Recent Advances in Rational Diagnosis and Treatment of Normal Pressure Hydrocephalus: A Critical Appraisal on Novel Diagnostic, Therapy Monitoring and Treatment Modalities

Author(s): Lei Zhang, Zahid Hussain, Zhuanqin Ren*

Journal Name: Current Drug Targets

Volume 20 , Issue 10 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Normal pressure hydrocephalus (NPH) is a critical brain disorder in which excess Cerebrospinal Fluid (CSF) is accumulated in the brain’s ventricles causing damage or disruption of the brain tissues. Amongst various signs and symptoms, difficulty in walking, slurred speech, impaired decision making and critical thinking, and loss of bladder and bowl control are considered the hallmark features of NPH.

Objective: The current review was aimed to present a comprehensive overview and critical appraisal of majorly employed neuroimaging techniques for rational diagnosis and effective monitoring of the effectiveness of the employed therapeutic intervention for NPH. Moreover, a critical overview of recent developments and utilization of pharmacological agents for the treatment of hydrocephalus has also been appraised.

Results: Considering the complications associated with the shunt-based surgical operations, consistent monitoring of shunting via neuroimaging techniques hold greater clinical significance. Despite having extensive applicability of MRI and CT scan, these conventional neuroimaging techniques are associated with misdiagnosis or several health risks to patients. Recent advances in MRI (i.e., Sagittal-MRI, coronal-MRI, Time-SLIP (time-spatial-labeling-inversion-pulse), PC-MRI and diffusion-tensor-imaging (DTI)) have shown promising applicability in the diagnosis of NPH. Having associated with several adverse effects with surgical interventions, non-invasive approaches (pharmacological agents) have earned greater interest of scientists, medical professional, and healthcare providers. Amongst pharmacological agents, diuretics, isosorbide, osmotic agents, carbonic anhydrase inhibitors, glucocorticoids, NSAIDs, digoxin, and gold-198 have been employed for the management of NPH and prevention of secondary sensory/intellectual complications.

Conclusion: Employment of rational diagnostic tool and therapeutic modalities avoids misleading diagnosis and sophisticated management of hydrocephalus by efficient reduction of Cerebrospinal Fluid (CSF) production, reduction of fibrotic and inflammatory cascades secondary to meningitis and hemorrhage, and protection of brain from further deterioration.

Keywords: Hydrocephalus, diagnosis, magnetic resonance imaging, therapeutic modalities, corticosteroids, isosorbide mononitrate.

[1]
Tokuda T, Kida S. New findings and concepts on production and absorption of cerebrospinal fluid: reconsiderations and revisions of an unquestioningly accepted dogma of 100 years. Brain Nerve 2015; 67(5): 617-26.
[2]
Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014; 11: 10.
[3]
Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers-anatomic and physiologic considerations. Handb Clin Neurol 2017; 146: 21-32.
[4]
Killer HE. Production and circulation of cerebrospinal fluid with respect to the subarachnoid space of the optic nerve. J Glaucoma 2013; 22(Suppl. 5): S8-S10.
[5]
Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 2011; 128(6): 309-16.
[6]
Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 2011; 65(2): 99-112.
[7]
Chikly B, Quaghebeur J. Reassessing Cerebrospinal Fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 2013; 17(3): 344-54.
[8]
Tully HM, Dobyns WB. Infantile hydrocephalus: A review of epidemiology, classification and causes. Eur J Med Genet 2014; 57(8): 359-68.
[9]
Toma AK. Hydrocephalus. Surgery 2015; 33(8): 384-9.
[10]
Kartal MG, Algin O. Evaluation of hydrocephalus and other cerebrospinal fluid disorders with MRI: An update. Insights Imaging 2014; 5(4): 531-41.
[11]
Rekate HL. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 2008; 5: 2.
[12]
Rekate HL. A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 2009; 16(1): 9-15.
[13]
Rekate HL. A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 2011; 27(10): 1535-41.
[14]
de la Fuente MI, DeAngelis LM. The role of ventriculoperitoneal shunting in patients with supratentorial glioma. Ann Clin Transl Neurol 2014; 1(1): 45-8.
[15]
Gonda DD, Kim TE, Warnke PC, et al. Ventriculoperitoneal shunting versus endoscopic third ventriculostomy in the treatment of patients with hydrocephalus related to metastasis. Surg Neurol Int 2012; 3: 97.
[16]
Dewan MC, Lim J, Gannon SR, et al. Comparison of hydrocephalus metrics between infants successfully treated with endoscopic third ventriculostomy with choroid plexus cauterization and those treated with a ventriculoperitoneal shunt: a multicenter matched-cohort analysis. J Neurosurg Pediatr 2018; 21(4): 339-45.
[17]
Castro BA, Imber BS, Chen R, McDermott MW, Aghi MK. Ventriculoperitoneal shunting for glioblastoma: Risk factors, indications, and efficacy. Neurosurgery 2017; 80(3): 421-30.
[18]
Fischer CM, Neidert MC, Péus D, et al. Hydrocephalus after resection and adjuvant radiochemotherapy in patients with glioblastoma. Clin Neurol Neurosurg 2014; 120: 27-31.
[19]
Inamasu J, Nakamura Y, Saito R, et al. Postoperative communicating hydrocephalus in patients with supratentorial malignant glioma. Clin Neurol Neurosurg 2003; 106(1): 9-15.
[20]
Mazzola CA, Choudhri AF, Auguste K, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr 2014; 14(Suppl. 1): 8-23.
[21]
Stoquart-Elsankari S, Baledent O, Gondry-Jouet C, et al. Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab 2007; 27: 1563-72.
[22]
Penn RD, Basati S, Sweetman B, Guo X, Linninger A. Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 2011; 115(1): 159-64.
[23]
Bradley WG. Magnetic resonance imaging of normal pressure hydrocephalus. Semin Ultrasound CT MR 2016; 37(2): 120-8.
[24]
Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus (iNPH) in a Norwegian population. Acta Neurol Scand 2008; 118: 48-53.
[25]
Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Conservative versus surgical management of idiopathic normal pressure hydrocephalus: a prospective double-blind randomized controlled trial: study protocol. Acta Neurochir Suppl 2012; 113: 21-3.
[26]
Krauss JK, Halve B. Normal pressure hydrocephalus: survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir (Wien) 2004; 146: 379-88.
[27]
Hashimoto M, Ishikawa M, Mori E, Kuwana N. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 2010; 7: 18.
[28]
Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep 2008; 8(5): 371-6.
[29]
Bradley WG, Safar FG, Furtado C, Ord J, Alksne JF. Increased intracranial volume in normal pressure hydrocephalus: A clue to the etiology of “idiopathic” NPH. Am J Neuroradiol 2004; 25(9): 1479-84.
[30]
Tsunoda A, Mitsuoka H, Sato K, Kanayama S. A quantitative index of intracranial cerebrospinal fluid distribution in normal pressure hydrocephalus using an MRI-based processing technique. Neuroradiol 2000; 42(6): 424-9.
[31]
Tsunoda A, Mitsuoka H, Bandai H, et al. Intracranial cerebrospinal fluid distribution and its postoperative changes in normal pressure hydrocephalus. Acta Neurochir (Wien) 2001; 143(5): 493-9.
[32]
Yoshihara M, Tsunoda A, Sato K, Kanayama S, Calderon A. Differential diagnosis of NPH and brain atrophy assessed by measurement of intracranial and ventricular CSF volume with 3D FASE MRI. Acta Neurochir Suppl 1998; 71: 371-4.
[33]
Mase M, Yamada K, Banno T, et al. Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta Neurochir Suppl 1998; 71: 350-3.
[34]
Wilson RF, Williams MA. Evidence that congenital hydrocephalus is a precursor to idiopathic normal pressure hydrocephalus in only a subset of patients. J Neurol Neurosurg Psychiatry 2007; 78(5): 508-11.
[35]
Tudor KI, Tudor M, McCleery J, Car J. Endoscopic third ventriculostomy (ETV) for idiopathic normal pressure hydrocephalus (iNPH). Cochrane Database Syst Rev 2015; (7): CD010033
[36]
Martín-Láez R, Caballero-Arzapalo H, Valle-San Román N, et al. Incidence of idiopathic normal-pressure hydrocephalus in Northern Spain. World Neurosurg 2016; 87: 298-310.
[37]
Zeilinger FS, Meier U. Clinically suspected normal-pressure hydrocephalus diagnosis-current status of diagnosis and therapy. Z Arztl Fortbild Qualitatssich 1998; 92(7): 495-501.
[38]
Bradley WG, Bahl G, Alksne JF. Idiopathic normal pressure hydrocephalus may be a “two-hit” disease: Benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. J Magn Reson Imaging 2006; 24: 747-55.
[39]
Kitagaki H, Mori E, Ishii K, et al. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. Am J Neuroradiol 1998; 19(7): 1277-84.
[40]
Hischa A, Götz C, Zevgaridis D, Reulen HJ. Normal pressure hydrocephalus-from clinical picture to diagnosis. Help by early shunt placement. MMW Fortschr Med 2001; 143(Suppl. 2): 78-80.
[41]
Mori K. Management of idiopathic normal-pressure hydrocephalus: a multiinstitutional study conducted in Japan. J Neurosurg 2001; 95(6): 970-3.
[42]
Mori K. Management of idiopathic normal-pressure hydrocephalus: a multi-institutional study conducted in Japan. J Neurosurg 2001; 95(6): 970-3.
[43]
Fraser JJ, Fraser C. Gait disorder is the cardinal sign of normal pressure hydrocephalus: a case study. J Neurosci Nurs 2007; 39(3): 132-4.
[44]
Byrd C. Normal pressure hydrocephalus: dementia's hidden cause Nurse Pract 2006; 31(7): 28-9, ; quiz 36-7.
[45]
Martin CM. The “reversible” dementia of idiopathic normal pressure hydrocephalus. Consult Pharm 2006; 21(11): 888-892, 901-903.
[46]
Kiefer M, Unterberg A. The differential diagnosis and treatment of normal pressure hydrocephalus. Dtsch Arztebl Int 2012; 109: 1-26.
[47]
Damasceno BP. Dement Neuropsychol 2009; 3(1): 8-15.
[48]
Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. Am J Neuroradiol 2014; 35(12): 2311-8.
[49]
Ishikawa M, Oowaki H, Matsumoto A, et al. Clinical significance of cerebrospinal fluid tap test and magnetic resonance imaging/computed tomography findings of tight high convexity in patients with possible idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 2010; 50(2): 119-23.
[50]
Kojoukhova M, Koivisto AM, Korhonen R, et al. Feasibility of radiological markers in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2015; 157(10): 1709-18.
[51]
Kojoukhova M, Vanha KI, Timonen M, et al. Associations of intracranial pressure with brain biopsy, radiological findings, and shunt surgery outcome in patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2017; 159(1): 51-61.
[52]
Damasceno BP. Neuroimaging in normal pressure hydrocephalus. Dement Neuropsychol 2015; 9(4): 350-5.
[53]
Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57(3)(Suppl.): S4-S16. discussion ii-v.
[54]
Schmidt CWCT. Scans: Balancing health risks and medical benefits. Environ Health Perspect 2012; 120(3): a118-21.
[55]
Schenkman L. Radiology. Second thoughts about CT imaging. Science 2011; 331(6020): 1002-4.
[56]
Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007; 357(22): 2277-84.
[57]
Ishikawa M, Hashimoto M, Kuwana N, et al. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 2008; 48(Suppl.): S1-S23.
[58]
Brix MK, Westman E, Simmons A, et al. The Evans’ Index revisited: New cut-off levels for use in radiological assessment of ventricular enlargement in the elderly. Eur J Radiol 2017; 95: 28-32.
[59]
Jaraj D, Rabiei K, Marlow T, et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology 2014; 82(16): 1449-54.
[60]
Chatzidakis EM, Barlas G, Condilis N, et al. Brain CT scan indexes in the normal pressure hydrocephalus: predictive value in the outcome of patients and correlation to the clinical symptoms. Ann Ital Chir 2008; 79(5): 353-62.
[61]
Panagiotopoulos V, Konstantinou D, Kalogeropoulos A, Maraziotis T. The predictive value of external continuous lumbar drainage, with cerebrospinal fluid outflow controlled by medium pressure valve, in normal pressure hydrocephalus. Acta Neurochir (Wien) 2005; 147(9): 953-8. discussion 958.
[62]
Delwel EJ, de Jong DA, Avezaat CJ. The prognostic value of clinical characteristics and parameters of cerebrospinal fluid hydrodynamics in shunting for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2005; 147(10): 1037-42. discussion 1042-3.
[63]
Barnett GH, Hahn JF, Palmer J. Normal pressure hydrocephalus in children and young adults. Neurosurgery 1987; 20(6): 904-7.
[64]
Malm J, Kristensen B, Karlsson T, et al. The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Arch Neurol 1995; 52(8): 783-9.
[65]
Toma AK, Holl E, Kitchen ND, Watkins LD. Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 2011; 68(4): 939-44.
[66]
Reinard K, Basheer A, Phillips S, et al. Simple and reproducible linear measurements to determine ventricular enlargement in adults. Surg Neurol Int 2015; 6: 59.
[67]
Brammer MJ, Bullmore ET, Simmons A, et al. Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magn Reson Imaging 1997; 15(7): 763-70.
[68]
Gore JC. Principles and practice of functional MRI of the human brain. J Clin Invest 2003; 112(1): 4-9.
[69]
Le Bihan D. Functional MRI of the brain principles, applications and limitations. J Neuroradiol 1996; 23(1): 1-5.
[70]
Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 2011; 128(6): 309-16.
[71]
Hodel J, Rahmouni A, Zins M, Vignaud A, Decq P. Magnetic resonance imaging of noncommunicating hydrocephalus World Neurosurgery 2013; 79(2): S21.e9–S21.e12
[72]
Algin O, Turkbey B. Evaluation of aqueductal stenosis by 3D sampling perfection with application-optimized contrasts using different flip angle evolutions sequence: preliminary results with 3 T MR imaging. Am J Neuroradiol 2012; 33(4): 740-6.
[73]
Tullberg M, Jensen C, Ekholm S, Wikkelsø C. Normal pressure hydrocephalus: vascular white matter changes on MR imagesmust not exclude patients from shunt surgery. Am J Neuroradiol 2001; 22: 1665-73.
[74]
Kizu O, Yamada K, Nishimura T. Proton chemical shift imaging in normal pressure hydrocephalus. Am J Neuroradiol 2002; 23: 1387-92.
[75]
Bradley WG. Diagnostic tools in hydrocephalus. Neurosurg Clin N Am 2001; 36: 661-84.
[76]
Yamada S, Tsuchiya K, Bradley WG, et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol 2015; 36: 623-30.
[77]
Cagnin A, Simioni M, Tagliapietra M, et al. A simplified callosal angle measure best differentiates idiopathic normal pressure hydrocephalus from neurodegenerative dementia. J Alzheimers Dis 2015; 46: 1033-8.
[78]
Mataró M, Matarín M, Poca MA, et al. Functional and magnetic resonace imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. J Neurol Neurosurg Psychiatry 2007; 78: 395-8.
[79]
Savolainen S, Laakso MP, Paljarvi L, et al. MR imaging of the hippocampus in normal presure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. Am J Neuroradiol 2000; 21: 409-14.
[80]
Hattori T, Sato R, Aoki S, Yuasa T, Mizusawa H. Different patterns of fornix damage in idiopathic normal pressure hydrocephalus and Alzheimer disease. Am J Neuroradiol 2012; 33: 274-9.
[81]
Bradley WG, Whittemore AR, Watanabe AS, et al. Association of deep matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. Am J Neuroradiol 1991; 12: 31-9.
[82]
Jack CR, Mokri B, Laws ER Jr, et al. MR findings in normal-pressure hydrocephalus: significance and comparison with other forms of dementia. J Comput Assist Tomogr 1987; 6: 923-31.
[83]
Krauss JK, Regel JP, Vach W, et al. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting? Neurosurgery 1997; 40: 67-73.
[84]
Vanneste JA. Three decades of normal pressure hydrocephalus: are we wiser now? J Neurol Neurosurg Psychiatry 1994; 57(9): 1021-5.
[85]
Bateman GA. Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol 2000; 21: 1574-85.
[86]
Baledent O, Gondry-Jouet C, Meyer ME, et al. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol 2004; 39: 45-55.
[87]
Huang T, Chung HW, Chen MY, et al. Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 2004; 233: 603-8.
[88]
Forner Giner J, Sanz-Requena R, Flórez N, et al. Quantitative phase-contrast MRI study of cerebrospinal fluid flow: a method for identifying patients with normal-pressure hydrocephalus. Neurologia 2014; 29(2): 68-75.
[89]
Luetmer PH, Huston J, Friedman JA, et al. Measurement of cerebrospinal fluid flow atthe cerebral aqueduct by use of phase-contrast magneticresonance imaging: technique validation and utility in diag-nosing idiopathic normal pressure hydrocephalus. Neurosurgery 2002; 50: 534-42.
[90]
Lee JH, Kim JK, Park JK, Choi CG. CSF flow quantification of thecerebral aqueduct in normal volunteers using phase contrastcine MR imaging. Korean J Radiol 2004; 5: 81-6.
[91]
Bradley WG, Scalzo D, Queralt J, et al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 1996; 198: 523-9.
[92]
Dixon GR, Friedman JA, Luetmer PH, et al. Use of cerebrospinal fluid flow rates measured by phase-contrast MR to predict outcome of ventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus. Mayo Clin Proc 2002; 77: 509-14.
[93]
Kahlon B, Annertz M, Stahlberg F, Rehncrona S. Is aqueductal stroke volume, measured with cine phase-contrast magnetic resonance imaging scans useful in predicting outcome of shunt surgery in suspected normal pressure hydrocephalus? Neurosurgery 2007; 60: 124-9.
[94]
Sharma AK, Gaikwad S, Gupta V, Garg A, Mishra NK. Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2008; 110: 363-8.
[95]
Hebb AO, Cusimano MD. Idiopathic normal pressure hydro-cephalus: a systematic review of diagnosis and outcome. Neurosurgery 2001; 49: 1166-84.
[96]
Marmarou A, Black P, Bergsneider M, Klinge P, Relkin N. Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta Neurochir 2005; 95: 237-40.
[97]
Woodworth GF, McGirt MJ, Williams MA, Rigamonti D. Cerebrospinal fluid drainage and dynamics in the diagnosis of normal pressure hydrocephalus. Neurosurgery 2009; 64: 919-25.
[98]
Krauss JK, Halve B. Normal pressure hydrocephalus: survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir (Wien) 2004; 146: 379-88.
[99]
Hoshide R, Meltzer H, Dalle-Ore C, et al. Impact of ventricular-peritoneal shunt valve design on clinical outcome of pediatric patients with hydrocephalus: Lessons learned from randomized controlled trials. Surg Neurol Int 2017; 8: 49.
[100]
Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 2016; 13: 3.
[101]
Marriott WM. The use of theobromin sodio salicylate (diuretin) in the treatment of hydrocephalus. Am J Dis Child 1924; 28: 479-83.
[102]
Wise BL, Mathis JL, Wright JH. Experimental use of isosorbide: an oral osmotic agent to lower cerebrospinal pressure and reduce brain bulk. J Neurosurg 1966; 25: 183-8.
[103]
Hayden PW, Foltz EL, Shurtleff DB. Effect of on oral osmotic agent on ventricular fluid pressure of hydrocephalic children. Pediatrics 1968; 41: 955-67.
[104]
Shurtleff DB, Hayden PW, Weeks R, et al. Temporary treatment of hydrocephalus and myelodysplasia with isosorbide: preliminary report. J Pediatr 1973; 83: 651-7.
[105]
Lorber J, Salfield S, Lonton T. Isosorbide in the management of infantile hydrocephalus. Dev Med Child Neurol 1983; 25: 502-11.
[106]
Cantore G, Guidetti B, Virno M. Oral glycerol for the reduction of intracranial pressure. J Neurosurg 1964; 21: 278-83.
[107]
Hill A, Volpe JJ. Normal pressure hydrocephalus in the newborn. Pediatrics 1981; 68: 623-9.
[108]
Yamanaka R, Koga H, Yamamoto Y, et al. Yamada S, Sano T, Fukushige T. Characteristics of patients with brain metastases from lung cancer in a palliative care center. Support Care Cancer 2011; 19: 467-73.
[109]
Mase M, Ueda Y, Nagai H. Effect of NIK-242 inj. (20% erythritol) on intracranial pressure in dogs with acute obstructive hydrocephalus. No To Shinkei 1990; 42: 79-85.
[110]
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol 2016; 120: 204-15.
[111]
Elvidge AR, Branch CL, Thompson GB. Observations in a case of hydrocephalus treated with Diamox. J Neurosurg 1957; 14: 628-38.
[112]
Cutler RW, Page L, Galicich J, et al. Formation and absorption of cerebrospinal fluid in man. Brain 1968; 91: 707-20.
[113]
Schain RJ. Carbonic anhydrase inhibitors in chronic infantile hydrocephalus. Am J Dis Child 1969; 117: 621-5.
[114]
Aimard G, Vighetto A, Gabet JY, et al. Acetazolamide: an alternative to shunting in normal pressure hydrocephalus? Preliminary results. Rev Neurol (Paris) 1990; 146: 437-9.
[115]
Miyake H, Ohta T, Kajimoto Y, et al. Diamox challenge test to decide indications for cerebrospinal fluid shunting in normal pressure hydrocephalus. Acta Neurochir (Wien) 1999; 141: 1187-93.
[116]
Chang CC, Asada H, Mimura T, et al. A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg 2009; 111: 610-7.
[117]
Chaplin ER, Goldstein GW, Myerberg DZ. Posthemorrhagic hydrocephalus in the preterm infant. Pediatrics 1980; 65: 901-9.
[118]
Shinnar S, Gammon K, Bergman EW Jr, et al. Management of hydrocephalus in infancy: use of acetazolamide and furosemide to avoid cerebrospinal fluid shunts. J Pediatr 1984; 107: 31-7.
[119]
Neblett CR, Waltz TA Jr, McNeel DP, et al. Effect of cardiac glycosides on human cerebrospinal-fluid production. Lancet 1972; 2: 1008-9.
[120]
Allonen H, Anderson KE, Iisalo E, et al. Passage of digoxin into cerebrospinal fluid in man. Acta Pharmacol Toxicol (Copenh) 1977; 41: 193-202.
[121]
Bass NH, Fallstrom SP, Lundborg P. Digoxin-induced arrest of the cerebrospinal fluid circulation in the infant rat: implications for medical treatment of hydrocephalus during early postnatal life. Pediatr Res 1979; 13: 26-30.
[122]
Penisson-Besnier I, Cesbron JG, L’Heveder G, et al. Efficacy of triamterene in hydrocephalus in adults. Presse Med 1993; 22: 224-5.
[123]
Lindvall-Axelsson M, Hedner P, Owman C. Corticosteroid action on choroid plexus: reduction in Na+ –K+ –ATPase activity, choline transport capacity, and rate of CSF formation. Exp Brain Res 1989; 77: 605-10.
[124]
Weiss MH, Nulsen FE. The effect of glucocorticoids on CSF flow in dogs. J Neurosurg 1970; 32: 452-8.
[125]
Gomez-Sanchez CE, de Rodriguez AF, Romero DG, et al. Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology 2006; 147: 1343-8.
[126]
Fattal-Valevski A, Beni-Adani L, Constantini S. Short-term dexamethasone treatment for symptomatic slit ventricle syndrome. Childs Nerv Syst 2005; 21: 981-4.
[127]
Dandy WE. Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 1981; 68: 569-79.
[128]
Weiss MH, Roessmann U. Radioactive tissue changes induced to control experimental hydrocephalus. J Neurosurg 1972; 36: 266-9.
[129]
Christensen J. Gonzalez Toledo EC. Radioisotope treatment of hydrocephalus. Preliminary report. Arch Fund Roux Ocefa 1971; 5: 87-8.
[130]
Surash S, Nemeth P, Chakrabarty A, et al. The conjugation of an AQP1-directed immunotoxin in the study of site-directed therapy within the CNS. Childs Nerv Syst 2011; 27: 811-8.
[131]
Rekate HL. A consensus on the classification of hydrocephalus: Its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 2011; 27: 1535-41.
[132]
Strahle J, Garton HJ, Maher CO, et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 2012; 3: 25-38.
[133]
Scheld WM, Dacey RG, Winn HR, et al. Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J Clin Invest 1980; 66: 243-53.
[134]
Wilkinson HA, Wilson RB, Patel PP, et al. Corticosteroid therapy of experimental hydrocephalus after intraventricular-subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1974; 37: 224-9.
[135]
Brouwer MC, McIntyre P, Prasad K, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 2015; 9CD004405
[136]
Critchley JA, Young F, Orton L, et al. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and metaanalysis. Lancet Infect Dis 2013; 13: 223-37.
[137]
Shah I, Meshram L. High dose versus low dose steroids in children with tuberculous meningitis. J Clin Neurosci 2014; 21: 761-4.
[138]
Darwish SF, El-Bakly WM, El-Naga RN, et al. Antifibrotic mechanism of deferoxamine in concanavalin A induced liver fibrosis: impact on interferon therapy. Biochem Pharmacol 2015; 98: 231-42.
[139]
Zhao J, Chen Z, Xi G, et al. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res 2014; 5586-94.
[140]
Meng H, Li F, Hu R, et al. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res 2015; 1602: m44-52.
[141]
Chen Q, Tang J, Tan L, et al. Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating iron accumulation. Stroke 2015; 46: 2902.
[142]
Yeom KW, Lober RM, Alexander A, et al. Hydrocephalus decreases arterial spin-labeled cerebral perfusion. Am J Neuroradiol 2014; 35: 1433-9.
[143]
Del Bigio MR. Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 2010; 16: 16-22.
[144]
Boon AJ, Tans JT, Delwel EJ, et al. Dutch normal-pressure hydrocephalus study: the role of cerebrovascular disease. J Neurosurg 1999; 90: 221-6.
[145]
Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011; 8: 5.
[146]
Nieto BM, Candau F, Mensaque R, et al. El tratamiento de la hidrocefalia infantil con dinitrato de isosorbide. Treatment of infantile hydrocephalus with isosorbide dinitrate. An Esp Pediatr 1977; 10: 843-56.
[147]
Schmidt JF, Albeck M, Gjerris F. The effect of nimodipine on ICP and CBF in patients with normal-pressure hydrocephalus. Acta Neurochir (Wien) 1990; 102: 11-3.
[148]
Olsen KS, Albeck M, Agerlin N, et al. The effect of ketanserin on ICP and CBF in patients with normal-pressure hydrocephalus. J Neurosurg Anesthesiol 1996; 8: 216-9.
[149]
Wu Q, Chen W, Sinha B, et al. Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov Today 2015; 20: 1372.
[150]
Ulfig N, Bohl J, Neudorfer F, et al. Brain macrophages and microglia in human fetal hydrocephalus. Brain Dev 2004; 26: 307-15.
[151]
Marin-Teva JL, Cuadros MA, Martin-Oliva D, et al. Microglia and neuronal cell death. Neuron Glia Biol 2011; 7: 25-40.
[152]
McAllister JP II, Miller JM. Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 2010; 7: 7.
[153]
Xu H, Tan G, Zhang S, et al. Minocycline reduces reactive gliosis in the rat model of hydrocephalus. BMC Neurosci 2012; 13: 148.
[154]
Lacombe P, Mathews PM, Schmidt SD, et al. Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised. J Neuroinflam 2004; 1: 11.
[155]
Tarnaris A, Watkins LD, Kitchen ND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 2006; 3: 11.
[156]
Etus V, Altug T, Belce A, et al. Green tea polyphenol (-)-epigallocatechin gallate prevents oxidative damage on periventricular white matter of infantile rats with hydrocephalus. Tohoku J Exp Med 2003; 200: 203-9.
[157]
Di Curzio DL, Turner-Brannen E, Del Bigio MR. Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 2014; 11: 23.
[158]
Catalao CH, Correa DA, Saito ST, et al. Camellia sinensis neuroprotective role in experimentally induced hydrocephalus in Wistar rats. Childs Nerv Syst 2013; 30: 591.
[159]
Chen Z, Zhang J, Chen Q, et al. Neuroprotective effects of edaravone after intraventricular hemorrhage in rats. Neuroreport 2014; 25: 635-40.
[160]
Malm J, Kristensen B, Ekstedt J, et al. CSF concentration gradients of monoamine metabolites in patients with hydrocephalus. J Neurol Neurosurg Psychiatry 1994; 57: 1026-33.
[161]
Miyake H, Eghwrudjakpor P, Sakamoto T, et al. Neurotransmitter changes in hydrocephalus: effects of cerebral metabolic activator on kaolin-induced hydrocephalus. In: Matsumoto S, Tamaki N, editors. Hydrocephalus: pathogenesis and treatment. 1991Tokyo: Springer-Verlag; pp. 68-74.
[162]
Keenan S, Mavaddat N, Iddon J, et al. Effects of methylphenidate on cognition and apathy in normal pressure hydrocephalus: a case study and review. Br J Neurosurg 2005; 19: 46-50.
[163]
Wheeler GA, Young SA. Use of methylphenidate in a case of mild, inoperative, idiopathic, normal pressure hydrocephalus. Gen Hosp Psychiatry 1994; 16: 361-3.
[164]
Mateo-Sierra O, Gutierrez FA, Fernandez-Carballal C, et al. Akinetic mutism related to hydrocephalus and cerebellar surgery treated with bromocriptine and ephedrine. A pathophysiological review. Neurocirugia (Astur) 2005; 16: 134. 141; discussion 141.
[165]
Mashiko H, Yokoyama H, Matsumoto H, et al. Trazodone for aggression in an adolescent with hydrocephalus. Psychiatry Clin Neurosci 1996; 50: 133-6.
[166]
Owen-Lynch PJ, Draper CE, Mashayekhi F, et al. Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain 2003; 126: 623-31.
[167]
Yung YC, Mutoh T, Lin ME, et al. Lysophosphatidic Acid signaling may initiate fetal hydrocephalus. Sci Transl Med 2011; 399ra87
[168]
Lategan B, Chodirker BN, Del Bigio MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol 2010; 20: 391-8.
[169]
Del Bigio MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 2011; 134: 1344-61.
[170]
Stoddard NC, Chun J. Promising pharmacological directions in the world of lysophosphatidic acid signaling. Biomol Ther (Seoul) 2015; 23: 1-11.
[171]
Jones HC, Depelteau JS, Carter BJ, et al. Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mamm Genome 2001; 12: 22-6.
[172]
Cains S, Shepherd A, Nabiuni M, et al. Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol 2009; 68: 404-16.
[173]
Gattone V, Blazer-Yost B. Use of TRPV4 antagonists to ameliorate hydrocephalus and related materials and methods. 2014 WO 2014089013 A1. USA: Indiana University Research And Technology Corporation.
[174]
Botfield H, Gonzalez AM, Abdullah O, et al. Decorin prevents the development of juvenile communicating hydrocephalus. Brain 2013; 136: 2842-58.
[175]
Yang J, Dombrowski SM, Deshpande A, et al. VEGF/VEGFR-2 changes in frontal cortex, choroid plexus, and CSF after chronic obstructive hydrocephalus. J Neurol Sci 2010; 296: 39-46.
[176]
Deshpande A, Dombrowski SM, Leichliter A, et al. Dissociation between vascular endothelial growth factor receptor-2 and blood vessel density in the caudate nucleus after chronic hydrocephalus. J Cereb Blood Flow Metab 2009; 29: 1806-15.
[177]
Dombrowski SM, Deshpande A, Dingwall C, et al. Chronic hydrocephalus-induced hypoxia: increased expression of VEGFR-2+ and blood vessel density in hippocampus. Neuroscience 2008; 152: 346-59.
[178]
Shim JW, Sandlund J, Han CH, et al. VEGF, which is elevated in the CSF of patients with hydrocephalus, causes ventriculomegaly and ependymal changes in rats. Exp Neurol 2013; 247: 703-9.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2019
Page: [1041 - 1057]
Pages: 17
DOI: 10.2174/1389450120666190214121342
Price: $65

Article Metrics

PDF: 42
HTML: 4