Chemistry, Alpha-glucosidase and Radical Scavenging Properties of Uranyl(VI) Hydrazide Complexes

Author(s): Parveen Akhter, Uzma Ashiq*, Rifat A. Jamal, Zara Shaikh, Mohammad Mahroof-Tahir, Mehreen Lateef, Rooma Badar

Journal Name: Medicinal Chemistry

Volume 15 , Issue 8 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Antioxidant, anti-inflammatory, antiviral and antitumoral activities among others are essential characteristics in the development of novel therapeutic compounds. Acid hydrazides can form complexation with certain metal ions that positively enhance these biological characteristics.

Objective: Five new complexes of uranium with hydrazide ligands were synthesized at room temperature.

Methods: The characterization was done by spectroscopic methods (ESI-Mass, IR, 1H-NMR, 13CNMR), CHN analysis and conductivity measurements. Metal complexes along with their respective ligands were further screened for their antioxidant (DPPH, superoxide and nitric oxide free radicals) properties and enzyme inhibition (α-glucosidase) activities.

Results: Elemental and spectral data indicate octahedral geometry around uranyl (UO2 2+) species.

Magnetic moments indicate the diamagnetic nature of uranyl(VI) ion in the complex in solid state. IC50 values showed potential antioxidant behavior of uranyl complexes demonstrating interesting structure-activity relationships. In general, hydrazide ligands were not active against superoxide and nitric oxide radicals while varying degree of results were observed against DPPH radical whereas all uranyl-complexes showed promising radical scavenging activities against all of them. Promising inhibitory potential was displayed by UO2 +2 hydrazide complexes against α- glucosidases whereas free hydrazide ligands were inactive.

Conclusion: Structure function relationship demonstrates that the nature of ligand, position of substituent, electronic and steric effects are significant factors affecting the radical scavenging and enzyme inhibition activities of the compounds.

Keywords: DPPH, superoxide, nitric oxide, uranyl(VI), hydrazide, α-glucosidase.

[1]
Bart, S.C.; Organoment, M.K. Organometallic and coordination chemistry of the actinides. Coord. Chem. Actinides., 2008, 127, 119-176.
[2]
Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans., 2006, (21), 2501-2516.
[http://dx.doi.org/10.1039/b603463b] [PMID: 16718334]
[3]
Fox, A.R.; Bart, S.C.; Meyer, K.; Cummins, C.C. Towards uranium catalysts. Nature, 2008, 455(7211), 341-349.
[http://dx.doi.org/10.1038/nature07372] [PMID: 18800133]
[4]
Kannan, S.; Barnes, C.L.; Duval, P.B. Synthesis and structural characterization of a uranyl(VI) complex possessing unsupported unidentate thiolate ligands. Inorg. Chem., 2005, 44(25), 9137-9139.
[http://dx.doi.org/10.1021/ic0517117] [PMID: 16323892]
[5]
Sessler, J.L.; Melif, P.J.; Pantos, G.D. Uranium complexes of multidentate N-donor ligands. Coord. Chem. Rev., 2006, 25, 816-843.
[http://dx.doi.org/10.1016/j.ccr.2005.10.007]
[6]
El-Blindary, A.A.; El Sonbati, A.Z. Synthesis and properties of complexes of copper(II), nickel(II), cobalt(II) and uranyl Ions with 3-(p-tolylsulphonamido) rhodanine. Pol. J. Chem., 2000, 74, 615-620.
[7]
Kladienko, D. P. The biological role of uranium in the mammalian body, 1959, 48, 1384-1386.
[8]
Sigel, H.; Martin, A.E. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev., 1982, 82, 385.
[http://dx.doi.org/10.1021/cr00050a003]
[9]
Aggarwal, R.C.; Rao, T.R. Nicotinoyl hydrazide complexes of some first row transition metal ions. Transit. Met. Chem., 1977, 2, 201-204.
[http://dx.doi.org/10.1007/BF01402722]
[10]
Angelusiu, M.V.; Almajan, G.L.; Ilies, D.C.; Rosu, T.; Negoiu, M. Cu(II) Complexes with nitrogen-oxygen donor ligands synthesis and biological activity. Chimie. Ingeneria Mediului, 2008, 53, 1.
[11]
Ara, R.; Ashiq, U.; Mahroof-Tahir, M.; Maqsood, Z.T.; Khan, K.M.; Lodhi, M.A.; Choudhary, M.I. Chemistry, urease inhibition, and phytotoxic studies of binuclear vanadium(IV) complexes. Chem. Biodivers., 2007, 4(1), 58-71.
[http://dx.doi.org/10.1002/cbdv.200790007] [PMID: 17256735]
[12]
Ashiq, U.; Jamal, R.A.; Mahroof-Tahir, M.; Maqsood, Z.T.; Khan, K.M.; Omer, I.; Choudhary, M.I. Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium(IV)-hydrazide complexes. J. Enzyme Inhib. Med. Chem., 2009, 24(6), 1336-1343.
[http://dx.doi.org/10.3109/14756360902888168] [PMID: 19912066]
[13]
Ashiq, U.; Ara, R.; Mahroof-Tahir, M.; Maqsood, Z.T.; Khan, K.M.; Khan, S.N.; Siddiqui, H.; Choudhary, M.I. Synthesis, spectroscopy, and biological properties of vanadium(IV)-hydrazide complexes. Chem. Biodivers., 2008, 5(1), 82-92.
[http://dx.doi.org/10.1002/cbdv.200890016] [PMID: 18205128]
[14]
David, L.; Rusu, M.; Cozar, O.; Rusu, T.D.; Mand, B.C. Spectroscopic and magnetic investigations of some transition metal complexes with N-4-methoxyphenyl-N-4-chlorobenzoyl hydrazide as ligand. J. Mol. Struct., 2004, 149, 482-483.
[15]
Dodoff, N.; Grancharov, K.; Spassovska, N. Platinum(II) complexes of 4-methoxy- and 4-chlorobenzoic acid hydrazides. Synthesis, characterization, and cytotoxic effect. J. Inorg. Biochem., 1995, 60(4), 257-266.
[http://dx.doi.org/10.1016/0162-0134(95)00025-9] [PMID: 8530921]
[16]
Maqsood, Z.T.; Khan, K.M.; Ashiq, U.; Jamal, R.A.; Chohan, Z.H.; Mahroof-Tahir, M.; Supuran, C.T. Oxovanadium(IV) complexes of hydrazides: potential antifungal agents. J. Enzyme Inhib. Med. Chem., 2006, 21(1), 37-42.
[http://dx.doi.org/10.1080/14756360500277459] [PMID: 16570503]
[17]
Rollas, S.; Küçükgüzel, S.G. Biological activities of hydrazone derivatives. Molecules, 2007, 12(8), 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[18]
Zubareva, G.I.; Adeev, S.U.; Radushev, A.V.; Gomzikov, A.I.; Zubarev, M.P. Treatment of waste waters to remove metal ions by flotation with hydrazides of aliphatic carboxylic acid. J. Appl. Chem., 1998, 72, 283.
[19]
Bhat, S.; Hwang, Y.; Gibson, M.D.; Morgan, M.T.; Taverna, S.D.; Zhao, Y.; Wolberger, C.; Poirier, M.G.; Cole, P.A. Hydrazide mimics for protein lysine acylation to assess nucleosome dynamics and deubiquitinase action. J. Am. Chem. Soc., 2018, 140(30), 9478-9485.
[http://dx.doi.org/10.1021/jacs.8b03572] [PMID: 29991262]
[20]
Kakimoto, S.; Yamamoto, K. Studies on antitubercular compounds. X. Condensation products of aldehydes and acid hydrazides of pyr-idine group. Pharm. Bull., 1956, 4(1), 4-6.
[http://dx.doi.org/10.1248/cpb1953.4.4] [PMID: 13335446]
[21]
Jin, F.; Ma, T.; Guan, H.; Yang, Z.H.; Liu, X.D.; Wang, Y.; Jiang, Y.G.; Zhou, P.K. Inhibitory effect of uranyl nitrate on DNA double-strand break repair by depression of a set of proteins in the homologous recombination pathway. Toxicol. Res. (Camb.), 2017, 6(5), 711-718.
[http://dx.doi.org/10.1039/C7TX00125H] [PMID: 30090538]
[22]
Schöneich, C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim. Biophys. Acta, 2005, 1703(2), 111-119.
[http://dx.doi.org/10.1016/j.bbapap.2004.09.009] [PMID: 15680219]
[23]
Jena, N.R. DNA damage by reactive species: Mechanisms, mutation and repair. J. Biosci., 2012, 37(3), 503-517.
[http://dx.doi.org/10.1007/s12038-012-9218-2] [PMID: 22750987]
[24]
Cadet, J.; Wagner, J.R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol., 2013, 5(2)a012559
[http://dx.doi.org/10.1101/cshperspect.a012559] [PMID: 23378590]
[25]
Yakes, F.M.; Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA, 1997, 94(2), 514-519.
[http://dx.doi.org/10.1073/pnas.94.2.514] [PMID: 9012815]
[26]
Faridounnia, M.; Wienk, H.; Kovačič, L.; Folkers, G.E.; Jaspers, N.G.J.; Kaptein, R.; Hoeijmakers, J.H.J.; Boelens, R. The Cerebro-Oculo-Facio-Skeletal (COFS) syndrome point mutation F231L in the ERCC1 DNA repair protein causes dissociation of the ERCC1-XPF complex. J. Biol. Chem., 2015, 290(33), 20541-20555.
[http://dx.doi.org/10.1074/jbc.M114.635169] [PMID: 26085086]
[27]
Croteau, D.L.; Bohr, V.A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem., 1997, 272(41), 25409-25412.
[http://dx.doi.org/10.1074/jbc.272.41.25409] [PMID: 9325246]
[28]
Tubbs, A.; Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell, 2017, 168(4), 644-656.
[http://dx.doi.org/10.1016/j.cell.2017.01.002] [PMID: 28187286]
[29]
Schöneich, C. Reactive oxygen species and biological aging: a mechanistic approach. Exp. Gerontol., 1999, 34(1), 19-34.
[http://dx.doi.org/10.1016/S0531-5565(98)00066-7] [PMID: 10197725]
[30]
Sahinoglu, T.; Stevens, C.R.; Bhatt, B.; Blake, D.R. The role of reactive oxygen species in inflammatory disease. Methods, 1996, 9(3), 628-634.
[http://dx.doi.org/10.1006/meth.1996.0069] [PMID: 8812717]
[31]
Huang, H.W.; Tang, J.Y.; Ou-Yang, F.; Wang, H.R.; Guan, P.Y.; Huang, C.Y.; Chen, C.Y.; Hou, M.F.; Sheu, J.H.; Chang, H.W. Sinularin selectively kills breast cancer cells showing g2/m arrest, apoptosis, and oxidative DNA damage. Molecules, 2018, 23(4)E849
[http://dx.doi.org/10.3390/molecules23040849] [PMID: 29642488]
[32]
Wang, J.; Lin, D.; Peng, H.; Huang, Y.; Huang, J.; Gu, J. Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species. Cell Death Dis., 2013, 4e945
[http://dx.doi.org/10.1038/cddis.2013.474] [PMID: 24309932]
[33]
De Maria, N.; Colantoni, A.; Fagiuoli, S.; Liu, G.J.; Rogers, B.K.; Farinati, F.; Van Thiel, D.H.; Floyd, R.A. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic. Biol. Med., 1996, 21(3), 291-295.
[http://dx.doi.org/10.1016/0891-5849(96)00044-5] [PMID: 8855439]
[34]
Kirkinezos, I.G.; Moraes, C.T. Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol., 2001, 12(6), 449-457.
[http://dx.doi.org/10.1006/scdb.2001.0282] [PMID: 11735379]
[35]
Oka, M.; Tachibana, M.; Noda, K.; Inoue, N.; Tanaka, M.; Kuwabara, K. Relevance of anti-reactive oxygen species activity to anti-inflammatory activity of components of eviprostat, a phytotherapeutic agent for benign prostatic hyperplasia. Phytomedicine, 2007, 14(7-8), 465-472.
[http://dx.doi.org/10.1016/j.phymed.2007.04.006] [PMID: 17583488]
[36]
Smith, C.J.; Zhang, Y.; Koboldt, C.M.; Muhammad, J.; Zweifel, B.S.; Shaffer, A.; Talley, J.J.; Masferrer, J.L.; Seibert, K.; Isakson, P.C.; Zhang, Y. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl. Acad. Sci. USA, 1998, 95(22), 13313-13318.
[http://dx.doi.org/10.1073/pnas.95.22.13313] [PMID: 9789085]
[37]
Mahmoud, E.A.; Sankaranarayanan, J.; Morachis, J.M.; Kim, G.; Almutairi, A. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjug. Chem., 2011, 22(7), 1416-1421.
[http://dx.doi.org/10.1021/bc200141h] [PMID: 21688843]
[38]
Bencini, A.; Failli, P.; Valtancoli, B.; Bani, D. Low molecular weight compounds with transition metals as free radical scavengers and novel therapeutic agents. Cardiovasc. Hematol. Agents Med. Chem., 2010, 8(3), 128-146.
[http://dx.doi.org/10.2174/187152510791698389] [PMID: 20438441]
[39]
Patel, R.M.; Patel, N. In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. J. Adv. Pharm. Educ. Res., 2011, 1, 52-68.
[40]
Balasundram, N.; Ai, T.Y.; Sambanthamurthi, R.; Sundram, K.; Samman, S. Antioxidant properties of palm fruit extracts. Asia Pac. J. Clin. Nutr., 2005, 14(4), 319-324.
[PMID: 16326638]
[41]
Winchester, B.; Fleet, G.W. Amino-sugar glycosidase inhibitors: versatile tools for glycobiologists. Glycobiology, 1992, 2(3), 199-210.
[http://dx.doi.org/10.1093/glycob/2.3.199] [PMID: 1498417]
[42]
Park, H.; Hwang, K.Y.; Kim, Y.H.; Oh, K.H.; Lee, J.Y.; Kim, K. Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg. Med. Chem. Lett., 2008, 18(13), 3711-3715.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.056] [PMID: 18524587]
[43]
Braun, C.; Brayer, G.D.; Withers, S.G. Mechanism-based inhibition of yeast alpha-glucosidase and human pancreatic alpha-amylase by a new class of inhibitors. 2-Deoxy-2,2-difluoro-alpha-glycosides. J. Biol. Chem., 1995, 270(45), 26778-26781.
[http://dx.doi.org/10.1074/jbc.270.45.26778] [PMID: 7592915]
[44]
Dwek, R.A.; Butters, T.D.; Platt, F.M.; Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov., 2002, 1(1), 65-75.
[http://dx.doi.org/10.1038/nrd708] [PMID: 12119611]
[45]
Humphries, M.J.; Matsumoto, K.; White, S.L.; Olden, K. Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res., 1986, 46(10), 5215-5222.
[PMID: 3093061]
[46]
Karpas, A.; Fleet, G.W.; Dwek, R.A.; Petursson, S.; Namgoong, S.K.; Ramsden, N.G.; Jacob, G.S.; Rademacher, T.W. Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc. Natl. Acad. Sci. USA, 1988, 85(23), 9229-9233.
[http://dx.doi.org/10.1073/pnas.85.23.9229] [PMID: 3264071]
[47]
Lajolo, F.M.; Filho, J.M.; Menezes, E.W. Effect of a bean (Phaseolus vulgaris, L.) alfa-amalyase inhibitors on starch utilization. Nutr. Rep. Int., 1984, 30, 45-54.
[48]
Madariaga, H.; Lee, P.C.; Heitlinger, L.A.; Lebenthal, E. Effects of graded alpha-glucosidase inhibition on sugar absorption in vivo. Dig. Dis. Sci., 1988, 33(8), 1020-1024.
[http://dx.doi.org/10.1007/BF01536000] [PMID: 3292164]
[49]
McCulloch, D.K.; Kurtz, A.B.; Tattersall, R.B. A new approach to the treatment of nocturnal hypoglycemia using alpha-glucosidase inhibition. Diabetes Care, 1983, 6(5), 483-487.
[http://dx.doi.org/10.2337/diacare.6.5.483] [PMID: 6400709]
[50]
Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. Alpha-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett., 1998, 430(1-2), 17-22.
[http://dx.doi.org/10.1016/S0014-5793(98)00525-0] [PMID: 9678587]
[51]
Robinson, K.M.; Begovic, M.E.; Rhinehart, B.L.; Heineke, E.W.; Ducep, J.B.; Kastner, P.R.; Marshall, F.N.; Danzin, C. New potent alpha-glucohydrolase inhibitor MDL 73945 with long duration of action in rats. Diabetes, 1991, 40(7), 825-830.
[http://dx.doi.org/10.2337/diab.40.7.825] [PMID: 2060719]
[52]
Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D.D.; Wingender, W. Chemistry and biochemistry of microbial α‐glucosidase inhibitors. Angew. Chem. Int. Ed. Engl., 1981, 20, 744.
[http://dx.doi.org/10.1002/anie.198107441]
[53]
Zitzmann, N.; Mehta, A.S.; Carrouée, S.; Butters, T.D.; Platt, F.M.; McCauley, J.; Blumberg, B.S.; Dwek, R.A.; Block, T.M. Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents. Proc. Natl. Acad. Sci. USA, 1999, 96(21), 11878-11882.
[http://dx.doi.org/10.1073/pnas.96.21.11878] [PMID: 10518544]
[54]
Khan, K.M.; Rasheed, M. Zia-Ullah.; Hayat, S.; Kaukab, F.; Choudhary, M.I.; Atta-ur-Rahman.; Perveen, S. Synthesis and in vitro leishmanicidal activity of some hydrazides and their analogues. Bioorg. Med. Chem., 2003, 11(7), 1381-1387.
[http://dx.doi.org/10.1016/S0968-0896(02)00611-9] [PMID: 12628664]
[55]
Lee, S.K.; Mbwambo, Z.H.; Chung, H.; Luyengi, L.; Gamez, E.J.; Mehta, R.G.; Kinghorn, A.D.; Pezzuto, J.M. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen., 1998, 1(1), 35-46.
[PMID: 10499128]
[56]
Gaulejac, N.S.C.; Glories, Y.; Vivas, N. Free radical scavenging effect of anthocyanins in red wines. Food Res. Int., 1999, 32, 327-333.
[http://dx.doi.org/10.1016/S0963-9969(99)00093-9]
[57]
Badami, S.; Gupta, M.K.; Suresh, B. Antioxidant activity of the ethanolic extract of Striga orobanchioides. J. Ethnopharmacol., 2003, 85(2-3), 227-230.
[http://dx.doi.org/10.1016/S0378-8741(03)00021-7] [PMID: 12639745]
[58]
Dewi, R.T.; Iskandar, Y.M.; Hanafi, M.; Kardono, L.B.; Angelina, M.; Dewijanti, I.D.; Banjarnahor, S.D. Inhibitory effect of koji As-pergillus terreus on alpha-glucosidase activity and postprandial hyperglycemia. Pak. J. Biol. Sci., 2007, 10(18), 3131-3135.
[http://dx.doi.org/10.3923/pjbs.2007.3131.3135] [PMID: 19090111]
[59]
Adeoye, I.O.; Adelowo, O.O.; Oladip, M.H.; Odunola, O.A. Comparison of bactericidal and fungicidal activities of Cu(II) and Ni(II) complexes of para-methoxy- and para-hydroxybenzoic acid hydrazide. Res. J. Appl. Sci., 2007, 2, 590-594.
[60]
Geary, W.J. Solvents for the characterization of coordination compounds. Coord. Chem. Rev., 1971, 7, 81-122.
[http://dx.doi.org/10.1016/S0010-8545(00)80009-0]
[61]
Pavia, D.L.; Lampman, Gz. Introduction to spectroscopy, Third edition.; , 2000, p. 873.
[62]
Ashiq, U.; Jamal, R.A.; Mesaik, M.A.; Mahroof-Tahir, M.; Shahid, S.; Khan, K.M. Synthesis, immunomodulation and cytotoxic effects of vanadium (IV) complexes. Med. Chem., 2014, 10(3), 287-299.
[http://dx.doi.org/10.2174/15734064113099990033] [PMID: 23876231]
[63]
Sultan, S.; Ashiq, U.; Jamal, R.A.; Mahroof-Tahir, M.; Shaikh, Z.; Shamshad, B.; Lateef, M.; Iqbal, L. Vanadium(V) complexes with hydrazides and their spectroscopic and biological properties. Biometals, 2017, 30(6), 873-891.
[http://dx.doi.org/10.1007/s10534-017-0054-6] [PMID: 28994011]
[64]
Singh, R.V.; Fahmi, N.; Biyala, M.K. Coordination behavior and biopotency of N and S/O donor ligands with their palladium(II) and platinum(II) complexes. J. Iran. Chem. Soc., 2005, 2, 40-46.
[http://dx.doi.org/10.1007/BF03245778]
[65]
Azam, M.; Al-Resayes, S.I.; Velmurugan, G.; Venuvanalingam, P.; Wagler, J.; Kroke, E. Novel uranyl(VI) complexes incorporating propylene-bridged salen-type N2O2-ligands: a structural and computational approach. Dalton Trans., 2015, 44(2), 568-577.
[http://dx.doi.org/10.1039/C4DT02112F] [PMID: 25380389]
[66]
Henderson, W.; McIndoe, J.S. Mass spectrometry of inorganic, coordination and organometallic compounds: tools - techniques – tips. In: The ESI MS behaviour of coordination complexes; , 2005; 5, pp. 127-173.
[67]
Ul Ain, Q.; Ashiq, U.; Jamal, R.A.; Mahrooof-Tahir, M. Synthesis, spectroscopic and radical scavenging studies of palladium(II)-hydrazide complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 683-689.
[http://dx.doi.org/10.1016/j.saa.2013.05.064] [PMID: 23880410]
[68]
Dodoff, N.; Grancharov, K.; Gugova, R.; Spassovska, N. Platinum (II) complexes of benzoic- and 3-methoxybenzoic acid hydrazides. Synthesis, characterization, and cytotoxic effect. J. Inorg. Biochem., 1994, 54(3), 221-233.
[http://dx.doi.org/10.1016/0162-0134(94)80015-4] [PMID: 8027743]
[69]
Ain, Q.U.; Ashiq, U.; Jamal, R.A.; Saleem, M.; Mahrooof-Tahir, M. Alpha-glucosidase and carbonic anhydrase inhibition studies of Pd(II)–hydrazide complexes. Arab. J. Chem., 2017, 10, 488-499.
[http://dx.doi.org/10.1016/j.arabjc.2015.02.024]
[70]
Pin, Y.; Zhang, X.P. Synthesis and characterization of new chromium(III), vanadium(IV), and titanium(III) complexes with biologically active isonicotinic acid hydrazide. J. Inorg. Biochem., 1989, 37(1), 61-68.
[http://dx.doi.org/10.1016/0162-0134(89)80030-3] [PMID: 2507740]
[71]
Despaigne, A.A.R.; Da Silva, J.G.; Do Carmo, A.C.M.; Sives, F.; Piro, O.E.; Castellano, E.E.; Beraldo, H. Copper(II) and zinc(II) complexes with 2-formylpyridine-derived hydrazones. Polyhedron, 2009, 28, 3797-3803.
[http://dx.doi.org/10.1016/j.poly.2009.07.059]
[72]
Shaikh, Z.; Ashiq, U.; Jamal, R.A.; Mahrooof-Tahir, M.; Shamshad, B.; Sultan, S. Chemistry and antioxidant properties of titanium(IV) complexes. Transit. Met. Chem., 2015, 40, 665-671.
[http://dx.doi.org/10.1007/s11243-015-9960-z]
[73]
Soares, S.S.; Martins, H.; Gutiérrez-Merino, C.; Aureliano, M. Vanadium and cadmium in vivo effects in teleost cardiac muscle: metal accumulation and oxidative stress markers. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2008, 147(2), 168-178.
[http://dx.doi.org/10.1016/j.cbpc.2007.09.003] [PMID: 17920336]
[74]
Baumann, J.; Wurn, G.; Bruchlausen, F.V. Prostaglandin synthease inhibiting O_2-radical scavenging properties of some flavonoids and related phenolic compounds. Naunyn Sch-Miedebergs Arc. Pharmacol., 1979, 307, 27-31.
[75]
Miller, A.F. Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol., 2004, 8(2), 162-168.
[http://dx.doi.org/10.1016/j.cbpa.2004.02.011] [PMID: 15062777]
[76]
Shamshad, B.; Jamal, R.A.; Ashiq, U.; Mahrooof-Tahir, M.; Shaikh, Z.; Sultan, S.; Khan, K.M. Studies on chemistry, spectroscopy and antioxidant activities of chromium(III)-hydrazide complexes. Med. Chem., 2015, 11(8), 798-806.
[http://dx.doi.org/10.2174/1573406411666150401103442] [PMID: 25827721]
[77]
Srianta, I.; Kusumawati, N.; Nugerahani, I.; Artanti, N.; Xu, G.R. In vitro α-glucosidase inhibitory activity of Monascus-fermented durian seed extracts. Int. Food Res. J., 2013, 20, 533-536.
[78]
Yoshikawa, Y. Hiratar.; Sakurai, H. Inhibitory effect of oxovanadium(IV), copper(II) and zinc(II) ions on the activity of an alpha-glucosidase from a saccharomyces sp. Biomed. Res. Trace. Elements., 2006, 17, 360-364.
[79]
Miyazaki, R.; Yasui, H.; Yoshikawa, Y. α-Glucosidase inhibition by new Schiff base complexes of Zn(II). Open J. Inorg. Chem., 2016, 6, 114-124.
[http://dx.doi.org/10.4236/ojic.2016.62007]
[80]
Lodge, J.A.; Maier, T.; Liebl, W.; Hoffmann, V.; Sträter, N. Crystal structure of Thermotoga maritima alpha-glucosidase AglA defines a new clan of NAD+-dependent glycosidases. J. Biol. Chem., 2003, 278(21), 19151-19158.
[http://dx.doi.org/10.1074/jbc.M211626200] [PMID: 12588867]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 8
Year: 2019
Published on: 18 November, 2019
Page: [923 - 936]
Pages: 14
DOI: 10.2174/1573406415666190213101044
Price: $65

Article Metrics

PDF: 24
HTML: 3