Electrochemical Determination of Norepinephrine at Poly (p-aminobenzenesulfonic Acid) Modified Sensor

Author(s): Şevket Zişan Yağcı, Ebru Kuyumcu Savan*, Gamze Erdoğdu

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: In this study, it was aimed to prepare an electrochemical sensor capable of assigning Norepinephrine in the presence of an interference such as ascorbic acid.

Methods: A sensitive modified sensor was prepared by electrodeposition of p-aminobenzenesulfonic acid (p-ABSA) to the glassy carbon electrode by cyclic voltammetry. The electrooxidation of Norepinephrine was accomplished by cyclic and differential pulse voltammetry.

Results: The current values were enhanced and the peak potentials of Norepinephrine and ascorbic acid were separated at the sensor compared to the bare electrode. There was linearity between the oxidation current and concentration of Norepinephrine ranging from 0.5 to 99.8 μM in phosphate buffer solution at pH 7.0. The limit of detection was 10.0 nM and the sensitivity was 0.455 μA/μM.

Conclusion: The determination of Norepinephrine was successfully performed in real samples such as blood serum and urine at the poly (p-ABSA) sensor. To the best of our knowledge, this is the first study to detect Norepinephrine in the presence of ascorbic acid at poly (p-ABSA) modified sensor in the literature.

Keywords: Norepinephrine, ascorbic acid, electrochemical sensor, p-aminobenzenesulfonic acid, voltammetry, catecholamine.

[1]
Electrochemical Determination of Norepinephrine on Cathodically Pretreated Poly(1,5-diaminonaphthalene) Modified Electrode. Electroanalysis, 2011, 23(6), 1359-1364.
[http://dx.doi.org/10.1002/elan.201100001]
[2]
Herbet, M.; Szopa, A.; Serefko, A.; Wośko, S.; Gawrońska-Grzywacz, M.; Izdebska, M.; Piątkowska-Chmiel, I.; Betiuk, P.; Poleszak, E.; Dudka, J. 8-Cyclopentyl-1,3-dimethylxanthine enhances effectiveness of antidepressant in behavioral tests and modulates redox balance in the cerebral cortex of mice. Saudi Pharm. J., 2018, 26(5), 694-702.
[http://dx.doi.org/10.1016/j.jsps.2018.02.021] [PMID: 29991913]
[3]
Hawley, M.D.; Tatawawadi, S.V.; Piekarski, S.; Adams, R.N. Electrochemical studies of the oxidation pathways of catecholamines. J. Am. Chem. Soc., 1967, 89(2), 447-450.
[http://dx.doi.org/10.1021/ja00978a051] [PMID: 6031636]
[4]
Wang, G.; Liu, X.; Yu, B.; Luo, G. Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2004, 567(2), 227-231.
[http://dx.doi.org/10.1016/j.jelechem.2003.12.029]
[5]
Zhao, H.; Zhang, Y.; Yuan, Z. Poly (isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine. Anal. Chim. Acta, 2002, 454, 75-81.
[http://dx.doi.org/10.1016/S0003-2670(01)01543-4]
[6]
Chau, C.; Barbeau, H.; Rossignol, S. Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J. Neurophysiol., 1998, 79(6), 2941-2963.
[http://dx.doi.org/10.1152/jn.1998.79.6.2941] [PMID: 9636099]
[7]
Amiri-Aref, M.; Raoof, J.B.; Ojani, R. A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens. Actuators B Chem., 2014, 192, 634-641.
[http://dx.doi.org/10.1016/j.snb.2013.11.006]
[8]
Bajic, V.; Milovanovic, E.; Spremo-Potparevic, B.; Zivkovic, L.; Milicevic, Z.; Stanimirovic, J. Treatment of Alzheimer’s Disease: Classical therapeutic approach. Curr. Pharm. Anal., 2016, 12(2), 82-90.
[http://dx.doi.org/10.2174/1573412911666150611184740]
[9]
Hu, Y.; Wei, X. Enantioseparation and determination of norepinephrine, epinephrine and isoproterenol by capillary electrophoresis-indirect electrochemiluminescence in human serum. Curr. Anal. Chem., 2018, 14(5), 504-511.
[http://dx.doi.org/10.2174/1573411013666170929150919]
[10]
Chen, W.; Lin, X.; Luo, H.; Huang, L. Electrocatalytic oxidation and determination of norepinephrine at poly(cresol red) modified glassy carbon electrode. Electroanalysis, 2005, 17(11), 941-945.
[http://dx.doi.org/10.1002/elan.200403199]
[11]
Napolitano, A.; Manini, P.; d’Ischia, M. Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr. Med. Chem., 2011, 18(12), 1832-1845.
[http://dx.doi.org/10.2174/092986711795496863] [PMID: 21466469]
[12]
Escribano, B.M.; Aguilar-Luque, M.; Bahamonde, C.; Conde, C.; Lillo, R.; Sanchez-Lopez, F.; Giraldo, A.I.; Cruz, A.H.; Luque, E.; Gascon, F.; Aguera, E.; Tunez, I. Natalizumab modifies catecholamines levels present in patients with relapsing- remitting multiple sclerosis. Curr. Pharm. Des., 2016, 22(31), 4876-4880.
[http://dx.doi.org/10.2174/1381612822666160708000453] [PMID: 27396595]
[13]
Liao, H.I.; Yoneya, M.; Kidani, S.; Kashino, M.; Furukawa, S. Human pupillary dilation response to deviant auditory stimuli: Effects of stimulus properties and voluntary attention. Front. Neurosci., 2016, 10, 43.
[http://dx.doi.org/10.3389/fnins.2016.00043] [PMID: 26924959]
[14]
Jin, G.P.; Lin, X.Q.; Gong, J. Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid. J. Electroanal. Chem. (Lausanne Switz.), 2004, 569(1), 135-142.
[http://dx.doi.org/10.1016/j.jelechem.2004.02.022]
[15]
Zhang, W.; He, L.; Gu, Y.; Liu, X.; Jiang, S. Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography. Anal. Lett., 2003, 36(4), 827-838.
[http://dx.doi.org/10.1081/AL-120018802]
[16]
Xiao, X.; Zhang, Y.; Wu, J.; Jia, L. Poly(norepinephrine)-coated open tubular column for the separation of proteins and recombination human erythropoietin by capillary electrochromatography. J. Sep. Sci., 2017, 40(23), 4636-4644.
[http://dx.doi.org/10.1002/jssc.201700720] [PMID: 28988419]
[17]
Babaei, A.; Sohrabi, M.; Afrasiabi, M. A sensitive simultaneous determination of epinephrine and piroxicam using a glassy carbon electrode modified with a nickel hydroxide nanoparticles/multiwalled carbon nanotubes composite. Electroanalysis, 2012, 24(12), 2387-2394.
[http://dx.doi.org/10.1002/elan.201200483]
[18]
Fang, C.; Tang, X.; Zhou, X. Preparation of Poly(malachite green) modified electrode and the determination of dopamine and ascorbic acid. Anal. Sci., 1999, 15, 41-46.
[http://dx.doi.org/10.2116/analsci.15.41]
[19]
Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.; Jain, Y.K.; Yegnaraman, V. Determination of uric acid in the presence of ascorbic acid using poly(3,4-ethylenedioxythiophene)-modified electrodes. Electroanalysis, 2005, 17(24), 2281-2286.
[http://dx.doi.org/10.1002/elan.200503375]
[20]
Zhao, Y.; Bai, J.; Wang, L.; Huang, P.; Wang, H. Simultaneous electrochemical determination of uric acid and ascorbic acid using L-cysteine self-assembled gold electrode. Int. J. Electrochem. Sci., 2006, 1, 363-371.
[21]
Berdeaux, O.; Scruel, O.; Cracowski, J.L.; Durand, T. F-2-isoprostanes: Review of analytical methods. Curr. Pharm. Anal., 2006, 2(1), 69-78.
[http://dx.doi.org/10.2174/157341206775474016]
[22]
Radi, A.E. Applications of stripping voltammetry at carbon paste and chemically modified carbon paste electrodes to pharmaceutical analysis. Curr. Pharm. Anal., 2006, 2(1), 1-8.
[http://dx.doi.org/10.2174/157341206775474034]
[23]
Wang, L.; Li, Y. Studies on the electrochemical behavior of the pilocarpine complex and its application using a flow-through polarographic sensor. Curr. Pharm. Anal., 2008, 4, 33-38.
[http://dx.doi.org/10.2174/157341208783497588]
[24]
Rocheleau, M.J. Analytical methods for determination of counter-ions in pharmaceutical salts. Curr. Pharm. Anal., 2008, 4, 25-32.
[http://dx.doi.org/10.2174/157341208783497560]
[25]
Santos, A.L.; Takeuchi, R.M.; Stradiotto, N.R. Electrochemical, spectrophotometric and liquid-chromatographic. Curr. Pharm. Anal., 2009, 5, 69-88.
[http://dx.doi.org/10.2174/157341209787314927]
[26]
Shrivastava, A.; Gupta, V.B. A review on various analytical methods on some alpha-adrenergic antagonists. Curr. Pharm. Anal., 2011, 7(1), 27-41.
[http://dx.doi.org/10.2174/157341211794708695]
[27]
Silva, L.M.; Salgado, H.R.N. Methacycline: A review of analytical methods. Curr. Pharm. Anal., 2012, 8(1), 2-13.
[http://dx.doi.org/10.2174/157341212798995494]
[28]
Gugoasa, L.; Staden, R.I.; Ciucu, A.; Staden, J. Influence of physical immobilization of dsdna on carbon based matrices of electrochemical sensors. Curr. Pharm. Anal., 2014, 10(1), 20-29.
[http://dx.doi.org/10.2174/157341291001140102104740]
[29]
Dubal, D. Conversations with João Carlos Martins; Labor Records, 2001.
[30]
Zhao, H.; Zhang, Y.; Yuan, Z. Electrochemical behavior of norepinephrine at poly (2, 4, 6-trimethylpyridine) modified glassy carbon electrode. Electroanalysis, 2002, 14(6), 445-448.
[http://dx.doi.org/10.1002/1521-4109(200203)14:6<445:AID-ELAN445>3.0.CO;2-X]
[31]
Yu, Z.; Li, X.; Wang, X.; Ma, X.; Li, X.; Cao, K. Voltammetric determination of dopamine and norepinphrine on a glassy carbon electrode modified with poly (L-aspartic acid). J. Chem. Sci., 2012, 124(2), 537-544.
[http://dx.doi.org/10.1007/s12039-011-0179-z]
[32]
Pahlavan, A.; Gupta, V.K.; Sanati, A.L.; Karimi, F.; Yoosefian, M.; Ghadami, M. ZnO/CNTs nanocomposite/ionic liquid carbon paste electrode for determination of noradrenaline in human samples. Electrochim. Acta, 2014, 123, 456-462.
[http://dx.doi.org/10.1016/j.electacta.2014.01.006]
[33]
Mazloum-ardakani, M.; Beitollahi, H.; Ganjipour, B.; Naeimi, H. Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, uric acid and d- penicillamine. Carbon Nanotub., 2010, 5, 531-546.
[34]
Shishehbore, M.R.; Vafai-shahi, S. Differential pulse voltammetry technique for the determination of imipramine, dopamine and norepinephrine using a hydroquinone derivative multi-wall carbon nano-tube carbon paste electrode. Front. Neurosci., 2017, 10, 1-4.
[35]
Mphuthi, N.G.; Adekunle, A.S.; Ebenso, E.E. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Sci. Rep., 2016, 6, 26938.
[http://dx.doi.org/10.1038/srep26938] [PMID: 27245690]
[36]
P.; Shi, X; Miao, H; Yao, S Lin, B.; Wei, J.; Chen, X.; Lin, Y. Tang Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines. Electrochim. Acta, 2013, 92, 341-348.
[http://dx.doi.org/10.1016/j.electacta.2013.01.033]
[37]
Savan, E.K.; Erdoğdu, G. Determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic acid and uric acid at poly(p-aminobenzene sulfonic acid) conducting polymer electrode. Polym. Bull., 2017, 74, 4349-4360.
[http://dx.doi.org/10.1007/s00289-017-1957-7]
[38]
Jin, G.; Zhang, Y.; Cheng, W. Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens. Actuators B Chem., 2005, 107(2), 528-534.
[http://dx.doi.org/10.1016/j.snb.2004.11.018]
[39]
Rostami, A.; Taylor, M.S. Polymers for anion recognition and sensing, 3rd ed; Taylor & Francis Group: New York, 2012.
[http://dx.doi.org/10.1002/marc.201100528]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 15 June, 2020
Page: [591 - 600]
Pages: 10
DOI: 10.2174/1573412915666190212160442
Price: $65

Article Metrics

PDF: 14
HTML: 1