Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Mycobacterial tuberculosis Enzyme Targets and their Inhibitors

Author(s): Anil Kumar Saxena* and Anamika Singh

Volume 19, Issue 5, 2019

Page: [337 - 355] Pages: 19

DOI: 10.2174/1568026619666190219105722

Price: $65

Abstract

Tuberculosis (TB) still continues to be a major killer disease worldwide. Unlike other bacteria Mycobacterium tuberculosis (Mtb) has the ability to become dormant within the host and to develop resistance. Hence efforts are being made to overcome these problems by searching for new antitubercular agents which may be useful in the treatment of multidrug-(MDR) and extensively drugresistant (XDR) M. tuberculosis and shortening the treatment time. The recent introduction of bedaquiline to treat MDR-TB and XDR-TB may improve the status of TB treatment. The target enzymes in anti-TB drug discovery programs play a key role, hence efforts have been made to review the work on molecules including antiTB drugs acting on different enzyme targets including ATP synthase, the target for bedaquiline. Literature searches have been carried out to find the different chemical molecules including drugs and their molecular targets responsible for their antitubercular activities in recent years. This review provides an overview of the chemical structures with their antitubercular activities and enzyme targets like InhA, ATP synthase, Lip Y, transmembrane transport protein large (MmpL3), and decaprenylphospho-β-D-ribofuranose 2-oxidase, (DprE1). The major focus has been on the new target ATP synthase. Such an attempt may be useful in designing new chemical entities (NCEs) for specific and multi-drug targeting against Mtb.

Keywords: Mycobacterium tuberculosis, Enzyme targets, Inhibitors, Minimum inhibitory concentration (MIC), Tuberculosis (TB), ATP.

Graphical Abstract
[1]
Dye, C.; Williams, B.G. The population dynamics and control of tuberculosis. Science, 2010, 328(5980), 856-861.
[http://dx.doi.org/ 10.1126/science.1185449] [PMID: 20466923]
[2]
Russell, D.G.; Barry, C.E., III; Flynn, J.L. Tuberculosis: what we don’t know can, and does, hurt us. Science, 2010, 328(5980), 852-856.
[http://dx.doi.org/10.1126/science.1184784] [PMID: 20466922]
[3]
WHO. Global tuberculosis report, 2017.
[4]
Mandavilli, A. Virtually incurable TB warns of impending disaster. Nat. Med., 2007, 13(3), 271.
[http://dx.doi.org/10.1038/nm0307-271a] [PMID: 17342128]
[5]
Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 2010, 375(9728), 1830-1843.
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[6]
World health organization , Multidrug and extensively drug resistance Tb (M/XDR-TB): 2010 Global report on surveillance and response.,
[7]
WHO treatment guidelines for drug-resistant tuberculosis, 2016.
[8]
Seddon, J.A.; Furin, J.J.; Gale, M.; Del Castillo Barrientos, H.; Hurtado, R.M.; Amanullah, F.; Ford, N.; Starke, J.R.; Schaaf, H.S. Caring for children with drug-resistant tuberculosis: practice-based recommendations. Am. J. Respir. Crit. Care Med., 2012, 186(10), 953-964.
[http://dx.doi.org/10.1164/rccm.201206-1001CI] [PMID: 22983960]
[9]
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331), 483-490.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[10]
Ma, Z.; Lienhardt, C.; McIlleron, H.; Nunn, A.J.; Wang, X. Global tuberculosis drug development pipeline: the need and the reality. Lancet, 2010, 375(9731), 2100-2109.
[http://dx.doi.org/10.1016/S0140-6736(10)60359-9] [PMID: 20488518]
[11]
Bald, D.; Koul, A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol. Lett., 2010, 308(1), 1-7.
[http://dx.doi.org/10.1111/j.1574-6968.2010.01959.x] [PMID: 20402785]
[13]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[14]
Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Göhlmann, H.W.; Willebrords, R.; Poncelet, A.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem., 2008, 283(37), 25273-25280.
[http://dx.doi.org/10.1074/jbc.M803899200] [PMID: 18625705]
[15]
Rao, S.P.; Alonso, S.; Rand, L.; Dick, T.; Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11945-11950.
[http://dx.doi.org/10.1073/pnas.0711697105] [PMID: 18697942]
[16]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x] [PMID: 12657046]
[17]
Devenish, R.J.; Prescott, M.; Roucou, X.; Nagley, P. Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. Biochim. Biophys. Acta, 2000, 1458(2-3), 428-442.
[http://dx.doi.org/10.1016/S0005-2728(00)00092-X] [PMID: 10838056]
[18]
Cozens, A.L.; Walker, J.E. The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J. Mol. Biol., 1987, 194(3), 359-383.
[http://dx.doi.org/10.1016/0022-2836(87)90667-X] [PMID: 3041005]
[19]
Lu, H.; Tonge, P.J. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc. Chem. Res., 2008, 41(1), 11-20.
[http://dx.doi.org/10.1021/ar700156e] [PMID: 18193820]
[20]
Saier, M.H., Jr; Paulsen, I.T. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol., 2001, 12(3), 205-213.
[http://dx.doi.org/ 10.1006/scdb.2000.0246] [PMID: 11428913]
[21]
Wolucka, B.A. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J., 2008, 275(11), 2691-2711.
[http://dx.doi.org/ 10.1111/j.1742-4658.2008.06395.x] [PMID: 18422659]
[22]
Katherine, A. Identification of Novel Imidazo[1,2-a]pyridine Inhibitors Targeting M. tuberculosis.QcrB., 2012 Jul 12;52951
[23]
Lakshmanan, M.; Xavier, A.S. Bedaquiline - The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young Pharm., 2013, 5(4), 112-115.
[http://dx.doi.org/ 10.1016/j.jyp.2013.12.002] [PMID: 24563587]
[24]
Börsch, M.; Duncan, T.M. Spotlighting motors and controls of single FoF1-ATP synthase. Biochem. Soc. Trans., 2013, 41(5), 1219-1226.
[http://dx.doi.org/10.1042/BST20130101] [PMID: 24059511]
[25]
Iino, R.; Noji, H. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics. IUBMB Life, 2013, 65(3), 238-246.
[http://dx.doi.org/10.1002/iub.1120] [PMID: 23341301]
[26]
Walker, J.E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans., 2013, 41(1), 1-16.
[http://dx.doi.org/10.1042/BST20110773] [PMID: 23356252]
[27]
Shi, L.; Sohaskey, C.D.; Kana, B.D.; Dawes, S.; North, R.J.; Mizrahi, V.; Gennaro, M.L. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15629-15634.
[http://dx.doi.org/10.1073/pnas.0507850102] [PMID: 16227431]
[28]
Rao, S.P.; Alonso, S.; Rand, L.; Dick, T.; Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11945-11950.
[http://dx.doi.org/10.1073/pnas.0711697105] [PMID: 18697942]
[29]
Walker, J.E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans., 2013, 41(1), 1-16.
[http://dx.doi.org/10.1042/BST20110773] [PMID: 23356252]
[30]
Boyer, P.D. The ATP synthase--a splendid molecular machine. Annu. Rev. Biochem., 1997, 66, 717-749.
[http://dx.doi.org/ 10.1146/annurev.biochem.66.1.717] [PMID: 9242922]
[31]
Junge, W.; Sielaff, H.; Engelbrecht, S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature, 2009, 459(7245), 364-370.
[http://dx.doi.org/10.1038/nature08145] [PMID: 19458712]
[32]
Noji, H.; Yasuda, R.; Yoshida, M.; Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature, 1997, 386(6622), 299-302.
[http://dx.doi.org/10.1038/386299a0] [PMID: 9069291]
[33]
Weber, J.; Senior, A.E. Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta, 1997, 1319(1), 19-58.
[http://dx.doi.org/ 10.1016/S0005-2728(96)00121-1] [PMID: 9107315]
[34]
Boyer, P.D. The ATP synthase--a splendid molecular machine. Annu. Rev. Biochem., 1997, 66, 717-749.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.717] [PMID: 9242922]
[35]
Fillingame, R.H. The Bacteria., 1990, Vol. XII, 345-391.
[36]
Jones, P.C.; Fillingame, R.H. Genetic fusions of subunit c in the FO sector of H+ transporting ATP synthase. J. Biol. Chem., 1998, 273, 29701-29705.
[http://dx.doi.org/10.1074/jbc.273.45.29701] [PMID: 9792682]
[37]
Dimroth, P.; von Ballmoos, C.; Meier, T. Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series. EMBO Rep., 2006, 7(3), 276-282.
[http://dx.doi.org/ 10.1038/sj.embor.7400646] [PMID: 16607397]
[38]
Steed, P.R.; Fillingame, R.H. Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase. J. Biol. Chem., 2009, 284(35), 23243-23250.
[http://dx.doi.org/10.1074/jbc.M109.002501] [PMID: 19542218]
[39]
Vik, S.B.; Ishmukhametov, R.R. Structure and function of subunit a of the ATP synthase of Escherichia coli. J. Bioenerg. Biomembr., 2005, 37(6), 445-449.
[http://dx.doi.org/10.1007/s10863-005-9488-6] [PMID: 16691481]
[40]
Valiyaveetil, F.; Fillingame, R.H. On the Role of Arg-210 and Glu- 219 of Subunit a in Proton Translocation by the Escherichia coli F0F1-ATP Synthase. 1997, 272,(51), 32635-32641.
[41]
von Ballmoos, C.; Cook, G.M.; Dimroth, P. Unique rotary ATP synthase and its biological diversity. Annu. Rev. Biophys., 2008, 37, 43-64.
[http://dx.doi.org/10.1146/annurev.biophys.37.032807.130018] [PMID: 18573072]
[42]
Guillemont, J. Patent (International Publication Number: WO 2004/011436 International Publication Date, 2004 Feb 5;.
[43]
Guillemont, J.; Meyer, C.; Poncelet, A.; Bourdrez, X.; Andries, K. Diarylquinolines, synthesis pathways and quantitative structure--activity relationship studies leading to the discovery of TMC207. Future Med. Chem., 2011, 3(11), 1345-1360.
[http://dx.doi.org/10.4155/fmc.11.79] [PMID: 21879841]
[44]
Lakshmanan, M.; Xavier, A.S. Bedaquiline - The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young Pharm., 2013, 5(4), 112-115.
[http://dx.doi.org/10.1016/j.jyp.2013.12.002] [PMID: 24563587]
[45]
Haagsma, A.C.; Podasca, I.; Koul, A.; Andries, K.; Guillemont, J.; Lill, H.; Bald, D. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One, 2011, 6(8), e23575.
[http://dx.doi.org/10.1371/journal.pone.0023575] [PMID: 21858172]
[46]
Preiss, L.; Langer, J.D.; Yildiz, Ö.; Eckhardt-Strelau, L.; Guillemont, J.E.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv., 2015, 1(4), e1500106.
[http://dx.doi.org/10.1126/sciadv.1500106] [PMID: 26601184]
[47]
Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv., 2014, Nov 28; 204-384.
[48]
Kakkar, A.K.; Dahiya, N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis (Edinb.), 2014, 94(4), 357-362.
[http://dx.doi.org/10.1016/j.tube.2014.04.001] [PMID: 24841672]
[49]
Mesens, N.; Verbeeck, J.; Rouan, M.; Vanparys, P. Elucidating the role of M2 in the preclinical safety profile of TMC207. Abstract on the 38th Union World Conference on Lung Health, 2007.Cape Town, South Africa
[50]
Tong, A.S.T.; Choi, P.J.; Blaser, A.; Sutherland, H.S.; Tsang, S.K.Y.; Guillemont, J.; Motte, M.; Cooper, C.B.; Andries, K.; Van den Broeck, W.; Franzblau, S.G.; Upton, A.M.; Denny, W.A.; Palmer, B.D.; Conole, D.; Daniel Conole, D. 6-Cyano Analogues of Bedaquiline as Less Lipophilic and Potentially Safer Diarylquinolines for Tuberculosis. ACS Med. Chem. Lett., 2017, 8(10), 1019-1024.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00196] [PMID: 29057044]
[51]
Khan, S.R.; Singh, S.; Roy, K.K.; Akhtar, M.S.; Saxena, A.K.; Krishnan, M.Y. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Int. J. Antimicrob. Agents, 2013, 41(1), 41-46.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.012] [PMID: 23141113]
[52]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Gupta, A.D.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non- replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[53]
Kaliaa, D.; Kumar, A.; Meenaa, G.; Sethia, K.P.; Sharma, R.; Trivedi, P.; Khan, S.R.; Singh, A.; Singh, A.S.; Sharma, S.; Roy, K.K.; Kant, R.; Krishnan, M.Y.; Singh, B.N.; Sinha, S.; Chaturvedi, V Synthesis and anti-tubercular activity of conformationally constrained and bisquinoline analogs of TMC207, Med. Chem. Commun. 2015, 1554-1563.
[54]
Kumar, S.; Mehra, R.; Sharma, S.; Bokolia, N.P.; Raina, D.; Nargotra, A.; Singh, P.P.; Khan, I.A. Screening of antitubercular compound library identifies novel ATP synthase 1 inhibitors of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2017.
[http://dx.doi.org/10.1016/j.tube.2017.10.008] [PMID: 29523328]
[55]
Campaniço, A.; Moreira, R.; Lopes, F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem., 2018, 150, 525-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.020] [PMID: 29549838]
[56]
AlMatar, M.; Makky, E.A.; Var, I.; Kayar, B.; Köksal, F. Novel compounds targeting InhA for TB therapy. Pharmacol. Rep., 2018, 70(2), 217-226.
[http://dx.doi.org/10.1016/j.pharep.2017.09.001] [PMID: 29475004]
[57]
Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc., 1952, 65(4), 357-364.
[PMID: 14903503]
[58]
Almeida Da Silva, P.E.; Palomino, J.C.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother., 2011, 66(7), 1417-1430.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[59]
Kuo, M.R.; Morbidoni, H.R.; Alland, D.; Sneddon, S.F.; Gourlie, B.B.; Staveski, M.M.; Leonard, M.; Gregory, J.S.; Janjigian, A.D.; Yee, C.; Musser, J.M.; Kreiswirth, B.; Iwamoto, H.; Perozzo, R.; Jacobs, W.R., Jr; Sacchettini, J.C.; Fidock, D.A. Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J. Biol. Chem., 2003, 278(23), 20851-20859.
[http://dx.doi.org/10.1074/jbc.M211968200] [PMID: 12606558]
[60]
Pajk, S.; Živec, M.; Šink, R.; Sosič, I.; Neu, M.; Chung, C.W.; Martínez-Hoyos, M.; Pérez-Herrán, E.; Álvarez-Gómez, D.; Álvarez-Ruíz, E.; Mendoza-Losana, A.; Castro-Pichel, J.; Barros, D.; Ballell-Pages, L.; Young, R.J.; Convery, M.A.; Encinas, L.; Gobec, S. New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. Eur. J. Med. Chem., 2016, 112, 252-257.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.008] [PMID: 26900657]
[61]
Heath, R.J.; Yu, Y.T.; Shapiro, M.A.; Olson, E.; Rock, C.O. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem., 1998, 273(46), 30316-30320.
[http://dx.doi.org/10.1074/jbc.273.46.30316] [PMID: 9804793]
[62]
Stewart, M.J.; Parikh, S.; Xiao, G.; Tonge, P.J.; Kisker, C. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J. Mol. Biol., 1999, 290(4), 859-865.
[http://dx.doi.org/1 0.1006/jmbi.1999.2907] [PMID: 10398587]
[63]
Högenauer, G.; Woisetschläger, M. A diazaborine derivative inhibits lipopolysaccharide biosynthesis. Nature, 1981, 293(5834), 662-664.
[http://dx.doi.org/10.1038/293662a0] [PMID: 7027050]
[64]
Davis, M.C.; Franzblau, S.G.; Martin, A.R. Syntheses and evaluation of benzodiazaborine compounds against M. tuberculosis H37Rv in vitro. Bioorg. Med. Chem. Lett., 1998, 8(7), 843-846.
[http://dx.doi.org/10.1016/S0960-894X(98)00126-7] [PMID: 9871552]
[65]
Parikh, S.L.; Xiao, G.; Tonge, P.J. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 2000, 39(26), 7645-7650.
[http://dx.doi.org/ 10.1021/bi0008940] [PMID: 10869170]
[66]
Kumar, U.C. BVS, S. K.; Mahmood, S.; D. S.; Kumar-Sahu, P.; Pulakanam, S.;Ballell, L.; Alvarez-Gomez, D.; Malik, S.; JARP, S. Discovery of novel InhA reductaseinhibitors:application of pharmacophore- and shape-based screening approach. Future Med. Chem., 2013, 5, 249-259.
[http://dx.doi.org/10.4155/fmc.12.211] [PMID: 23464516]
[67]
Khan, S.; Nagarajan, S.N.; Parikh, A.; Samantaray, S.; Singh, A.; Kumar, D.; Roy, R.P.; Bhatt, A.; Nandicoori, V.K. Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J. Biol. Chem., 2010, 285(48), 37860-37871.
[http://dx.doi.org/10.1074/jbc.M110.143131] [PMID: 20864541]
[68]
Ganesh, S.; Pedgaonkar, G.S. Jonnalagadda, Padma.; Sridevi, J.P.; Jeankumar, V.U.; Shalini, Saxena.; Parthiban, B. D.; Renuka, J.; Perumal, Y.; Sriram, D. Bioorg. Med. Chem., 2014, 22, 6134-6145.
[PMID: 25282650]
[69]
Kuo, M.R.; Morbidoni, H.R.; Alland, D.; Sneddon, S.F.; Gourlie, B.B.; Staveski, M.M.; Leonard, M.; Gregory, J.S.; Janjigian, A.D.; Yee, C.; Musser, J.M.; Kreiswirth, B.; Iwamoto, H.; Perozzo, R.; Jacobs, W.R., Jr; Sacchettini, J.C.; Fidock, D.A. Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J. Biol. Chem., 2003, 278(23), 20851-20859.
[http://dx.doi.org/10.1074/jbc.M211968200] [PMID: 12606558]
[70]
Matviiuk, T.; Madacki, J.; Mori, G.; Orena, B.S.; Menendez, C.; Kysil, A.; André-Barrès, C.; Rodriguez, F.; Korduláková, J.; Mallet-Ladeira, S.; Voitenko, Z.; Pasca, M.R.; Lherbet, C.; Baltas, M. Pyrrolidinone and pyrrolidine derivatives: Evaluation as inhibitors of InhA and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2016, 123, 462-475.
[http://dx.doi.org/10.1016/j.ejmech.2016. 07.028] [PMID: 27490025]
[71]
He, X.; Alian, A.; Stroud, R.; Ortiz de Montellano, P.R. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J. Med. Chem., 2006, 49(21), 6308-6323.
[http://dx.doi.org/ 10.1021/jm060715y] [PMID: 17034137]
[72]
George, S.K.; Thengungal, R. Design, synthesis and antitubercular screening of certain novel thiadiazolyl pyrrolidine carboxamides as enoyl ACP reductase inhibitors. Int. J. Pharm. Pharm. Sci., 2011, 3, 280-284.
[73]
Sonia, G.; Ravi, T.K. Oxadiazolo pyrrolidine carboxamides as enoyl-ACP reductase inhibitors: design, synthesis and antitubercular activity screening. Med. Chem. Res., 2013, 22, 3428-3433.
[http://dx.doi.org/10.1007/s00044-012-0340-3]
[74]
Mishra, J.K.; Wipf, P.; Sinha, S.C. Studies toward a library of tetrahydrofurans: click and MCR products of mono- and bis-tetrahydrofurans. J. Comb. Chem., 2010, 12(5), 609-612.
[http://dx.doi.org/10.1021/cc1000709] [PMID: 20614864]
[75]
Pajk, S.; Živec, M.; Šink, R.; Sosič, I.; Neu, M.; Chung, C.W.; Martínez-Hoyos, M.; Pérez-Herrán, E.; Álvarez-Gómez, D.; Álvarez-Ruíz, E.; Mendoza-Losana, A.; Castro-Pichel, J.; Barros, D.; Ballell-Pages, L.; Young, R.J.; Convery, M.A.; Encinas, L.; Gobec, S. New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. Eur. J. Med. Chem., 2016, 112, 252-257.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.008] [PMID: 26900657]
[76]
Ballell Pages, L.; Castro Pichel, J.; Fernandez Menendez, R.; Fernandez Velando, E. P.; Gonzalez Del Valle, S.; Mendoza Losana, A.; Wolfendale, M. J. (Pyrazol-3-yl)-1,3,4-thiadiazole-2-amine an(Pyrazol-3-yl)-1,3,4-thiazole-2-amine Compounds. PCT publication No.(Pyrazol-3-yl)-1,3,4-thiadiazole-2-amine an(Pyrazol-3-yl)- 1,3,4-thiazole-2-amine Compounds. PCT publication No. WO 2010/118852 A1, 2010.
[77]
Castro Pichel, J.; Fernandez Menendez, R.; Fernandez Velando, E. P.; Gonzalez Del Valle, S.; Mallo-Rubio, A. 3-Amino- PyrazoleDerivatives Useful Against Tuberculosis. PCT publication No. WO2012/049161 A1,, 2012.
[78]
Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G.; Davies, G.; McMiken, H.; Hegde, N.; Ambady, A.; Venkatraman, J.; Panda, M.; Bandodkar, B.; Sambandamurthy, V.K.; Read, J.A. Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(21), 8533-8542.
[http://dx.doi.org/10.1021/jm4012033] [PMID: 24107081]
[79]
Saharan, V.D.; Mahajan, S.S. Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis. Bioorg. Med. Chem. Lett., 2017, 27(4), 808-815.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.026] [PMID: 28117201]
[80]
Pedgaonkar, G.S.; Sridevi, J.P.; Jeankumar, V.U.; Saxena, S.; Devi, P.B.; Renuka, J.; Yogeeswari, P.; Sriram, D. Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis. Eur. J. Med. Chem., 2014, 86, 613-627.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.028] [PMID: 25218910]
[81]
Deb, C.; Daniel, J.; Sirakova, T.D.; Abomoelak, B.; Dubey, V.S.; Kolattukudy, P.E. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem., 2006, 281(7), 3866-3875.
[http://dx.doi.org/10.1074/jbc.M505556200] [PMID: 16354661]
[82]
Saxena, A.K.; Roy, K.K.; Singh, S.; Vishnoi, S.P.; Kumar, A.; Kashyap, V.K.; Kremer, L.; Srivastava, R.; Srivastava, B.S. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. Int. J. Antimicrob. Agents, 2013, 42(1), 27-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.03.007] [PMID: 23684389]
[83]
Satpati, S.; Behera, P.; Dixit, A. Identification of Lip Y inhibitors as antitubercular agents using stepwise virtual screening. IJPCBS, 2016, 6, 400-413.
[84]
Saier, M.H., Jr; Paulsen, I.T. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol., 2001, 12(3), 205-213.
[http://dx.doi.org/ 10.1006/scdb.2000.0246] [PMID: 11428913]
[85]
Domenech, P.; Reed, M.B.; Barry, C.E., III Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun., 2005, 73(6), 3492-3501.
[http://dx.doi.org/10.1128/IAI.73.6.3492-3501.2005] [PMID: 15908378]
[86]
Grzegorzewicz, A.E.; Pham, H.; Gundi, V.A.K.B.; Scherman, M.S.; North, E.J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S.E.M.; Korduláková, J.; Chavadi, S.S.; Morisseau, C.; Lenaerts, A.J.; Lee, R.E.; McNeil, M.R.; Mary, M. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Nat. Chem. Biol., 2012, 8(4), 334-341.
[http://dx.doi.org/10.1038/nchembio.794]
[87]
Bhatt, A.; Brown, A.K.; Singh, A.; Minnikin, D.E.; Besra, G.S. Loss of a mycobacterial gene encoding a reductase leads to an altered cell wall containing beta-oxo-mycolic acid analogs and accumulation of ketones. Chem. Biol., 2008, 15(9), 930-939.
[http://dx.doi.org/10.1016/j.chembiol.2008.07.007] [PMID: 18804030]
[88]
Scherman, M.S.; North, E.J.; Jones, V.; Hess, T.N.; Grzegorzewicz, A.E.; Kasagami, T.; Kim, I.H.; Merzlikin, O.; Lenaerts, A.J.; Lee, R.E.; Jackson, M.; Morisseau, C.; McNeil, M.R. Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorg. Med. Chem., 2012, 20(10), 3255-3262.
[http://dx.doi.org/10.1016/j.bmc.2012.03.058] [PMID: 22522007]
[89]
Shepherd, R.G.; Baughn, C.; Cantrall, M.L.; Goodstein, B.; Thomas, J.P.; Wilkinson, R.G. Structure-activity studies leading to ethambutol, a new type of antituberculous compound. Ann. N. Y. Acad. Sci., 1966, 135(2), 686-710.
[http://dx.doi.org/10.1111/j.1749-6632.1966.tb45516.x] [PMID: 5220237]
[90]
Zhu, M.; Burman, W.J.; Starke, J.R.; Stambaugh, J.J.; Steiner, P.; Bulpitt, A.E.; Ashkin, D.; Auclair, B.; Berning, S.E.; Jelliffe, R.W.; Jaresko, G.S.; Peloquin, C.A. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int. J. Tuberc. Lung Dis., 2004, 8(11), 1360-1367.
[PMID: 15581206]
[91]
Lee, R.E.; Protopopova, M.; Crooks, E.; Slayden, R.A.; Terrot, M.; Barry, C.E. III Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem., 2003, 5(2), 172-187.
[http://dx.doi.org/10.1021/cc020071p] [PMID: 12625709]
[92]
Protopopova, M.; Hanrahan, C.; Nikonenko, B.; Samala, R.; Chen, P.; Gearhart, J.; Einck, L.; Nacy, C.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother., 2005, 56(5), 968-974.
[http://dx.doi.org/10.1093/jac/dki319] [PMID: 16172107]
[93]
Jia, L.; Tomaszewski, J.E.; Hanrahan, C.; Coward, L.; Noker, P.; Gorman, G.; Nikonenko, B.; Protopopova, M. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol., 2005, 144(1), 80-87.
[http://dx.doi.org/10.1038/sj.bjp.0705984] [PMID: 15644871]
[94]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[95]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354-11359.
[http://dx.doi.org/10.1073/pnas.1205735109] [PMID: 22733761]
[96]
Wang, F.; Sambandan, D.; Halder, R.; Wang, J.; Batt, S.M.; Weinrick, B.; Ahmad, I.; Yang, P.; Zhang, Y.; Kim, J.; Hassani, M.; Huszar, S.; Trefzer, C.; Ma, Z.; Kaneko, T.; Mdluli, K.E.; Franzblau, S.; Chatterjee, A.K.; Johnsson, K.; Mikusova, K.; Besra, G.S.; Fütterer, K.; Robbins, S.H.; Barnes, S.W.; Walker, J.R.; Jacobs, W.R., Jr; Schultz, P.G. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc. Natl. Acad. Sci. USA, 2013, 110(27), E2510-E2517.
[http://dx.doi.org/10.1073/pnas.1309171110] [PMID: 23776209]
[97]
Shirude, P.S.; Shandil, R.; Sadler, C.; Naik, M.; Hosagrahara, V.; Hameed, S.; Shinde, V.; Bathula, C.; Humnabadkar, V.; Kumar, N.; Reddy, J.; Panduga, V.; Sharma, S.; Ambady, A.; Hegde, N.; Whiteaker, J.; McLaughlin, R.E.; Gardner, H.; Madhavapeddi, P.; Ramachandran, V.; Kaur, P.; Narayan, A.; Guptha, S.; Awasthy, D.; Narayan, C.; Mahadevaswamy, J.; Vishwas, K.G.; Ahuja, V.; Srivastava, A.; Prabhakar, K.R.; Bharath, S.; Kale, R.; Ramaiah, M.; Choudhury, N.R.; Sambandamurthy, V.K.; Solapure, S.; Iyer, P.S.; Narayanan, S.; Chatterji, M. Azaindoles: noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. J. Med. Chem., 2013, 56(23), 9701-9708.
[http://dx.doi.org/10.1021/jm401382v] [PMID: 24215368]
[98]
Neres, J.; Hartkoorn, R.C.; Chiarelli, L.R.; Gadupudi, R.; Pasca, M.R.; Mori, G.; Venturelli, A.; Savina, S.; Makarov, V.; Kolly, G.S.; Molteni, E.; Binda, C.; Dhar, N.; Ferrari, S.; Brodin, P.; Delorme, V.; Landry, V.; de Jesus Lopes Ribeiro, A.L.; Farina, D.; Saxena, P.; Pojer, F.; Carta, A.; Luciani, R.; Porta, A.; Zanoni, G.; De Rossi, E.; Costi, M.P.; Riccardi, G.; Cole, S.T. 2-Carboxyquinoxalines kill mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chem. Biol., 2015, 10(3), 705-714.
[http://dx.doi.org/10.1021/cb5007163] [PMID: 25427196]
[99]
Naik, M.; Humnabadkar, V.; Tantry, S.J.; Panda, M.; Narayan, A.; Guptha, S.; Panduga, V.; Manjrekar, P.; Jena, L.K.; Koushik, K.; Shanbhag, G.; Jatheendranath, S.; Manjunatha, M.R.; Gorai, G.; Bathula, C.; Rudrapatna, S.; Achar, V.; Sharma, S.; Ambady, A.; Hegde, N.; Mahadevaswamy, J.; Kaur, P.; Sambandamurthy, V.K.; Awasthy, D.; Narayan, C.; Ravishankar, S.; Madhavapeddi, P.; Reddy, J.; Prabhakar, K.; Saralaya, R.; Chatterji, M.; Whiteaker, J.; McLaughlin, B.; Chiarelli, L.R.; Riccardi, G.; Pasca, M.R.; Binda, C.; Neres, J.; Dhar, N.; Signorino-Gelo, F.; McKinney, J.D.; Ramachandran, V.; Shandil, R.; Tommasi, R.; Iyer, P.S.; Narayanan, S.; Hosagrahara, V.; Kavanagh, S.; Dinesh, N.; Ghorpade, S.R. 4-aminoquinolone piperidine amides: noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity. J. Med. Chem., 2014, 57(12), 5419-5434.
[http://dx.doi.org/10.1021/jm5005978] [PMID: 24871036]
[100]
Karabanovich, G.; Zemanová, J.; Smutný, T.; Székely, R.; Šarkan, M.; Centárová, I.; Vocat, A.; Pávková, I.; Čonka, P.; Němeček, J.; Stolaříková, J.; Vejsová, M.; Vávrová, K.; Klimešová, V.; Hrabálek, A.; Pávek, P.; Cole, S.T.; Mikušová, K.; Roh, J. Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2016, 59(6), 2362-2380.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00608] [PMID: 26948407]
[101]
van der Westhuyzen, R.; Winks, S.; Wilson, C.R.; Boyle, G.A.; Gessner, R.K.; Soares de Melo, C.; Taylor, D.; de Kock, C.; Njoroge, M.; Brunschwig, C.; Lawrence, N.; Rao, S.P.; Sirgel, F.; van Helden, P.; Seldon, R.; Moosa, A.; Warner, D.F.; Arista, L.; Manjunatha, U.H.; Smith, P.W.; Street, L.J.; Chibale, K. Pyrrolo[3,4-c]pyridine-1,3(2H)-diones: a novel antimycobacterial class targeting mycobacterial respiration. J. Med. Chem., 2015, 58(23), 9371-9381.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01542] [PMID: 26551248]
[102]
Phummarin, N.; Boshoff, H.I.; Tsang, P.S.; Dalton, J.; Wiles, S.; Barry Rd, C.E.; Copp, B.R. SAR and identification of 2-(quinolin-4-yloxy)acetamides as Mycobacterium tuberculosis cytochrome bc1 inhibitors. MedChemComm, 2016, 7(11), 2122-2127.
[http://dx.doi.org/10.1039/C6MD00236F] [PMID: 28337336]
[103]
Katzung, S.M.B.G.; Trevor, A.J. Basic and Clinical Pharmacology, 11th ed; , 2009.
[104]
Sriram, D.; Aubry, A.; Yogeeswari, P.; Fisher, L.M. Gatifloxacin derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Bioorg. Med. Chem. Lett., 2006, 16(11), 2982-2985.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.065] [PMID: 16554151]
[105]
Chang, Y.F.; Carman, G.M. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Prog. Lipid Res., 2008, 47(5), 333-339.
[http://dx.doi.org/10.1016/j.plipres.2008.03.004] [PMID: 18439916]
[106]
Pels Rijcken, W.R.; Overdijk, B.; Van den Eijnden, D.H.; Ferwerda, W. The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J., 1995, 305(Pt 3), 865-870.
[http://dx.doi.org/10.1042/bj3050865] [PMID: 7848287]
[107]
Long, C.W.; Pardee, A.B. Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J. Biol. Chem., 1967, 242(20), 4715-4721.
[PMID: 4862983]
[108]
Mori, G.; Chiarelli, L.R.; Esposito, M.; Makarov, V.; Bellinzoni, M.; Hartkoorn, R.C.; Degiacomi, G.; Boldrin, F.; Ekins, S.; de Jesus Lopes Ribeiro, A.L.; Marino, L.B.; Centárová, I.; Svetlíková, Z.; Blaško, J.; Kazakova, E.; Lepioshkin, A.; Barilone, N.; Zanoni, G.; Porta, A.; Fondi, M.; Fani, R.; Baulard, A.R.; Mikušová, K.; Alzari, P.M.; Manganelli, R.; de Carvalho, L.P.; Riccardi, G.; Cole, S.T.; Pasca, M.R. Thiophenecarboxamide derivatives activated by EthA kill Mycobacterium tuberculosis by inhibiting the CTP synthetase PyrG. Chem. Biol., 2015, 22(7), 917-927.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.016] [PMID: 26097035]
[109]
Esposito, M.; Szadocka, S.; Degiacomi, G.; Orena, B.S.; Mori, G.; Piano, V.; Boldrin, F.; Zemanová, J.; Huszár, S.; Barros, D.; Ekins, S.; Lelièvre, J.; Manganelli, R.; Mattevi, A.; Pasca, M.R.; Riccardi, G.; Ballell, L.; Mikušová, K.; Chiarelli, L.R. A phenotypic based target screening approach delivers new antitubercular CTP synthetase inhibitors. ACS Infect. Dis., 2017, 3(6), 428-437.
[http://dx.doi.org/10.1021/acsinfecdis.7b00006] [PMID: 28475832]
[110]
ClinicalTrials.gov, in clinicaltrials.gov, accessed, 2017 Mar 03;
[111]
ClinicalTrials.gov, in clinicaltrials.gov, accessed. 2018 Mar 03;
[112]
Singh, V.; Mizrahi, V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov. Today, 2017, 22(3), 503-509.
[http://dx.doi.org/10.1016/j.drudis.2016.09.010] [PMID: 27649943]
[113]
Gold, B.; Rodriguez, G.M.; Marras, S.A.; Pentecost, M.; Smith, I. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol., 2001, 42(3), 851-865.
[http://dx.doi.org/10.1046/j.1365-2958.2001. 02684.x] [PMID: 11722747]
[114]
Rohilla, A.; Khare, G.; Tyagi, A.K. Virtual Screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis. Sci. Rep., 2017, 7(1), 4653.
[http://dx.doi.org/ 10.1038/s41598-017-04748-9] [PMID: 28680150]
[115]
Tripathi, S.M.; Ramachandran, R. Overexpression, purification and crystallization of lysine epsilon-aminotransferase (Rv3290c) from Mycobacterium tuberculosis H37Rv. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 6), 572-575.
[http://dx.doi.org/10.1107/S1744309106016824] [PMID: 16754985]
[116]
Devi, P.B.; Sridevi, J.P.; Kakan, S.S.; Saxena, S.; Jeankumar, V.U.; Soni, V.; Anantaraju, H.S.; Yogeeswari, P.; Sriram, D. Discovery of novel lysine ε-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis. Tuberculosis (Edinb.), 2015, 95(6), 786-794.
[http://dx.doi.org/10.1016/j.tube.2015.04.010] [PMID: 26299907]
[117]
Reshma, R.S.; Jeankumar, V.U.; Kapoor, N.; Saxena, S.; Bobesh, K.A.; Vachaspathy, A.R.; Kolattukudy, P.E.; Sriram, D. Mycobacterium tuberculosis lysine-ε-aminotransferase a potential target in dormancy: Benzothiazole based inhibitors. Bioorg. Med. Chem., 2017, 25(10), 2761-2771.
[http://dx.doi.org/10.1016/j.bmc.2017. 03.053] [PMID: 28389113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy