Anti-inflammatory and Antioxidant Effects of Lotus corniculatus on Paracetamol-induced Hepatitis in Rats

Author(s): Nacera Baali*, Abderahmane Mezrag, Mohamed Bouheroum, Fadila Benayache, Samir Benayache, Amedah Souad

Journal Name: Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents)

Volume 19 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Herbal medicines have been used in the treatment of liver diseases for a long time. The current study was elaborated to evaluate in vitro and in vivo antioxidant and anti-inflammatory effects of Lotus corniculatus (L. corniculatus) butanolic extract.

Methods: The in vitro antioxidant and anti-inflammatory properties of L. corniculatus were investigated by employing DPPH radical scavenging, H2O2 scavenging and BSA denaturation assays. In vivo antioxidant and anti-inflammatory effects of L. corniculatus were evaluated against paracetamol (APAP)-induced hepatitis in rats. L.corniculatus at doses of 100 and 200 mg/kg was administered orally once daily for seven days. Serum transaminases (AST and ALT) and lactate dehydrogenase (LDH), total bilirubin levels, liver malondialdehyde (MDA), reduced glutathione (GSH), glutathione S- transferase (GST) and superoxide dismutase (SOD) levels and inflammatory markers, such as serum Creactive protein (CRP), circulating and liver myeloperoxidase (MPO) levels were investigated. Further histopathological analysis of the liver sections was performed to support the effectiveness of L. corniculatus.

Results: L. corniculatus exhibited strong antioxidant and anti-inflammatory effects in vitro. In the in vivo study, our findings demonstrate that L. corniculatus (100 and 200 mg/kg) administration led to an amelioration of APAP effects on liver histology, liver functions parameters (AST, ALT, LDH, and total bilirubin levels) and liver oxidative stress markers (MDA, GSH, GST and SOD levels). Furthermore, serum CRP, circulating MPO and liver MPO levels were declined by both doses of L. corniculatus extract. The best benefits were observed with 200 mg/kg of L. corniculatus extract.

Conclusion: Antioxidant and anti-inflammatory effects of L. corniculatus extract may be due to the presence of active components.

Keywords: Anti-inflammatory effect, antioxidant, hepatitis, Lotus corniculatus, myeloperoxidase, paracetamol.

[1]
Chau, T. Drug-induced liver injury: an update. Hong Kong Med. Diary, 2008, 13, 23-26.
[2]
Mossanen, J.C.; Tacke, F. Acetaminophen-induced acute liver injury in mice. Lab. Anim., 2015, 49(1)(Suppl.), 30-36.
[http://dx.doi.org/10.1177/0023677215570992] [PMID: 25835736]
[3]
Huppelschoten, S.B.; Van de Water, B. Drug-induced liver injury and TNF-α signaling: from in vivo understanding to in vitro testing approaches. Appl. In Vitro Toxicol., 2016, 2(4), 197-206.
[http://dx.doi.org/10.1089/aivt.2016.0017]
[4]
Rafiq, S.; Majeed, R.; Qazi, A.K.; Ganai, B.A.; Wani, I.; Rakhshanda, S.; Qurishi, Y.; Sharma, P.R.; Hamid, A.; Masood, A.; Hamid, R. Isolation and antiproliferative activity of Lotus corniculatus lectin towards human tumour cell lines. Phytomedicine, 2013, 21(1), 30-38.
[http://dx.doi.org/10.1016/j.phymed.2013.08.005] [PMID: 24055517]
[5]
Woodward, L.; Laboyrie, P.J. E.B.L., Jansen. Lotus Corniculatus and condensed tannins effects on milk production by dairy cows. Asian-Australas. J. Anim. Sci., 2000, 13, 521-525.
[6]
Abdallah, R.M.; Hammoda, H.M. M.M, Radwan. Phytochemical investigation of Lotus Corniculatus growing in Egypt. Planta Med., 2016, 3, 82-81.
[7]
Mezrag, A.; Bouheroum, M. N., Malafronte. Phytochemical investigation and cytotoxic activity of Lotus corniculatus. Pharmacologyonline, 2014, 3, 222-225.
[8]
Koelzer, J.; Pereira, D.A.; Bastos, J. Evaluation of the anti-inflammatory efficacy of Lotus corniculatus. Food Chem., 2009, 117, 444-450.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.044]
[9]
Pereira, D.A.; Dalmarco, J.B.; Wisniewski, A., Jr; Simionatto, E.L.; Pizzolatti, M.G.; Fröde, T.S. Lotus corniculatus regulates the inflammation induced by bradykinin in a murine model of pleurisy. J. Agric. Food Chem., 2011, 59(6), 2291-2298.
[http://dx.doi.org/10.1021/jf103997s] [PMID: 21355560]
[10]
Marley, C.L.; Cook, R.; Keatinge, R.; Barrett, J.; Lampkin, N.H. The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet. Parasitol., 2003, 112(1-2), 147-155.
[http://dx.doi.org/10.1016/S0304-4017(02)00412-0] [PMID: 12581592]
[11]
Khalighi-Sigaroodi, F.; Ahvazi, M.; Hadjiakhoondi, A.; Taghizadeh, M.; Yazdani, D.; Khalighi-Sigaroodi, S.; Bidel, S. Cytotoxicity and antioxidant activity of 23 plant species of leguminosae family. Iran. J. Pharm. Res., 2012, 11(1), 295-302.
[PMID: 24250452]
[12]
Harborne, J.B. Phytochemical methods: A guide to modern techniques of plant analysis; Chapman & Hall Ltd.: London, 1973.
[13]
Trease, G.E.; Evans, W.C. Pharmacognosy, 13th ed; ELBS/Bailliere Tindall: London, 1989.
[14]
Singleton, V.L.N.; Rossi, J.A. A colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[15]
Bao, J.S; Cai, Y.; M., Sun Anthocyanins, flavonoids, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem., 2005, 53, 2327-2332.
[http://dx.doi.org/10.1021/jf048312z] [PMID: 15769176]
[16]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[17]
Gülçin, I.; Elias, R.; Gepdiremen, A.; Boyer, L.; Köksal, E. A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. Afr. J. Biotechnol., 2007, 6(4), 410-418.
[18]
Grant, N.H.; Alburn, H.E.; Kryzanauskas, C. Stabilization of serum albumin by anti-inflammatory drugs. Biochem. Pharmacol., 1970, 19(3), 715-722.
[http://dx.doi.org/10.1016/0006-2952(70)90234-0] [PMID: 4101192]
[19]
Devkar, S.T.; Kandhare, A.D.; Zanwar, A.A.; Jagtap, S.D.; Katyare, S.S.; Bodhankar, S.L.; Hegde, M.V. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS. Pharm. Biol., 2016, 54(11), 2394-2403.
[http://dx.doi.org/10.3109/13880209.2016.1157193] [PMID: 27043749]
[20]
Baali, N.; Belloum, Z.; Baali, S.; Chabi, B.; Pessemesse, L.; Fouret, G.; Ameddah, S.; Benayache, F.; Benayache, S.; Feillet-Coudray, C.; Cabello, G.; Wrutniak-Cabello, C. Protective activity of total polyphenols from Genista quadriflora Munby and Teucrium polium geyrii Maire in acetaminophen-induced hepatotoxicity in rats. Nutrients, 2016, 8(4), 193.
[http://dx.doi.org/10.3390/nu8040193] [PMID: 27043622]
[21]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.,
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[22]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[23]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[PMID: 4436300]
[24]
Winterbourn, C.C.; Hawkins, R.E.; Brian, M.; Carrell, R.W. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med., 1975, 85(2), 337-341.
[PMID: 803541]
[25]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[26]
Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol., 1982, 78(3), 206-209.
[http://dx.doi.org/10.1111/1523-1747.ep12506462] [PMID: 6276474]
[27]
Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 2009, 14(6), 2167-2180.
[http://dx.doi.org/10.3390/molecules14062167] [PMID: 19553890]
[28]
Sarr, M.; Ngom, S.; Kane, M.O.; Wele, A.; Diop, D.; Sarr, B.; Gueye, L.; Andriantsitohaina, R.; Diallo, A.S. In vitro vasorelaxation mechanisms of bioactive compounds extracted from Hibiscus sabdariffa on rat thoracic aorta. Nutr. Metab. (Lond.), 2009, 6, 45.
[http://dx.doi.org/10.1186/1743-7075-6-45] [PMID: 19883513]
[29]
Rees, M.D.; Bottle, S.E.; Fairfull-Smith, K.E.; Malle, E.; Whitelock, J.M.; Davies, M.J. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides. Biochem. J., 2009, 421(1), 79-86.
[http://dx.doi.org/10.1042/BJ20090309] [PMID: 19379130]
[30]
Mukhopadhyay, D.; Dasgupta, P.; Roy, D.S.; Palchoudhuri, S.; Chatterjee, I.; Dastidar, G.A. A sensitive in vitro spectrophotometric hydrogen peroxide scavenging assay using 1,10-phenanthroline. Free Radic. Antioxid., 2016, 6(1), 124-134.
[http://dx.doi.org/10.5530/fra.2016.1.15]
[31]
El Hilaly, J.; Ennassir, J.; Benlyas, M.; Alem, C.; Amarouch, M.Y.; Filali-Zegzouti, Y. Anti-inflammatory properties and phenolic profile of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J. King Saud University, 2018, 30(4), 519-526.
[http://dx.doi.org/10.1016/j.jksus.2017.08.011]
[32]
Precupas, A.; Sandu, R.; Popa, V.T. Quercetin influence on thermal denaturation of bovine serum albumin. J. Phys. Chem. B, 2016, 120(35), 9362-9375.
[http://dx.doi.org/10.1021/acs.jpcb.6b06214] [PMID: 27505141]
[33]
Vaidya, A.; Pandita, N. Comparative pharmacognostic and phytochemical studies of flower, leaf and stem extracts of Butea monosperma. Asian J. Biomedical. Pharm. Sci., 2017, 7(63), 10-18.
[34]
McGill, M.R.; Yan, H.M.; Ramachandran, A.; Murray, G.J.; Rollins, D.E.; Jaeschke, H. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology, 2011, 53(3), 974-982.
[http://dx.doi.org/10.1002/hep.24132] [PMID: 21319200]
[35]
Vouffo, E.Y.; Donfack, F.M. R.J, Temdie. Hepatho-nephroprotective and antioxidant effect of stem bark of Allanblackia gabonensis aqueous extract against acetaminophen-induced liver and kidney disorders in rats. J. Exp. Integr. Med., 2012, 2(4), 337-344.
[http://dx.doi.org/10.5455/jeim.270812.or.042]
[36]
Lawson, J.A.; Farhood, A.; Hopper, R.D.; Bajt, M.L.; Jaeschke, H. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol. Sci., 2000, 54(2), 509-516.
[http://dx.doi.org/10.1093/toxsci/54.2.509] [PMID: 10774834]
[37]
Okokon, J.E.; Simeon, J.O.; Umoh, E.E. Hepatoprotective activity of the extract of Homalium letestui stem against paracetamol-induced liver injury. Avicenna J. Phytomed., 2017, 7(1), 27-36.
[PMID: 28265544]
[38]
Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol., 2016, 10, 148-156.
[http://dx.doi.org/10.1016/j.redox.2016.10.001] [PMID: 27744120]
[39]
Palyu, E.; Varga, E.; Janka, K. P098. Serum myeloperoxidase level is a marker of disease activity in patients with inflammatory bowel disease. Poster presentations: Clinical Diagnosis and out come, 2011. Available from: https: //www.ecco-bd.eu/ publications/congress-abstract-s/abstracts-2011/item/ 118.html
[40]
Rensen, S.S.; Slaats, Y.; Nijhuis, J.; Jans, A.; Bieghs, V.; Driessen, A.; Malle, E.; Greve, J.W.; Buurman, W.A. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am. J. Pathol., 2009, 175(4), 1473-1482.
[http://dx.doi.org/10.2353/ajpath.2009.080999] [PMID: 19729473]
[41]
Mayyas, F.A.; Al-Jarrah, M.I.; Ibrahim, K.S.; Alzoubi, K.H. Level and significance of plasma myeloperoxidase and the neutrophil to lymphocyte ratio in patients with coronary artery disease. Exp. Ther. Med., 2014, 8(6), 1951-1957.
[http://dx.doi.org/10.3892/etm.2014.2034] [PMID: 25371762]
[42]
Faith, M.; Sukumaran, A.; Pulimood, A.B.; Jacob, M. How reliable an indicator of inflammation is myeloperoxidase activity? Clin. Chim. Acta, 2008, 396(1-2), 23-25.
[http://dx.doi.org/10.1016/j.cca.2008.06.016] [PMID: 18619953]
[43]
Chen, W.; Zhang, X.; Fan, J.; Zai, W.; Luan, J.; Li, Y.; Wang, S.; Chen, Q.; Wang, Y.; Liang, Y.; Ju, D. Tethering interleukin-22 to apolipoprotein A-I ameliorates mice from acetaminophen-induced liver injury. Theranostics, 2017, 7(17), 4135-4148.
[http://dx.doi.org/10.7150/thno.20955] [PMID: 29158815]
[44]
Kuru, S.; Kismet, K.; Barlas, A.M.; Tuncal, S.; Celepli, P.; Surer, H.; Ogus, E.; Ertas, E. The effect of montelukast on liver damage in an experimental obstructive jaundice model. Viszeralmedizin, 2015, 31(2), 131-138.
[PMID: 26989383]
[45]
Mohamadkhani, A.; Jazii, F.R.; Sayehmiri, K.; Jafari-Nejad, S.; Montaser-Kouhsari, L.; Poustchi, H.; Montazeri, G. Plasma myeloperoxidase activity and apolipoprotein A-1 expression in chronic hepatitis B patients. Arch. Iran Med., 2011, 14(4), 254-258.
[PMID: 21726101]
[46]
Khan, A.A.; Alsahli, M.A.; Rahmani, A.H. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med. Sci. (Basel), 2018, 6(2)E33
[http://dx.doi.org/10.3390/medsci6020033] [PMID: 29669993]
[47]
Van Antwerpen, P.; Dufrasne, F.; Lequeux, M.; Boudjeltia, K.Z.; Lessgyer, I.; Babar, S.; Moreau, P.; Moguilevsky, N.; Vanhaeverbeek, M.; Ducobu, J.; Nève, J. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs: flufenamic acid and its 5-chloro-derivative directly interact with a recombinant human myeloperoxidase to inhibit the synthesis of hypochlorous acid. Eur. J. Pharmacol., 2007, 570(1-3), 235-243.
[http://dx.doi.org/10.1016/j.ejphar.2007.05.057] [PMID: 17610876]
[48]
Kohnen, S.; Franck, T.; Van Antwerpen, P.; Boudjeltia, K.Z.; Mouithys-Mickalad, A.; Deby, C.; Moguilevsky, N.; Deby-Dupont, G.; Lamy, M.; Serteyn, D. Resveratrol inhibits the activity of equine neutrophil myeloperoxidase by a direct interaction with the enzyme. J. Agric. Food Chem., 2007, 55(20), 8080-8087.
[http://dx.doi.org/10.1021/jf071741n] [PMID: 17844991]
[49]
Zeraik, M.L.; Ximenes, V.F.; Regasini, L.O.; Dutra, L.A.; Silva, D.H.; Fonseca, L.M.; Coelho, D.; Machado, S.A.; Bolzani, V.S. 4′-Aminochalcones as novel inhibitors of the chlorinating activity of myeloperoxidase. Curr. Med. Chem., 2012, 19(31), 5405-5413.
[http://dx.doi.org/10.2174/092986712803833344] [PMID: 22963624]
[50]
Kirchner, T.; Hermann, E.; Möller, S.; Klinger, M.; Solbach, W.; Laskay, T.; Behnen, M. Flavonoids and 5-aminosalicylic acid inhibit the formation of neutrophil extracellular traps. Mediators Inflamm., 2013, 2013710239
[http://dx.doi.org/10.1155/2013/710239] [PMID: 24381411]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2020
Page: [128 - 139]
Pages: 12
DOI: 10.2174/1871523018666190222120752

Article Metrics

PDF: 19
HTML: 3
EPUB: 1
PRC: 1