Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Quantum Chemical Studies on the Spectroscopic, Electronic Structural and Nonlinear Properties of an Organic N-Methyl-N- (2,4,6-Trinitrophenyl) Nitramide Energetic Molecule

Author(s): Anbu Veerappan* and Vijayalakshmi Karattadipalayam Arumugam

Volume 9, Issue 1, 2019

Page: [5 - 21] Pages: 17

DOI: 10.2174/1877946809666190218154806

Abstract

Background: Earlier studies on the energetic molecule MTNPN show a small HOMO-LUMO energy gap. In general, the material which acquires small energy gap exhibits NLO response and identical counterparts in both IR and Raman spectra. Hence, the combined experimental and theoretical studies were performed to explore the fundamental properties of the molecule.

Objective: The objective of this study was to explore the fundamental structural properties of an energetic molecule MTNPN in addition to its application as a nonlinear optical material.

Methods: FT-IR technique and quantum chemical methods were used to analyze the vibrational normal modes and structural properties of the molecule. Kurtz and Perry technique is used to find second harmonic generation efficiency in comparison to the standard NLO reference material.

Results: The potential energy distribution was used to assign the vibrational normal modes of the molecule. The second order perturbation energies between the lone pair and anti-bonding species were predicted to understand the driving forces of molecular stability. The chemical reactivity of the molecule was determined from the molecular electrostatic potential surface and global reactivity descriptor results. The second-order hyperpolarizability of MTNPN and SHG efficiency of MTNPN were studied to find its NLO response and it was found from the results that MTNPN exhibits high NLO response than the standard NLO reference material.

Conclusion: The vibrational degrees of freedom of MTNPN molecule were assigned and the experimental FT-IR spectra were compared with the scaled harmonic frequencies. The predicted second-order hyperpolarizability of MTNPN was about 6.46 times greater than the standard NLO reference urea. The interacting species between the lone pair orbitals and antibonding orbitals such as n3O8→ π*(N7-O9), n3O11→ π*(N10-O12) and n3O14→ π*(N13-O15) stabilized the molecule to a greater extent.

Keywords: Chemical reactivity, DFT calculations, FT-IR spectrum, Kurtz Perry technique, N-methyl-N-(2, 4, 6-trinitrophenyl) nitramide, NLO properties, molecular electrostatic potential surface, second-order perturbation energies.

Graphical Abstract
[1]
Bosshard, C.; Bösch, M.; Liakatas, I.; Jäger, M.; Günter, P. Ed. 1, Springer-Verlag Berlin Heidelberg: Günter, P.; (Ed.).Nonlinear optical effects and materials. Springer, Berlin,; , 2000, Vol. 72, pp. pp. 1-540.
[2]
Luc, J.; Migalska-Zalas, A.; Tkaczyk, S.; Andriès, J.; Fillaut, J.L.; Meghea, A.; Sahraoui, B. Study of surface relief gratings on azo organometallic films in picosecond regime. J. Opt. Electro. Adv. Mater., 2008, 10, 29-43.
[3]
Wang, X.Q.; Xu, D.; Yuan, D.R.; Tian, Y.P.; Yu, W.T.; Sun, S.Y.; Yang, Z.H.; Fang, Q.; Lu, M.K.; Yan, Y.X.; Meng, F.Q.; Guo, S.Y.; Zhang, G.H.; Jiang, M.H. Mater. Res. Bull., 1999, 34, 2003.
[4]
Fuchs, B.A. Chai syn, K.; Stephan Velsko, P. Diamond turning of L-arginine phosphate, a new organic nonlinear crystal. Appl. Opt., 1989, 28(20), 4465-4472.
[5]
Fichou, D.; Watanabe, T.; Takeda, T.; Miyata, S.; Goto, Y.; Nakayama, M. Influence of the ring-substitution on the second harmonic generation of chalcone derivatives. Jpn. J. Appl. Phys., 1988, 27, L429-L430.
[6]
Uchida, T.; Kozawa, K.; Sakai, T.; Aoki, M.; Yoguchi, H.I.; Atdureyim, A.; Watanabe, Y. Novel organic SHG materials. Mol. Cryst. Liq. Cryst., 1988, 315(1), 135-140.
[7]
Sension, R.J.; Hudson, B.; Callis, P.R. Resonance Raman studies of guanidinium and substituted guanidinium ions. The J. Phys. Chem., 1990, 94(10), 4015-4025.
[8]
Junaid, B.M.; Antony, C.J.; Fleck, M. Vibrational spectroscopic studies of guanidinium metal (MII) sulphate hexahydrates. [MII= Co, Fe, Ni]. Solid State Commun., 2007, 143, 348-352.
[9]
Drozd, M. The equilibrium structures, vibrational spectra, NLO and directional properties of transition dipole moments of diguanidinium arsenate monohydrate and diguanidinium phosphate monohydrate. The theoretical DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 65(5), 1069-1086.
[10]
Binoy, J.; James, C.; Hubert Joe, I.; Jayakumar, V.S. Vibrational analysis and Y-aromaticity in bis (N,N′-diphenyl guanidinium) oxalate crystal: A DFT study. J. Mol. Struct., 2006, 784(1-3), 32-46.
[11]
Drozd, M. The theoretical calculations of vibrational spectra of guanidine selenate and guanidinium sulphate. Determination of direction of transition dipole moments by two methods: oriented gas model and changes in displacement eigenvectors computed by DFT method. J. Mol. Struct. (Thoechem), 2005, 756(1-3), 173-184.
[12]
Nadia, E.A.; El-Gamel, J.W.; Kroke, E. Guanidinium cyanurates versus guanidinium cyamelurates: synthesis, spectroscopic investigation and structural characterization. J. Mol. Struct., 2008, 888(1-3), 204-213.
[13]
Drozd, M.; Dudzic, D. The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2012, 89, 243-251.
[14]
Balachandran, V.; Karthick, T.; Perumal, S.; Nataraj, A. Vibrational spectroscopic studies, molecular orbital calculations and chemical reactivity of 6-nitro-m-toluic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 92, 137-147.
[15]
Karthick, T.; Balachandran, V.; Perumal, S. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor “thiophene-2-carboxylicacid”. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 104-112.
[16]
Nataraj, A.; Balachandran, V.; Karthick, T. Density functional study on the structural conformations, intramolecular charge transfer and vibrational spectra of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde. J. Mol. Struct., 2011, 1006(1-3), 104-112.
[17]
Nataraj, A.; Balachandran, V.; Karthick, T. FT-IR and Raman spectra, DFT and SQMFF calculations for geometrical interpretation and vibrational analysis of 3-nitro-p-toluic acid. J. Mol. Struct., 2012, 1004, 94-108.
[18]
Minaev, B.F.; Minaeva, V.A. Study of IR spectrum of the 17β-estradiol using quantum-chemical density functional theory. Biopolymers Cell, 2006, 22(5), 363-374.
[19]
Minaeva, V.A.; Minaev, B.F.; Baryshnikov, G.V.; Surovtsev, N.V.; Cherkasova, O.P.; Tkachenko, L.I.; Karaush, N.N.; Stromylo, E.V. Temperature effects in low-frequency Raman spectra of corticosteroid hormones. Opt. Spectrosc., 2015, 118(2), 214-223.
[20]
Kumar, R.; Karthick, T.; Tandon, P.; Agarwal, P.; Menezes, A.P.; Jayarama, A. Structural and vibrational characteristics of a non-linear optical material 3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one probed by quantum chemical computation and spectroscopic techniques. J. Mol. Struct., 2018, 1164, 180-190.
[21]
Anbu, V.; Vijayalakshmi, K.A.; Karunathan, R.; David, S.A.; Nidhin, P.V. Explosives properties of high energetic trinitrophenyl nitramide molecules: a DFT and AIM analysis. Arab. J. Chem., 2016.
[http://dx.doi.org/10.1016/j.arabjc.2016.09.023]
[22]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098-3100.
[23]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B , 1988, 37, 785-789.
[24]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B. The effects of oxidation states, spin states and solvents on molecular structure, stability and spectroscopic properties of Fe-Catechol complexes: a theoretical study. Gaussian 09, Revision B. 01; Gaussian Inc: Wallingford, CT, 2010.
[25]
Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem., 1995, 99, 3093-3100.
[26]
Martin, J.M.L.; Van Alsenoy, C. Calculated vibrational properties of ubisemiquinones. GAR2PED; University of Antwerp, 1995.
[27]
Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. Chemical computations and vibrational spectral studies of 2,3-pyrazinedicarboxylic acid. Mater. Today: Proc, 1998, 2(3), 977-981.
[28]
Dennington, R.I.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. Gauss view, version 5.0, 2003.
[29]
Socrates, G. Infrared and Raman Characteristic Group Frequencies.3rd Ed. Editor, Socrates, G. John Wiley & Sons, West London, UK,; , 2001.
[30]
Shanmugam, R.; Sathyanarayanan, D. Surface brightness gradients produced by the ring waves of star formation. Spectrochim. Acta A, 1984, 40, 757-764.
[31]
Powell, B.J.; Baruah, T.; Bernstein, N.; Brake, K.; McKenzie, R.H.; Meredith, P.; Pederson, M.R. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers. J. Chem. Phys., 2004, 120(18), 8608-8615.
[32]
Koopmans, T.A. About the assignment of wave functions and eigenvalues to the single electrons of an atom. Physica, 1993, 1, 104-113.
[33]
Mulliken, R.S. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys., 1934, 2, 782-793.
[34]
Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[35]
Politzer, P.; Truhlar, D.G. Chemical application of atomic and molecular electrostatic potentials; Plenum: New York, 1981.
[36]
Politzer, P.; Murray, J.S. Thermo-Calc and DICTRA, computational tools for materials science. Rev. Comput. Chem., 1991, 2, 273-312.

© 2024 Bentham Science Publishers | Privacy Policy