E.; Faus-Dáder, M.J.; Calleja-Hernández, M.A. MET: a new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics, 2015, 16(6), 631-647.
[http://dx.doi.org/10.2217/pgs.15.11] [PMID: 25893986]
[124]
Ohashi, K.; Sequist, L.V.; Arcila, M.E.; Moran, T.; Chmielecki, J.; Lin, Y.L.; Pan, Y.; Wang, L.; de Stanchina, E.; Shien, K.; Aoe, K.; Toyooka, S.; Kiura, K.; Fernandez-Cuesta, L.; Fidias, P.; Yang, J.C.; Miller, V.A.; Riely, G.J.; Kris, M.G.; Engelman, J.A.; Vnencak-Jones, C.L.; Dias-Santagata, D.; Ladanyi, M.; Pao, W. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc. Natl. Acad. Sci. USA, 2012, 109(31), E2127-E2133.
[http://dx.doi.org/10.1073/pnas.1203530109] [PMID: 22773810]
[125]
Suda, K.; Tomizawa, K.; Fujii, M.; Murakami, H.; Osada, H.; Maehara, Y.; Yatabe, Y.; Sekido, Y.; Mitsudomi, T. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol., 2011, 6(7), 1152-1161.
[http://dx.doi.org/10.1097/JTO.0b013e318216ee52] [PMID: 21597390]
[126]
Yu, S.; Zhang, Y.; Pan, Y.; Cheng, C.; Sun, Y.; Chen, H. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive. OncoTargets Ther., 2017, 10, 4507-4515.
[http://dx.doi.org/10.2147/OTT.S131999] [PMID: 28979142]
[127]
Arena, S.; Bellosillo, B.; Siravegna, G.; Martínez, A.; Cañadas, I.; Lazzari, L.; Ferruz, N.; Russo, M.; Misale, S.; González, I.; Iglesias, M.; Gavilan, E.; Corti, G.; Hobor, S.; Crisafulli, G.; Salido, M.; Sánchez, J.; Dalmases, A.; Bellmunt, J.; De Fabritiis, G.; Rovira, A.; Di Nicolantonio, F.; Albanell, J.; Bardelli, A.; Montagut, C. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res., 2015, 21(9), 2157-2166.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2821] [PMID: 25623215]
[128]
Furge, K.A.; Zhang, Y-W.; Vande Woude, G.F. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene, 2000, 19(49), 5582-5589.
[http://dx.doi.org/10.1038/sj.onc.1203859] [PMID: 11114738]
[129]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G.; Viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[130]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[131]
Kohno, T.; Ichikawa, H.; Totoki, Y.; Yasuda, K.; Hiramoto, M.; Nammo, T.; Sakamoto, H.; Tsuta, K.; Furuta, K.; Shimada, Y.; Iwakawa, R.; Ogiwara, H.; Oike, T.; Enari, M.; Schetter, A.J.; Okayama, H.; Haugen, A.; Skaug, V.; Chiku, S.; Yamanaka, I.; Arai, Y.; Watanabe, S.; Sekine, I.; Ogawa, S.; Harris, C.C.; Tsuda, H.; Yoshida, T.; Yokota, J.; Shibata, T. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med., 2012, 18(3), 375-377.
[http://dx.doi.org/10.1038/nm.2644] [PMID: 22327624]
[132]
Lutterbach, B.; Zeng, Q.; Davis, L.J.; Hatch, H.; Hang, G.; Kohl, N.E.; Gibbs, J.B.; Pan, B.S. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res., 2007, 67(5), 2081-2088.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3495] [PMID: 17332337]
[133]
Scagliotti, G.; von Pawel, J.; Novello, S.; Ramlau, R.; Favaretto, A.; Barlesi, F.; Akerley, W.; Orlov, S.; Santoro, A.; Spigel, D.; Hirsh, V.; Shepherd, F.A.; Sequist, L.V.; Sandler, A.; Ross, J.S.; Wang, Q.; von Roemeling, R.; Shuster, D.; Schwartz, B. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus Erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J. Clin. Oncol., 2015, 33(24), 2667-2674.
[http://dx.doi.org/10.1200/JCO.2014.60.7317] [PMID: 26169611]
[134]
Yao, Z.; Fenoglio, S.; Gao, D.C.; Camiolo, M.; Stiles, B.; Lindsted, T.; Schlederer, M.; Johns, C.; Altorki, N.; Mittal, V.; Kenner, L.; Sordella, R. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15535-15540.
[http://dx.doi.org/10.1073/pnas.1009472107] [PMID: 20713723]
[135]
Ninomiya, K.; Ohashi, K.; Makimoto, G.; Tomida, S.; Higo, H.; Kayatani, H.; Ninomiya, T.; Kubo, T.; Ichihara, E.; Hotta, K.; Tabata, M.; Maeda, Y.; Kiura, K. MET or NRAS amplification is an acquired resistance mechanism to the third-generation EGFR inhibitor naquotinib. Sci. Rep., 2018, 8(1), 1955.
[http://dx.doi.org/10.1038/s41598-018-20326-z] [PMID: 29386539]
[136]
Cho, H.S.; Leahy, D.J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science, 2002, 297(5585), 1330-1333.
[http://dx.doi.org/10.1126/science.1074611] [PMID: 12154198]
[137]
Jura, N.; Shan, Y.; Cao, X.; Shaw, D.E.; Kuriyan, J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21608-21613.
[http://dx.doi.org/10.1073/pnas.0912101106] [PMID: 20007378]
[138]
Umelo, I.; Noeparast, A.; Chen, G.; Renard, M.; Geers, C.; Vansteenkiste, J.; Giron, P.; De Wever, O.; Teugels, E.; De Grève, J. Identification of a novel HER3 activating mutation homologous to EGFR-L858R in lung cancer. Oncotarget, 2016, 7(3), 3068-3083.
[http://dx.doi.org/10.18632/oncotarget.6585] [PMID: 26689995]
[139]
Noto, A.; De Vitis, C.; Roscilli, G.; Fattore, L.; Malpicci, D.; Marra, E.; Luberto, L.; D’Andrilli, A.; Coluccia, P.; Giovagnoli, M.R.; Normanno, N.; Ruco, L.; Aurisicchio, L.; Mancini, R.; Ciliberto, G. Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits non-small cell lung cancer. Oncotarget, 2013, 4(8), 1253-1265.
[http://dx.doi.org/10.18632/oncotarget.1141] [PMID: 23896512]
[140]
Nishio, M.; Horiike, A.; Murakami, H.; Yamamoto, N.; Kaneda, H.; Nakagawa, K.; Horinouchi, H.; Nagashima, M.; Sekiguchi, M.; Tamura, T. Phase I study of the HER3-targeted antibody patritumab (U3-1287) combined with erlotinib in Japanese patients with non-small cell lung cancer. Lung Cancer, 2015, 88(3), 275-281.
[http://dx.doi.org/10.1016/j.lungcan.2015.03.010] [PMID: 25891541]
[141]
Yonesaka, K.; Kudo, K.; Nishida, S.; Takahama, T.; Iwasa, T.; Yoshida, T.; Tanaka, K.; Takeda, M.; Kaneda, H.; Okamoto, I.; Nishio, K.; Nakagawa, K. The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget, 2015, 6(32), 33602-33611.
[http://dx.doi.org/10.18632/oncotarget.5286] [PMID: 26418897]
[142]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.G.; Shapiro, D.N.; Saltman, D.L.; Look, A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1994, 263(5151), 1281-1284.
[http://dx.doi.org/10.1126/science.8122112] [PMID: 8122112]
[143]
Palmer, R.H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J., 2009, 420(3), 345-361.
[http://dx.doi.org/10.1042/BJ20090387] [PMID: 19459784]
[144]
Zondag, G.C.; Koningstein, G.M.; Jiang, Y.P.; Sap, J.; Moolenaar, W.H.; Gebbink, M.F. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain. J. Biol. Chem., 1995, 270(24), 14247-14250.
[http://dx.doi.org/10.1074/jbc.270.24.14247] [PMID: 7782276]
[145]
Beckmann, G.; Bork, P. An adhesive domain detected in functionally diverse receptors. Trends Biochem. Sci., 1993, 18(2), 40-41.
[http://dx.doi.org/10.1016/0968-0004(93)90049-S] [PMID: 8387703]
[146]
Li, R.; Morris, S.W. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med. Res. Rev., 2008, 28(3), 372-412.
[http://dx.doi.org/10.1002/med.20109] [PMID: 17694547]
[147]
Guan, J.; Umapathy, G.; Yamazaki, Y.; Wolfstetter, G.; Mendoza, P.; Pfeifer, K.; Mohammed, A.; Hugosson, F.; Zhang, H.; Hsu, A.W.; Halenbeck, R.; Hallberg, B.; Palmer, R.H. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife, 2015, 4, e09811.
[http://dx.doi.org/10.7554/eLife.09811] [PMID: 26418745]
[148]
Shaw, A.T.; Solomon, B. Targeting anaplastic lymphoma kinase in lung cancer. Clin. Cancer Res., 2011, 17(8), 2081-2086.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1591] [PMID: 21288922]
[149]
Lobello, C.; Bikos, V.; Janikova, A.; Pospisilova, S. The role of oncogenic tyrosine kinase NPM-ALK in genomic instability. Cancers (Basel), 2018, 10(3), E64.
[http://dx.doi.org/10.3390/cancers10030064] [PMID: 29510549]
[150]
Wang, Y.; Wang, S.; Xu, S.; Qu, J.; Liu, B. Clinicopathologic features of patients with non-small cell lung cancer harboring the EML4-ALK fusion gene: a meta-analysis. PLoS One, 2014, 9(10), e110617.
[http://dx.doi.org/10.1371/journal.pone.0110617] [PMID: 25360721]
[151]
Gainor, J.F.; Varghese, A.M.; Ou, S.H.; Kabraji, S.; Awad, M.M.; Katayama, R.; Pawlak, A.; Mino-Kenudson, M.; Yeap, B.Y.; Riely, G.J.; Iafrate, A.J.; Arcila, M.E.; Ladanyi, M.; Engelman, J.A.; Dias-Santagata, D.; Shaw, A.T. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res., 2013, 19(15), 4273-4281.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0318] [PMID: 23729361]
[152]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[153]
Takeuchi, K.; Choi, Y.L.; Togashi, Y.; Soda, M.; Hatano, S.; Inamura, K.; Takada, S.; Ueno, T.; Yamashita, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Ishikawa, Y.; Mano, H. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res., 2009, 15(9), 3143-3149.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3248] [PMID: 19383809]
[154]
Jung, Y.; Kim, P.; Jung, Y.; Keum, J.; Kim, S.N.; Choi, Y.S.; Do, I.G.; Lee, J.; Choi, S.J.; Kim, S.; Lee, J.E.; Kim, J.; Lee, S.; Kim, J. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer, 2012, 51(6), 590-597.
[http://dx.doi.org/10.1002/gcc.21945] [PMID: 22334442]
[155]
Choi, Y.L.; Lira, M.E.; Hong, M.; Kim, R.N.; Choi, S.J.; Song, J.Y.; Pandy, K.; Mann, D.L.; Stahl, J.A.; Peckham, H.E.; Zheng, Z.; Han, J.; Mao, M.; Kim, J. A novel fusion of TPR and ALK in lung adenocarcinoma. J. Thorac. Oncol., 2014, 9(4), 563-566.
[http://dx.doi.org/10.1097/JTO.0000000000000093] [PMID: 24736082]
[156]
Togashi, Y.; Soda, M.; Sakata, S.; Sugawara, E.; Hatano, S.; Asaka, R.; Nakajima, T.; Mano, H.; Takeuchi, K. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One, 2012, 7(2), e31323.
[http://dx.doi.org/10.1371/journal.pone.0031323] [PMID: 22347464]
[157]
Fang, D.D.; Zhang, B.; Gu, Q.; Lira, M.; Xu, Q.; Sun, H.; Qian, M.; Sheng, W.; Ozeck, M.; Wang, Z.; Zhang, C.; Chen, X.; Chen, K.X.; Li, J.; Chen, S.H.; Christensen, J.; Mao, M.; Chan, C.C. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J. Thorac. Oncol., 2014, 9(3), 285-294.
[http://dx.doi.org/10.1097/JTO.0000000000000087] [PMID: 24496003]
[158]
Sabir, S.R.; Yeoh, S.; Jackson, G.; Bayliss, R. EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients. Cancers (Basel), 2017, 9(9), E118.
[http://dx.doi.org/10.3390/cancers9090118] [PMID: 28872581]
[159]
Richards, M.W.; O’Regan, L.; Roth, D.; Montgomery, J.M.; Straube, A.; Fry, A.M.; Bayliss, R. Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain. Biochem. J., 2015, 467(3), 529-536.
[http://dx.doi.org/10.1042/BJ20150039] [PMID: 25740311]
[160]
Heuckmann, J.M.; Balke-Want, H.; Malchers, F.; Peifer, M.; Sos, M.L.; Koker, M.; Meder, L.; Lovly, C.M.; Heukamp, L.C.; Pao, W.; Küppers, R.; Thomas, R.K. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin. Cancer Res., 2012, 18(17), 4682-4690.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3260] [PMID: 22912387]
[161]
Bayliss, R.; Choi, J.; Fennell, D.A.; Fry, A.M.; Richards, M.W. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell. Mol. Life Sci., 2016, 73(6), 1209-1224.
[http://dx.doi.org/10.1007/s00018-015-2117-6] [PMID: 26755435]
[162]
Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; Doebele, R.C.; Le, L.P.; Zheng, Z.; Tan, W.; Stephenson, P.; Shreeve, S.M.; Tye, L.M.; Christensen, J.G.; Wilner, K.D.; Clark, J.W.; Iafrate, A.J. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 371(21), 1963-1971.
[http://dx.doi.org/10.1056/NEJMoa1406766] [PMID: 25264305]
[163]
Yoshida, T.; Oya, Y.; Tanaka, K.; Shimizu, J.; Horio, Y.; Kuroda, H.; Sakao, Y.; Hida, T.; Yatabe, Y. Clinical impact of crizotinib on central nervous system progression in ALK-positive non-small lung cancer. Lung Cancer, 2016, 97, 43-47.
[http://dx.doi.org/10.1016/j.lungcan.2016.04.006] [PMID: 27237026]
[164]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H.; Group, A.L.K.L.C.S. ALK lung cancer study group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[http://dx.doi.org/10.1056/NEJMoa1007478] [PMID: 20979473]
[165]
Heuckmann, J.M.; Hölzel, M.; Sos, M.L.; Heynck, S. Bal-ke-Want, H.; Koker, M.; Peifer, M.; Weiss, J.; Lovly, C.M.; Grütter, C.; Rauh, D.; Pao, W.; Thomas, R.K., ALK mutations conferring differential resistance to structurally Di-verse ALK inhibitors. Clin. Cancer Res., 2011, 17(23), 7394-7401.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1648] [PMID: 21948233]
[166]
Toyokawa, G.; Seto, T. Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: clinical and preclinical data. Oncol. Res. Treat., 2015, 38(6), 291-298.
[http://dx.doi.org/10.1159/000430852] [PMID: 26045026]
[167]
Wu, J.; Savooji, J.; Liu, D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. J. Hematol. Oncol., 2016, 9(1), 19.
[http://dx.doi.org/10.1186/s13045-016-0251-8] [PMID: 26951079]
[168]
Wei, J.; van der Wekken, A.J.; Saber, A.; Terpstra, M.M.; Schuuring, E.; Timens, W.; Hiltermann, T.J.N.; Groen, H.J.M.; van den Berg, A.; Kok, K. Mutations in EMT-related genes in ALK positive crizotinib resistant non-small cell lung cancers. Cancers (Basel), 2018, 10(1), 10.
[http://dx.doi.org/10.3390/cancers10010010] [PMID: 29300322]
[169]
Wilson, C.; Nimick, M.; Nehoff, H.; Ashton, J.C. ALK and IGF-1R as independent targets in crizotinib resistant lung cancer. Sci. Rep., 2017, 7(1), 13955.
[http://dx.doi.org/10.1038/s41598-017-14289-w] [PMID: 29066738]
[170]
Shaw, A.T.; Kim, D.W.; Mehra, R.; Tan, D.S.; Felip, E.; Chow, L.Q.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y.Y.; Goldwasser, M.; Boral, A.L.; Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 370(13), 1189-1197.
[http://dx.doi.org/10.1056/NEJMoa1311107] [PMID: 24670165]
[171]
Lim, S.M.; Kim, H.R.; Lee, J.S.; Lee, K.H.; Lee, Y.G.; Min, Y.J.; Cho, E.K.; Lee, S.S.; Kim, B.S.; Choi, M.Y.; Shim, H.S.; Chung, J.H.; La Choi, Y.; Lee, M.J.; Kim, M.; Kim, J.H.; Ali, S.M.; Ahn, M.J.; Cho, B.C. Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J. Clin. Oncol., 2017, 35(23), 2613-2618.
[http://dx.doi.org/10.1200/JCO.2016.71.3701] [PMID: 28520527]
[172]
Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D-W.; Ou, S.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; Zeaiter, A.; Mitry, E.; Golding, S.; Balas, B.; Noe, J.; Morcos, P.N.; Mok, T. ALEX trial investigators. Alectinib versus Crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med., 2017, 377(9), 829-838.
[http://dx.doi.org/10.1056/NEJMoa1704795] [PMID: 28586279]
[173]
Zhang, S.; Anjum, R.; Squillace, R.; Nadworny, S.; Zhou, T.; Keats, J.; Ning, Y.; Wardwell, S.D.; Miller, D.; Song, Y.; Eichinger, L.; Moran, L.; Huang, W-S.; Liu, S.; Zou, D.; Wang, Y.; Mohemmad, Q.; Jang, H.G.; Ye, E.; Narasimhan, N.; Wang, F.; Miret, J.; Zhu, X.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Rivera, V.M. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res., 2016, 22(22), 5527-5538.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0569] [PMID: 27780853]
[174]
Hochmair, M.J.; Tiseo, M.; Reckamp, K.L.; West, H.L.; Groen, H.J.; Langer, C.J.; Reichmann, W.; Kerstein, D.; Kim, D.W.; Camidge, D.R. 97PBrigatinib in crizotinib-refractory ALK+ NSCLC: up-dates from the pivotal randomized phase 2 Trial (ALTA). Ann. Oncol., 2017, 28(2)
[http://dx.doi.org/10.1093/annonc/mdx091.017]
[175]
Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of Brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00306] [PMID: 27144831]
[176]
Hatcher, J.M.; Bahcall, M.; Choi, H.G.; Gao, Y.; Sim, T.; George, R.; Jänne, P.A.; Gray, N.S. Discovery of inhibitors that overcome the G1202R anaplastic lymphoma kinase resistance mutation. J. Med. Chem., 2015, 58(23), 9296-9308.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01136] [PMID: 26568289]
[177]
Lovly, C.M.; Heuckmann, J.M.; de Stanchina, E.; Chen, H.; Thomas, R.K.; Liang, C.; Pao, W. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res., 2011, 71(14), 4920-4931.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3879] [PMID: 21613408]
[178]
Horn, L.; Infante, J.R.; Blumenschein, G.R.; Wakelee, H.A.; Arkenau, H-T.; Dukart, G.; Liang, C.; Harrow, K.; Gibbons, J.; Lovly, C.M.; Pao, W. A phase I trial of X-396, a novel ALK inhibitor, in patients with advanced solid tumors. J Clin Oncol, 2014, 32(15), 8030-8030.
[179]
Dong, X.; Fernandez-Salas, E.; Li, E.; Wang, S. Elucidation of resistance mechanisms to second-generation alk inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia, 2016, 18(3), 162-171.
[http://dx.doi.org/10.1016/j.neo.2016.02.001] [PMID: 26992917]
[180]
Zou, H.Y.; Li, Q.; Engstrom, L.D.; West, M.; Appleman, V.; Wong, K.A.; McTigue, M.; Deng, Y-L.; Liu, W.; Brooun, A.; Timofeevski, S.; McDonnell, S.R.P.; Jiang, P.; Falk, M.D.; Lappin, P.B.; Affolter, T.; Nichols, T.; Hu, W.; Lam, J.; Johnson, T.W.; Smeal, T.; Charest, A.; Fantin, V.R. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3493-3498.
[http://dx.doi.org/10.1073/pnas.1420785112] [PMID: 25733882]
[181]
Solomon, B.; Shaw, A.; Ou, S.; Besse, B.; Felip, E.; Bauer, T.; Soo, R.; Bearz, A.; Lin, C.; Clancy, J.; Abbattista, A.; Thurm, H.; Peltz, G.; Masters, E.; Martini, J.; James, L.; Se-to, T. OA 05.06 phase 2 study of lorlatinib in patients with advanced ALK+/ROS1+ non-small-cell lung cancer. J. Thorac. Oncol., 2017, 12(11), S1756.
[http://dx.doi.org/10.1016/j.jtho.2017.09.351]
[182]
Ardini, E.; Menichincheri, M.; De Ponti, C.; Amboldi, N.; Saccardo, B.M.; Texido, G.; Russo, M.; Orsini, P.; Bandiera, T.; Lombardi Borgia, A.; Isacchi, A.; Pesenti, E.; Colotta, F.; Magnaghi, P.; Galvani, A.; Medical, N. Abstract A243: characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol. Cancer Ther., 2009, 8(Suppl. 1), A244.
[http://dx.doi.org/10.1158/1535-7163.TARG-09-A244]
[183]
Ardini, E.; Menichincheri, M.; Banfi, P.; Casero, D.; Giorgini, M.L.; Saccardo, M.B.; Amboldi, N.; Avanzi, N.; Orsini, P.; Isacchi, A.; Pesenti, E.; Galvani, A. Abstract 2092: The ALK inhibitor NMS-E628 also potently inhibits ROS1 and induces tumor regression in ROS-driven models. Cancer Res., 2013, 73(8)(Suppl.), 2092-2092.
[http://dx.doi.org/10.1158/1538-7445.AM2013-2092]
[184]
Arkenau, H.-T.; Sachdev, J.C.; Mita, M.M.; Dziadziuszko, R.; Lin, C.-C.; Yang, J.C.; Infante, J.R.; Anthony, S.P.; Voskoboynik, M.; Su, W.-C.; Castro, J.D.; Natale, R.B.; Zhang, Z.-Y.; Hughes, L.; Bobilev, D.; Weiss, G.J. Phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer. J Clin Oncol, 2015, 33(15), 8063-8063.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.8063]
[185]
Salem, I.; Alsalahi, M.; Chervoneva, I.; Aburto, L.D.; Addya, S.; Ott, G.R.; Ruggeri, B.A.; Cristofanilli, M.; Fernandez, S.V. The effects of CEP-37440, an inhibitor of focal adhesion kinase, in vitro and in vivo on inflammatory breast cancer cells. Breast Cancer Res., 2016, 18(1), 37.
[http://dx.doi.org/10.1186/s13058-016-0694-4] [PMID: 27009091]
[186]
Zhang, X.; Schwartz, J.C.; Guo, X.; Bhatia, S.; Cao, E.; Lorenz, M.; Cammer, M.; Chen, L.; Zhang, Z.Y.; Edidin, M.A.; Nathenson, S.G.; Almo, S.C. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3), 337-347.
[http://dx.doi.org/10.1016/S1074-7613(04)00051-2] [PMID: 15030777]
[187]
Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med., 2009, 206(13), 3015-3029.
[http://dx.doi.org/10.1084/jem.20090847] [PMID: 20008522]
[188]
Talay, O.; Shen, C-H.; Chen, L.; Chen, J. B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2741-2746.
[http://dx.doi.org/10.1073/pnas.0813367106] [PMID: 19202065]
[189]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[190]
Finger, L.R.; Pu, J.; Wasserman, R.; Vibhakar, R.; Louie, E.; Hardy, R.R.; Burrows, P.D.; Billips, L.G. The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene, 1997, 197(1-2), 177-187.
[http://dx.doi.org/10.1016/S0378-1119(97)00260-6] [PMID: 9332365]
[191]
Shinohara, T.; Taniwaki, M.; Ishida, Y.; Kawaichi, M.; Honjo, T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 1994, 23(3), 704-706.
[http://dx.doi.org/10.1006/geno.1994.1562] [PMID: 7851902]
[192]
Riley, J.L. PD-1 signaling in primary T cells. Immunol. Rev., 2009, 229(1), 114-125.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00767.x] [PMID: 19426218]
[193]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26(1), 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[194]
Okazaki, T.; Maeda, A.; Nishimura, H.; Kurosaki, T.; Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13866-13871.
[http://dx.doi.org/10.1073/pnas.231486598] [PMID: 11698646]
[195]
Bardhan, K.; Patsoukis, N.; Weaver, J.; Freeman, G.; Li, L.; Boussiotis, V.A. PD-1 inhibits the TCR signaling cascade by sequestering SHP-2 phosphatase, preventing its translocation to lipid rafts and facilitating Csk-mediated inhibitory phosphorylation of Lck J Immunol, 2016, 196(1), 128.115-128.115..
[196]
Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol., 2016, 7, 550.
[http://dx.doi.org/10.3389/fimmu.2016.00550] [PMID: 28018338]
[197]
He, J.; Hu, Y.; Hu, M.; Li, B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci. Rep., 2015, 5, 13110.
[http://dx.doi.org/10.1038/srep13110] [PMID: 26279307]
[198]
Lázár-Molnár, E.; Yan, Q.; Cao, E.; Ramagopal, U.; Nathenson, S.G.; Almo, S.C. Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10483-10488.
[http://dx.doi.org/10.1073/pnas.0804453105] [PMID: 18641123]
[199]
Zak, K.M.; Kitel, R.; Przetocka, S.; Golik, P.; Guzik, K.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure, 2015, 23(12), 2341-2348.
[http://dx.doi.org/10.1016/j.str.2015.09.010] [PMID: 26602187]
[200]
Ota, K.; Azuma, K.; Kawahara, A.; Hattori, S.; Iwama, E.; Tanizaki, J.; Harada, T.; Matsumoto, K.; Takayama, K.; Takamori, S.; Kage, M.; Hoshino, T.; Nakanishi, Y.; Okamoto, I. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res., 2015, 21(17), 4014-4021.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0016] [PMID: 26019170]
[201]
Guo, R.; Wang, J.; Bai, H. PUB147 KRAS mutants regulated PD-L1 expression through NF-κB and HIF-1α path-ways in non-small cell lung cancer cells. J. Thorac. Oncol., 2017, 12(1), S1531.
[http://dx.doi.org/10.1016/j.jtho.2016.11.2118]
[202]
Lastwika, K.J.; Wilson, W., III; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; Liu, L.N.; Gills, J.J.; Dennis, P.A. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res., 2016, 76(2), 227-238.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3362] [PMID: 26637667]
[203]
Aust, S.; Felix, S.; Auer, K.; Bachmayr-Heyda, A.; Kenner, L.; Dekan, S.; Meier, S.M.; Gerner, C.; Grimm, C.; Pils, D. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer. Sci. Rep., 2017, 7, 42929.
[http://dx.doi.org/10.1038/srep42929] [PMID: 28266500]
[204]
Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.; Topalian, S.L.; Chen, L. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med., 2012, 4(127), 127ra37.
[http://dx.doi.org/10.1126/scitranslmed.3003689] [PMID: 22461641]
[205]
Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallwe-ber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; Vale, R.D. T cell co-stimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 2017, 355(6332), 1428-1433.
[http://dx.doi.org/10.1126/science.aaf1292] [PMID: 28280247]
[206]
O’Donnell, J.S.; Smyth, M.J.; Teng, M.W.L. PD1 functions by inhibiting CD28-mediated co-stimulation. Clin. Transl. Immunology, 2017, 6(5), e138.
[http://dx.doi.org/10.1038/cti.2017.15] [PMID: 28690844]
[207]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[208]
Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; Vale, R.D. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 2017, 355(6332), 1428-1433.
[http://dx.doi.org/10.1126/science.aaf1292] [PMID: 28280247]
[209]
Sheppard, K.A.; Fitz, L.J.; Lee, J.M.; Benander, C.; George, J.A.; Wooters, J.; Qiu, Y.; Jussif, J.M.; Carter, L.L.; Wood, C.R.; Chaudhary, D. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett., 2004, 574(1-3), 37-41.
[http://dx.doi.org/10.1016/j.febslet.2004.07.083] [PMID: 15358536]
[210]
Arasanz, H.; Gato-Cañas, M.; Zuazo, M.; Ibañez-Vea, M.; Breckpot, K.; Kochan, G.; Escors, D. PD1 signal transduction pathways in T cells. Oncotarget, 2017, 8(31), 51936-51945.
[http://dx.doi.org/10.18632/oncotarget.17232] [PMID: 28881701]
[211]
Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist, 2016, 21(5), 634-642.
[http://dx.doi.org/10.1634/theoncologist.2015-0507] [PMID: 26984449]
[212]
Vokes, E.E.; Ready, N.; Felip, E.; Horn, L.; Burgio, M.A.; Antonia, S.J.; Arén Frontera, O.; Gettinger, S.; Holgado, E.; Spigel, D.; Waterhouse, D.; Domine, M.; Garassino, M.; Chow, L.Q.M.; Blumenschein, G., Jr; Barlesi, F.; Coudert, B.; Gainor, J.; Arrieta, O.; Brahmer, J.; Butts, C.; Steins, M.; Geese, W.J.; Li, A.; Healey, D.; Crinò, L. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann. Oncol., 2018, 29(4), 959-965.
[http://dx.doi.org/10.1093/annonc/mdy041] [PMID: 29408986]
[213]
Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; Pluzanski, A.; Reckamp, K.L.; Burgio, M.A.; Kohlhäeufl, M.; Waterhouse, D.; Barlesi, F.; Antonia, S.; Arrieta, O.; Fayette, J.; Crinò, L.; Rizvi, N.; Reck, M.; Hellmann, M.D.; Geese, W.J.; Li, A.; Blackwood-Chirchir, A.; Healey, D.; Brahmer, J.; Eberhardt, W.E.E. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (checkmate 017 and checkmate 057). J. Clin. Oncol., 2017, 35(35), 3924-3933.
[http://dx.doi.org/10.1200/JCO.2017.74.3062] [PMID: 29023213]
[214]
Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T-E.; Badin, F.; Ready, N.; Hiltermann, T.J.N.; Nair, S.; Juergens, R.; Peters, S.; Minenza, E.; Wrangle, J.M.; Rodriguez-Abreu, D.; Borghaei, H.; Blumenschein, G.R., Jr; Villaruz, L.C.; Havel, L.; Krejci, J.; Corral Jaime, J.; Chang, H.; Geese, W.J.; Bhagavatheeswaran, P.; Chen, A.C.; Socinski, M.A. CheckMate 026 investigators. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med., 2017, 376(25), 2415-2426.
[http://dx.doi.org/10.1056/NEJMoa1613493] [PMID: 28636851]
[215]
Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; Shepherd, F.A.; Laurie, S.A.; Geese, W.J.; Agrawal, S.; Young, T.C.; Li, X.; Antonia, S.J. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol., 2017, 18(1), 31-41.
[http://dx.doi.org/10.1016/S1470-2045(16)30624-6] [PMID: 27932067]
[216]
Hellmann, M.D.; Ciuleanu, T-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; Borghaei, H.; Ramalingam, S.S.; Brahmer, J.; Reck, M.; O’Byrne, K.J.; Geese, W.J.; Green, G.; Chang, H.; Szustakowski, J.; Bhagavatheeswaran, P.; Healey, D.; Fu, Y.; Nathan, F.; Paz-Ares, L. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med., 2018, 378(22), 2093-2104.
[http://dx.doi.org/10.1056/NEJMoa1801946] [PMID: 29658845]
[217]
Lim, S.H.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opin. Biol. Ther., 2016, 16(3), 397-406.
[http://dx.doi.org/10.1517/14712598.2016.1145652] [PMID: 26800463]
[218]
Seetharamu, N.; Preeshagul, I.R.; Sullivan, K.M. New PD-L1 inhibitors in non-small cell lung cancer - impact of atezolizumab. Lung Cancer (Auckl.), 2017, 8, 67-78.
[http://dx.doi.org/10.2147/LCTT.S113177] [PMID: 28761384]
[219]
Peters, S.; Gettinger, S.; Johnson, M.L.; Jänne, P.A.; Garassino, M.C.; Christoph, D.; Toh, C.K.; Rizvi, N.A.; Chaft, J.E.; Carcereny Costa, E.; Patel, J.D.; Chow, L.Q.M.; Koczywas, M.; Ho, C.; Früh, M.; van den Heuvel, M.; Rothenstein, J.; Reck, M.; Paz-Ares, L.; Shepherd, F.A.; Kurata, T.; Li, Z.; Qiu, J.; Kowanetz, M.; Mocci, S.; Shankar, G.; Sandler, A.; Felip, E.; Phase, I.I. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J. Clin. Oncol., 2017, 35(24), 2781-2789.
[http://dx.doi.org/10.1200/JCO.2016.71.9476] [PMID: 28609226]
[220]
Verschraegen, C.F.; Chen, F.; Spigel, D.R.; Iannotti, N.; McClay, E.F.; Redfern, C.H.; Bennouna, J.; Taylor, M.H.; Kaufman, H.; Kelly, K.; Bajars, M.; von Heydebreck, A.; Cuillerot, J-M.; Jerusalem, G.H.M. Avelumab (MSB0010718C; anti-PD-L1) as a first-line treatment for patients with advanced NSCLC from the JAVELIN solid tumor phase 1b trial: safety, clinical activity, and PD-L1 expression. J Clin Oncol, 2016, 34(15), 9036-9036.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9036]
[221]
Jerusalem, G.; Chen, F.; Spigel, D.; Iannotti, N.; McClay, E.; Redfern, C.; Bennouna, J.; Taylor, M.; Kaufman, H.; Kelly, K.; Chand, V.; Von Heydebreck, A.; Verschraegen, C. OA03.03 JAVELIN solid tumor: safety and clinical activity of Avelumab (Anti-PD-L1) as first-line treatment in patients with advanced NSCLC. J. Clin. Oncol., 2017, 12(1), S252.
[http://dx.doi.org/10.1016/j.jtho.2016.11.240]
[222]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[223]
Garrido, P.; Olmedo, M.E.; Gómez, A.; Paz Ares, L.; López-Ríos, F.; Rosa-Rosa, J.M.; Palacios, J. Treating KRAS-mutant NSCLC: latest evidence and clinical consequences. Ther. Adv. Med. Oncol., 2017, 9(9), 589-597.
[http://dx.doi.org/10.1177/1758834017719829] [PMID: 29081842]
[224]
Matikas, A.; Mistriotis, D.; Georgoulias, V.; Kotsakis, A. Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Crit. Rev. Oncol. Hematol., 2017, 110, 1-12.
[http://dx.doi.org/10.1016/j.critrevonc.2016.12.005] [PMID: 28109399]
[225]
Jancík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical relevance of KRAS in human cancers. J. Biomed. Biotechnol., 2010, 2010, 150960.
[http://dx.doi.org/10.1155/2010/150960] [PMID: 20617134]
[226]
Friday, B.B.; Adjei, A.A. K-RAS as a target for cancer therapy. Biochim. Biophys. Acta, 2005, 1756(2), 127-144.
[PMID: 16139957]
[227]
Westcott, P.M.; To, M.D. The genetics and biology of KRAS in lung cancer. Chin. J. Cancer, 2013, 32(2), 63-70.
[http://dx.doi.org/10.5732/cjc.012.10098] [PMID: 22776234]
[228]
Knickelbein, K.; Zhang, L. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis., 2015, 2(1), 4-12.
[http://dx.doi.org/10.1016/j.gendis.2014.10.002] [PMID: 25815366]
[229]
Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[230]
Stolze, B.; Reinhart, S.; Bulllinger, L.; Fröhling, S.; Scholl, C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep., 2015, 5, 8535.
[http://dx.doi.org/10.1038/srep08535] [PMID: 25705018]
[231]
Bhattacharya, S.; Socinski, M.A.; Burns, T.F. KRAS mutant lung cancer: progress thus far on an elusive therapeutic target. Clin. Transl. Med., 2015, 4(1), 35.
[http://dx.doi.org/10.1186/s40169-015-0075-0] [PMID: 26668062]
[232]
Karachaliou, N.; Mayo, C.; Costa, C.; Magrí, I.; Gimenez-Capitan, A.; Molina-Vila, M.A.; Rosell, R. KRAS mutations in lung cancer. Clin. Lung Cancer, 2013, 14(3), 205-214.
[http://dx.doi.org/10.1016/j.cllc.2012.09.007] [PMID: 23122493]
[233]
Ostrem, J.M.; Shokat, K.M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov., 2016, 15(11), 771-785.
[http://dx.doi.org/10.1038/nrd.2016.139] [PMID: 27469033]
[234]
Athuluri-Divakar, S.K.; Vasquez-Del Carpio, R.; Dutta, K.; Baker, S.J.; Cosenza, S.C.; Basu, I.; Gupta, Y.K.; Reddy, M.V.; Ueno, L.; Hart, J.R.; Vogt, P.K.; Mulholland, D.; Guha, C.; Aggarwal, A.K.; Reddy, E.P. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell, 2016, 165(3), 643-655.
[http://dx.doi.org/10.1016/j.cell.2016.03.045] [PMID: 27104980]
[235]
Tomasini, P.; Walia, P.; Labbe, C.; Jao, K.; Leighl, N.B. Targeting the KRAS pathway in non-small cell lung cancer. Oncologist, 2016, 21(12), 1450-1460.
[http://dx.doi.org/10.1634/theoncologist.2015-0084] [PMID: 27807303]
[236]
Janes, M.R.; Zhang, J.; Li, L.S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell, 2018, 172(3), 578-589.
[http://dx.doi.org/10.1016/j.cell.2018.01.006]
[237]
Zeng, M.; Lu, J.; Li, L.; Feru, F.; Quan, C.; Gero, T.W.; Ficarro, S.B.; Xiong, Y.; Ambrogio, C.; Paranal, R.M.; Cata-lano, M.; Shao, J.; Wong, K.K.; Marto, J.A.; Fischer, E.S.; Janne, P.A.; Scott, D.A.; Westover, K.D.; Gray, N.S. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem. Biol., 2017, 24(8), 1005-1016.
[http://dx.doi.org/10.1016/j.chembiol.2017.06.017]]
[238]
Casaluce, F.; Sgambato, A.; Maione, P.; Sacco, P.C.; Santabarbara, G.; Gridelli, C. Selumetinib for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs, 2017, 26(8), 973-984.
[http://dx.doi.org/10.1080/13543784.2017.1351543] [PMID: 28675058]
[239]
Luk, P.P.; Yu, B.; Ng, C.C.; Mercorella, B.; Selinger, C.; Lum, T.; Kao, S.; O’Toole, S.A.; Cooper, W.A. BRAF mutations in non-small cell lung cancer. Transl. Lung Cancer Res., 2015, 4(2), 142-148.
[PMID: 25870796]
[240]
Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F.; Souquet, P.J.; Smit, E.F.; Groen, H.J.; Kelly, R.J.; Cho, B.C.; Socinski, M.A.; Pandite, L.; Nase, C.; Ma, B.; D’Amelio, A., Jr.; Mookerjee, B.; Curtis, C.M., Jr; Johnson, B.E. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol., 2016, 17(5), 642-650.
[http://dx.doi.org/10.1016/S1470-2045(16)00077-2] [PMID: 27080216]
[241]
Martinez-Martí, A.; Felip, E. PI3K Pathway in NSCLC. Front. Oncol., 2012, 1, 55.
[http://dx.doi.org/10.3389/fonc.2011.00055] [PMID: 22655251]
[242]
Massacesi, C.; Di Tomaso, E.; Urban, P.; Germa, C.; Quadt, C.; Trandafir, L.; Aimone, P.; Fretault, N.; Dharan, B.; Tavorath, R.; Hirawat, S. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. OncoTargets Ther., 2016, 9, 203-210.
[http://dx.doi.org/10.2147/OTT.S89967] [PMID: 26793003]
[243]
Cardenal, F.; Nadal, E.; Jové, M.; Faivre-Finn, C. Concurrent systemic therapy with radiotherapy for the treatment of poor-risk patients with unresectable stage III non-small-cell lung cancer: a review of the literature. Ann. Oncol., 2015, 26(2), 278-288.
[http://dx.doi.org/10.1093/annonc/mdu229] [PMID: 24942274]
[244]
Ottlakan, A.; Martucci, N.; Rocco, G. Is surgery still the best management option for early stage NSCLC? Transl. Lung Cancer Res., 2014, 3(3), 159-163.
[PMID: 25806295]
[245]
Blum, T.G.; Rich, A.; Baldwin, D.; Beckett, P.; De Ruysscher, D.; Faivre-Finn, C.; Gaga, M.; Gamarra, F.; Grigoriu, B.; Hansen, N.C.; Hubbard, R.; Huber, R.M.; Jakobsen, E.; Jovanovic, D.; Konsoulova, A.; Kollmeier, J.; Massard, G.; McPhelim, J.; Meert, A.P.; Milroy, R.; Paesmans, M.; Peake, M.; Putora, P.M.; Scherpereel, A.; Schönfeld, N.; Sitter, H.; Skaug, K.; Spiro, S.; Strand, T.E.; Taright, S.; Thomas, M.; van Schil, P.E.; Vansteenkiste, J.F.; Wiewrodt, R.; Sculier, J.P. The European initiative for quality management in lung cancer care. Eur. Respir. J., 2014, 43(5), 1254-1277.
[http://dx.doi.org/10.1183/09031936.00106913] [PMID: 24659546]
[246]
Wigle, D.A. Biologic approaches to drug selection and targeted therapy: hype or clinical reality? Thorac. Surg. Clin., 2013, 23(3), 421-428.
[http://dx.doi.org/10.1016/j.thorsurg.2013.05.003] [PMID: 23931024]
[247]
Morán, T.; Quiroga, V. Gil, Mde.L.; Vilà, L.; Pardo, N.; Carcereny, E.; Capdevila, L.; Muñoz-Mármol, A.M.; Rosell, R. Targeting EML4-ALK driven non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res., 2013, 2(2), 128-141.
[PMID: 25806224]
[248]
Ruiz, R.; Hunis, B.; Raez, L.E. Immunotherapeutic agents in non-small-cell lung cancer finally coming to the front lines. Curr. Oncol. Rep., 2014, 16(9), 400.
[http://dx.doi.org/10.1007/s11912-014-0400-6] [PMID: 25030654]
[249]
Szyszka-Barth, K.; Ramlau, K.; Goździk-Spychalska, J.; Spychalski, L.; Bryl, M.; Gołda-Gocka, I.; Kopczyńska, A.; Barinow-Wojewódzki, A.; Ramlau, R. Actual status of therapeutic vaccination in non-small cell lung cancer. Contemp. Oncol. (Pozn.), 2014, 18(2), 77-84.
[http://dx.doi.org/10.5114/wo.2014.42724] [PMID: 24966788]
[250]
Seetharamu, N. The state of the art in non-small cell lung cancer immunotherapy. Semin. Thorac. Cardiovasc. Surg., 2014, 26(1), 26-35.
[http://dx.doi.org/10.1053/j.semtcvs.2014.02.005] [PMID: 24952755]
[251]
Zakaria, N.; Satar, N.A.; Abu Halim, N.H.; Ngalim, S.H.; Yusoff, N.M.; Lin, J.; Yahaya, B.H. Targeting lung cancer stem cells: research and clinical impacts. Front. Oncol., 2017, 7, 80.
[http://dx.doi.org/10.3389/fonc.2017.00080] [PMID: 28529925]
[252]
Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.; Mohindra, N.; Villaflor, V.; Giles, F.J. Immune checkpoint pathways in non-small cell lung cancer. Ann. Transl. Med., 2018, 6(5), 88.
[http://dx.doi.org/10.21037/atm.2017.09.30] [PMID: 29666811]
[253]
Teixidó, C.; Vilariño, N.; Reyes, R.; Reguart, N. PD-L1 expression testing in non-small cell lung cancer. Ther. Adv. Med. Oncol., 2018, 10, 1758835918763493.
[http://dx.doi.org/10.1177/1758835918763493] [PMID: 29662547]
[254]
Li, H.; Huang, Y.; Jiang, D.Q.; Cui, L.Z.; He, Z.; Wang, C.; Zhang, Z.W.; Zhu, H.L.; Ding, Y.M.; Li, L.F.; Li, Q.; Jin, H.J.; Qian, Q.J. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis., 2018, 9(2), 177.
[http://dx.doi.org/10.1038/s41419-017-0238-6] [PMID: 29415996]
[255]
Zeltsman, M.; Dozier, J.; McGee, E.; Ngai, D.; Adusumilli, P.S. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl. Res., 2017, 187, 1-10.
[http://dx.doi.org/10.1016/j.trsl.2017.04.004] [PMID: 28502785]
[256]
Kanthala, S.P.; Liu, Y.Y.; Singh, S.; Sable, R.; Pallerla, S.; Jois, S.D. A peptidomimetic with a chiral switch is an inhibitor of epidermal growth factor receptor heterodimerization. Oncotarget, 2017, 8(43), 74244-74262.
[http://dx.doi.org/10.18632/oncotarget.19013] [PMID: 29088782]
[257]
Nero, T.L.; Morton, C.J.; Holien, J.K.; Wielens, J.; Parker, M.W. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer, 2014, 14(4), 248-262.
[http://dx.doi.org/10.1038/nrc3690] [PMID: 24622521]
[258]
Doroshow, D.B.; Herbst, R.S. Treatment of advanced non-small cell lung cancer in 2018. JAMA Oncol., 2018, 4(4), 569-570.
[http://dx.doi.org/10.1001/jamaoncol.2017.5190] [PMID: 29494728]
[259]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J. Jr.; Wu, Y-L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[260]
Immune checkpoint Inhibitor. Available at: https://siteman.wustl.edu/glossary/cdr0000772606/


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 32
Year: 2020
Published on: 24 September, 2020
Page: [5274 - 5316]
Pages: 43
DOI: 10.2174/0929867326666190222183219
Price: $65

Article Metrics

PDF: 60
HTML: 2