A Comparative Investigation of Complex Conjugate Eigenvalues of Generalized Morse and Classical Lennard-Jones Potential for Metal Atoms

Author(s): Samuel A. Surulere*, Michael Y. Shatalov, Andrew C.P.G. Mkolesia, Adejimi A. Adeniji

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: The knowledge of parameter estimation for interatomic potentials is useful in the computation of the vibrational structure of van der Waals molecules.

Methods: On the estimation of the Generalized Morse and Classical Lennard-Jones potential energy functions, complex conjugates eigenvalues may be obtained. Different approaches can be used to solve this resulting problem. A method that uses the objective least squares function method to estimate parameters of the interatomic potentials is employed.

Results: Numerical simulation of the systems using metal atoms yields complex conjugates eigenvalues at some initial point.

Conclusion: Other approaches of solving the complex conjugates eigenvalues problem are discussed comprehensively.

Keywords: Interatomic potentials, least squares, potential parameters, objective functions, van der Waals molecule, conjugate.

Steele, D.; Lippincott, E.R.; Vanderslice, J.T. Comparative study of empirical internuclear potential functions. Rev. Mod. Phys., 1962, 34(2), 239.
Matsumoto, A. Parameters of the Morse potential from second virial coefficients of gases. Zeitschrift für. Naturforschung A., 1987, 42(5), 447-450.
Oobatake, M.; Ooi, T. Determination of energy parameters in Lennard-Jones potentials from second virial coefficients. Prog. Theor. Phys., 1972, 48(6), 2132-2143.
Morse, P.M. Diatomic molecules according to the wave mechanics. Phys. Rev., 1929, 34(1), 57.
Kozlov, E.; Popov, L.; Starostenkov, M. Calculation of the Morse potential for solid gold. Russian Phys. J., 1972, 15(3), 395-396.
Lim, T-C.; Udyavara, R. Relations between Varshni and Morse potential energy parameters. Open Phys., 2009, 7(1), 193-197.
Biswas, R.; Hamann, D. Interatomic potentials for silicon structural energies. Phys. Rev. Lett., 1985, 55(19), 2001.
Rafii-Tabar, H.; Mansoori, G. Interatomic potential models for nanostructures. In: Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: USA, 2004.
Kikawa, C.; Shatalov, M.; Kloppers, P. A method for computing initial approximations for a 3-parameter exponential function. Phys. Sci. Int. J., 2015, 6, 203-208.
Kloppers, P.; Kikawa, C.; Shatalov, M. A new method for least squares identification of parameters of the transcendental equations. Int. J. Phys. Sci., 2012, 7(31), 5218-5223.
Olsson, P.A. Transverse resonant properties of strained gold nanowires. J. Appl. Phys., 2010, 108(3) 034318
Surulere, S.; Shatalov, M.; Mkolesia, A.; Fedotov, I. A modern approach for the identification of the Classical and Modified Generalized Morse potential. Nanosci. Nanotechnol. Asia, 2020, 10(2), 142-151.
Shatalov, M.; Surulere, S.; Mkolesia, A.; Malange, T. Estimation of potentials that are solutions of some second order ordinary differential equation; Russian J. Mathe. Phys, 2018. [Epub ahead of print]
Zope, R.R.; Mishin, Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B., 2003, 68(2) 024102

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [356 - 363]
Pages: 8
DOI: 10.2174/2210681209666190220125249
Price: $25

Article Metrics

PDF: 11