Analysis and Optimization of Sb2Te3 and Bi2Te3 Materials for Enhancing the Performance of Thermoelectric Energy Harvester for WSN Applications

Author(s): Gourav Verma, Vidushi Sharma*

Journal Name: Recent Patents on Engineering

Volume 14 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Thermoelectric (TE) materials are used to fabricate the thermoelectric generator (TEG). Thermoelectric Generator (TEG) is used to convert thermal energy into electrical energy and vice-versa. Bismuth-Telluride and Antimony Telluride (Bi/Sb)2Te3 alloys are popular in the research community due to its capability of electrical energy generation in the range of room temperature. The Phase Change Material (PCM) is a good source of thermal energy storage in thermal energy harvesting. We have reviewed patents having the information of thermal energy storage and tried to provide a better cost-effective solution in thermal energy harvesting using Phase Change Material (PCM) and material used in thermoelectric generator. Finding the most appropriate TE alloy for a particular application is a challenge in the research community.

Objective: The objective of this paper is to conduct a study and analysis of performance parameter of (Bi/Sb)-Te based TE alloy along with the effect of Phase Change Material (PCM) on energy generation.

Methods: An investigation over a wide range of temperature is performed. A Bi2Te3 based Commercial- of-the-shelf (COTS) Thermoelectric Generator (TEG) has been experimentally tested in a controlled temperature environment for the analysis of its efficiency.

Result: This is found that maximum efficiency of 2.12% is achieved at a temperature difference of 60°C.

Conclusion: This investigation will be useful for the selection of material for thermal energy harvesting techniques and helps to provide an optimized framework for the research community to decide the (Bi1-xSbx)2Te3 mixed crystal alloy for their applications.

Keywords: Thermal energy harvesting, WSN, bismuth telluride, Sb2Te3, Bi2Te3, thermoelectric generator (TEG), PCM.

[1]
W. Wang , V. Cionca , N. Wang , M. Hayes , B. O’Flynn , and O’Mathuna . "Thermoelectric energy harvesting for building energy management wireless sensor networks". Int J Distrib Sens Netw : 1-15 June. 2013
[http://dx.doi.org/10.1155/2013/232438]
[2]
S. LeBlanc . "Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications". Sustainable MaterTechnol vol. 1, no. 2, 26-35, 2014
[http://dx.doi.org/10.1016/j.susmat.2014.11.002]
[3]
P. Dutta , D. Bhoi , A. Midya , et al. "Thermoelectric property study of Bi2Te3-Sb2Te3 mixed crystals". Appl Phys Lett vol. 100: 251912-1. 2012
[http://dx.doi.org/10.1063/1.4948053]
[4]
J. Davidson , and C. Mo . "Recent advances in energy harvesting technologies for structural health monitoring applications". Smart Mat. Res., vol. 2014, id 410316, 1-14, 2014.
[http://dx.doi.org/10.1155/2014/410316]
[5]
G. Verma , and V. Sharma . "Efficient RF energy harvesting circuit design for WSN and IoT application", Int. J. Sensors, Wireless Commun. Control , vol. 8, 37-46, 2018.
[http://dx.doi.org/10.2174/2210327908666180417143000]
[6]
K.T. Settaluri , H. Lo , and R.J. Ram . "Thin thermoelectric generator system for body energy harvesting". J Electron Mater vol. 41, no. 6, 984-988, 2011.
[http://dx.doi.org/10.1007/s11664-011-1834-3]
[7]
R.J.M. Vullers , R. Schaijk , I. Doms , C.V. Hoof , and R. Mertens . "Micro-power energy harvesting. Solid-State Electron" vol. 53, no. 7, 684-693, 2009.
[http://dx.doi.org/10.1016/j.sse.2008.12.011]
[8]
O. Yamashita . Effect of temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element. Appl Energy vol. 85, 1002-1014, 2008.
[http://dx.doi.org/10.1016/j.apenergy.2008.02.011]
[9]
G. Verma , and V. Sharma . "A novel thermoelectric energy harvester for wireless sensor network application". IEEE Trans Ind Electron vol. 66, no. 5, 3530-3538, 2019.
[http://dx.doi.org/10.1109/TIE.2018.2863190]
[10]
E.J. Carlson , K. Strunz , and B.P. Otis . "A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting". IEEE J Solid-State Circuits vol. 45, no. 4, 741-750, 2010.
[http://dx.doi.org/10.1109/JSSC.2010.2042251]
[11]
G. Verma , and V. Sharma . "A survey on hardware design issues in RF energy harvesting for wireless sensor networks (WSN)" 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), Rajpura, 14-16 Oct. 2016, pp. 1-9.
[http://dx.doi.org/10.1109/WECON.2016.7993469]
[12]
P. Mullen , J. Siviter , A. Montecucco , A.R. Knox . "A thermoelectric energy harvester with a cold start of 06 °C" , Mater. Today Proc., vol. 2, no 2, 823-832, 2015.
[http://dx.doi.org/10.1016/j.matpr.2015.05.106]
[13]
M. Kocoloski , C. Eger , R. McCarty , K. Hallinan , and K. Kissock . "Industrial solid-state energy harvesting: mechanisms and examples" Proc ACEEE 2007
[14]
G. Verma , A. Rawat , and V. Sharma . "Study on energy harvesting methods for wireless sensor network" Int. J. Inn. Eng. Manage., vol. 5, no. 1, 2016.
[15]
M. Strasser , R. Aigner , C. Lauterbach , T.F. Sturm , M. Franosh , and G. Wachutka . "Micromachined CMOS thermoelectric generators as on-chip power supply" TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 2003, pp. 45-48 vol.1.
[http://dx.doi.org/10.1109/SENSOR.2003.1215249]
[16]
G. Verma , and V. Sharma , and A. Pughat . " Energy Harvesting Issues in Wireless Sensor Networks". InEnergy-Efficient Wire-less Sensor Networks, V Sharma, A Pughat CRC Press, 2017, pp. 6.1-6.28.
[17]
J. Su , V. Leonov , M. Goedbloed , et al. "A batch process micro machined thermoelectric energy harvester: Fabrication and characterization" J. Micromech. Microeng., vol. 20, no. 10, id: 104005, 2010.
[http://dx.doi.org/10.1088/0960-1317/20/10/104005]
[18]
K.T. Settaluri , H. Lo , and R.J. Ram . "Thin thermoelectric generator system for body energy harvesting". J Electron Mater vol. 41, no. 6, 984-988, 2011.
[http://dx.doi.org/10.1007/s11664-011-1834-3]
[19]
W.S. Wang , W. Magnin , N. Wang , M. Hayes , B. O’Flynn , and C. O’Mathuna . "Bulk material based thermoelectric energy harvesting for wireless sensor applications" J. Phys. Conf. Ser., vol. 307, id: 012030, 12-14 September 2011.
[http://dx.doi.org/10.1088/1742-6596/307/1/012030]
[20]
M.E. Kiziroglou , S.W. Wright , T.T. Toh , P.D. Mitcheson , T. Becker , and E.M. Yeatman . "Design and fabrication of heat storage thermoelectric harvesting devices". In IEEE Transactions on Industrial Electronics vol. 61, no. 1, pp. 302-309, Jan. 2014.
[http://dx.doi.org/10.1109/TIE.2013.2257140]
[21]
Y.K. Tan , and S.K. Panda . "Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes". In IEEE Transactions on Industrial Electronics vol. 58, no. 9, pp. 4424-4435, Sept. 2011.
[http://dx.doi.org/10.1109/TIE.2010.2102321]
[22]
A. Moser , M. Erd , M. Kostic , K. Cobry , M. Kroener , and P. Woias . "Thermoelectric energy harvesting from transient ambient temperature gradients". J Elect Mater vol. 41, no. 6, 1653-1661, 2012.
[http://dx.doi.org/10.1007/s11664-011-1894-4]
[23]
S. Dalola , M. Ferrari , V. Ferrari , M. Guizzetti , D. Marioli , and A. Taroni . "Characterization of thermoelectric modules for powering autonomous sensors". In IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 1, pp. 99-107, Jan. 2009.
[http://dx.doi.org/10.1109/TIM.2008.928405]
[24]
J.P. Carmo , L.M. Goncalves , and J.H. Correia . "Thermoelectric microconverter for energy harvesting systems". In IEEE Transactions on Industrial Electronics vol. 57, no. 3, pp. 861-867, March 2010
[http://dx.doi.org/10.1109/TIE.2009.2034686]
[25]
B.I. Ismail , W.H. Ahmed . "Thermoelectric power generation using waste heat energy as an alternative green technology". Rec Pat Electr Engg vol. 2, no. 1, 27-39. 2010.
[26]
N.S. Hudak , and G.G. Amatucci . Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys vol. 103, no. 10, 101301, 2008.
[http://dx.doi.org/10.1063/1.2918987]
[27]
K. Malik , D. Das , A. Dasgupta , S. Bandyopadhay , and A. Banerjee . "Thermoelectric property study of Bi2Te3-Sb2Te3 mixed crystals" AIP Conf Proc. Amity University, Noida, UP, India, Dec 21-25, 2015.
[http://dx.doi.org/10.1063/1.4948053]
[28]
B. Krakow , K. Stefanakos , and D.Y. Goswami . Thermal energy storage systems and methods U.S. Patent 0192792, 2013.
[29]
T.J. Held , S. Hostler , J.D. Miller , and B.F. Hume . "Thermal energy conversion methods" U. S. Patent 8,794,002 B2, 2014.
[30]
Y.D. Perryman . "Thermal energy storage and delivery system" U. S. Patent 9,115,937 B2, 2015.
[31]
H. Böttner , D.G. Ebling , A. Jacquot , J. König , L. Kirste , and J. Schmidt . "Structural and mechanical properties of Spark Plasma sintered n- and p-type bismuth telluride alloys". Phy Stat Sol vol. 1, no. 6, 235-237, 2007.
[http://dx.doi.org/10.1002/pssr.200701170]
[32]
E.I. Ortiz-Rivera , A. Salazar-Llinas , and J. Gonzalez-Llorente . "A mathematical model for online electrical characterization of thermoelectric generators using the P-I curves at different temperatures" 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Palm Springs, CA, 2010, pp. 2226-2230.
[http://dx.doi.org/10.1109/APEC.2010.5433546]
[33]
D.M. Rowe . CRC Handbook of Thermoelectric. Boca Raton, FL, USA: CRC Press, 1995.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2020
Published on: 28 October, 2020
Page: [161 - 170]
Pages: 10
DOI: 10.2174/1872212113666190213111609
Price: $25

Article Metrics

PDF: 11
HTML: 1