Nanocarriers(s) Based Approaches in Cancer Therapeutics

Author(s): Vaishali Yadav, Ashutosh Pal Jain, Rajeev Sharma, Awesh K. Yadav*

Journal Name: Current Nanomedicine
Formerly Recent Patents on Nanomedicine

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nanomedicine is an emerging field, which constitutes a new direction in the treatment of cancer. The advent of nanotechnology has the potential to greatly facilitate the early detection and treatment of cancer. Nanocarriers are a group of nano-sized vehicles devised to deliver loaded bioactive(s) to target malignant cells, tissues or organs and have provided remarkably improved therapeutic efficacy for cancer therapy. A variety of nanocarriers(s)such as dendrimers, nanoparticle(s), liposomes, micelles, gold carriers, solid lipid carriers, carbon nanotubes, magnetic carriers and viral carriers, incorporating cytotoxic therapeutics have emerged as striking delivery system(s) in the area of cancer research. To improve the biological distribution of therapeutic bioactive(s), some modified carriers have designed to accommodate efficient loading and release of drugs with a wide spectrum of chemical and physical characteristics. In addition, physicochemical modifications of the surface or interior of NPs allow for modulation of pharmacokinetic features as per clinical demands. However, cancer-related mortality still remains high and drug-mediated cancer treatment is a challenging research field despite the remarkable advances in targeting efficiency and therapeutic efficacy demonstrated and resulted from NPs.This review focuses primarily on current nano drug delivery systems for cancer therapy. The current challenges related to therapeutic nanomedicines, as well as critical analysis of the different delivery nanoparticles, are also discussed.

Keywords: Cancer, anticancer agents, nanomedicine, nanocarriers(s), targeting, therapeutics.

[1]
Marceau K, Ruttle PL, Shirtcliff EA, Essex MJ, Susman EJ. Developmental and contextual considerations for adrenal and gonadal hormone functioning during adolescence: Implications for adolescent mental health. Dev Psychobiol 2015; 57(6): 742-68.
[http://dx.doi.org/10.1002/dev.21214] [PMID: 24729154]
[2]
Møller H, Fairley L, Coupland V, et al. The future burden of cancer in England: incidence and numbers of new patients in 2020. Br J Cancer 2007; 96(9): 1484-8.
[http://dx.doi.org/10.1038/sj.bjc.6603746] [PMID: 17473821]
[3]
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59(4): 225-49.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[4]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[5]
Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci USA 1997; 94(3): 952-5.
[http://dx.doi.org/10.1073/pnas.94.3.952] [PMID: 9023363]
[6]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[7]
Jain A, Jain A, Garg NK, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater 2015; 24: 140-51.
[http://dx.doi.org/10.1016/j.actbio.2015.06.027] [PMID: 26116986]
[8]
Sledge GW, Mamounas EP, Hortobagyi GN, Burstein HJ, Goodwin PJ, Wolff AC. Past, present, and future challenges in breast cancer treatment. J Clin Oncol 2014; 32(19): 1979-86.
[http://dx.doi.org/10.1200/JCO.2014.55.4139] [PMID: 24888802]
[9]
Ricci MS, Zong W-X. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 2006; 11(4): 342-57.
[http://dx.doi.org/10.1634/theoncologist.11-4-342] [PMID: 16614230]
[10]
Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis 1998; 2(1): 10-5.
[PMID: 9562106]
[11]
Mettler L, Ruprai R, Alkatout I. Impact of medical and surgical treatment of endometriosis on the cure of endometriosis and pain. BioMed Res Int 2014.2014264653
[http://dx.doi.org/10.1155/2014/264653] [PMID: 25580428]
[12]
Aneja P, Rahman M, Beg S, Aneja S, Dhingra V, Chugh R. Cancer targeted magic bullets for effective treatment of cancer. Recent Pat Antiinfect Drug Discov 2014; 9(2): 121-35.
[http://dx.doi.org/10.2174/1574891X10666150415120506] [PMID: 25876849]
[13]
Web MD. Breast Cancer Health Center 2017.http://www.webmd.com/breast-cancer/
[14]
Agrawal U, Sharma R, Gupta M, Vyas SP. Is nanotechnology a boon for oral drug delivery? Drug Discov Today 2014; 19(10): 1530-46.
[http://dx.doi.org/10.1016/j.drudis.2014.04.011] [PMID: 24786464]
[15]
Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems-an overview. Acta Pharm Sin B 2013; 3: 361-72.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[16]
Khurana E, Fu Y, Colonna V, et al. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science 2013; 342(6154)1235587
[http://dx.doi.org/10.1126/science.1235587] [PMID: 24092746]
[17]
Findlay JM, Castro-Giner F, Makino S, et al. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat Commun 2016; 7: 11111.
[http://dx.doi.org/10.1038/ncomms11111] [PMID: 27045317]
[18]
May AL, Kuklina EV, Yoon PW. Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. Pediatrics 2012; 129(6): 1035-41.
[http://dx.doi.org/10.1542/peds.2011-1082] [PMID: 22614778]
[19]
Tamargo J, Le Heuzey J-Y, Mabo P. Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. Eur J Clin Pharmacol 2015; 71(5): 549-67.
[http://dx.doi.org/10.1007/s00228-015-1832-0] [PMID: 25870032]
[20]
Cabot MC. Repurposing P-glycoprotein Inhibitors as Modifiers of Sphingolipid Metabolism-Therapeutic Implications in Cancer. FASEB J 2017; 31(1-suppl): 629.
[21]
Vierstraete J, Willaert A, Vleminckx K, et al. Studying the functionality of the homologous repair pathway in zebrafish embryos : heading for an in vivo functional test to evaluate the pathogenicity of BRCA2 variants. Curr Oncol 2016; e284-4.
[22]
Eyler DE, Burnham KA, Wilson TE, O’Brien PJ. Mechanisms of glycosylase induced genomic instability. PLoS One 2017; 12(3): e0174041.
[http://dx.doi.org/10.1371/journal.pone.0174041] [PMID: 28333944]
[23]
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[24]
Tahara Y, Yoshikawa T, Sato H, et al. Encapsulation of a nitric oxide donor into a liposome to boost the enhanced permeation and retention (EPR) effect. MedChemComm 2016; 8(2): 415-21.
[http://dx.doi.org/10.1039/C6MD00614K] [PMID: 30108759]
[25]
Chen Y, Wu Y, Sun B, Liu S, Liu H. Two-dimensional nanomaterials for cancer nanotheranostics. Small 2017; 13(10): 1603446.
[http://dx.doi.org/10.1002/smll.201603446] [PMID: 28075057]
[26]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[27]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[28]
Rahman M, Ahmad MZ, Kazmi I, et al. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr Drug Discov Technol 2012; 9(4): 319-29.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[29]
Rahman M, Beg S, Verma A, et al. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point. Curr Drug Targets 2017; 18(13): 1558-71.
[http://dx.doi.org/10.2174/1389450118666170414113926] [PMID: 28413980]
[30]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[31]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[32]
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41(7): 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[33]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[34]
Guo S, Huang L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv 2014; 32(4): 778-88.
[http://dx.doi.org/10.1016/j.biotechadv.2013.10.002] [PMID: 24113214]
[35]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[36]
Niu Z, Conejos-Sánchez I, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106(Pt B): 337-54.
[http://dx.doi.org/10.1016/j.addr.2016.04.001]
[37]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[38]
Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv 2011; 8(11): 1407-24.
[http://dx.doi.org/10.1517/17425247.2011.604311] [PMID: 21831007]
[39]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[40]
Groo AC, Saulnier P, Gimel JC, et al. Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery. Int J Nanomedicine 2013; 8: 4291-302.
[PMID: 24235827]
[41]
Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81.
[PMID: 23678444]
[42]
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008; 1(1): 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[43]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[44]
Rahman M, Kumar V, Beg S, Sharma G, Katare OP, Anwar F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif Cells Nanomed Biotechnol 2016; 44(7): 1597-608.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[45]
Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 173-82.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[46]
Singh B, Beg S, Khurana RK, Sandhu PS, Kaur R, Katare OP. Recent advances in self-emulsifying drug delivery systems (SEDDS). Crit Rev Ther Drug Carrier Syst 2014; 31(2): 121-85.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008502] [PMID: 24940626]
[47]
Valicherla GR, Dave KM, Syed AA, et al. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep 2016; 6: 26895.
[http://dx.doi.org/10.1038/srep26895] [PMID: 27241877]
[48]
Nahar M, Dutta T, Murugesan S, et al. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carrier Syst 2006; 23(4): 259-318.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v23.i4.10] [PMID: 17341200]
[49]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1: 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[50]
Mody VV, Nounou MI, Bikram M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev 2009; 61(10): 795-807.
[http://dx.doi.org/10.1016/j.addr.2009.04.020] [PMID: 19427886]
[51]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[52]
Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond) 2007; 3(1): 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[53]
Ahmad MZ, Akhter S, Jain GK, et al. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010; 7(8): 927-42.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[54]
Akhter S, Ahmad Z, Singh A, et al. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 2011; 17(18): 1834-50.
[http://dx.doi.org/10.2174/138161211796391001] [PMID: 21568874]
[55]
Beg S, Rahman M, Jain A, et al. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov Today 2017; 22(4): 625-37.
[http://dx.doi.org/10.1016/j.drudis.2016.10.001] [PMID: 27742533]
[56]
Staib AH, Beermann D, Harder S, Fuhr U, Liermann D. Absorption differences of ciprofloxacin along the human gastrointestinal tract determined using a remote-control drug delivery device (HF-capsule). Am J Med 1989; 87(5A): 66S-9S.
[http://dx.doi.org/10.1016/0002-9343(89)90026-0] [PMID: 2589389]
[57]
Gaumet M, Gurny R, Delie F. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci 2009; 36(4-5): 465-73.
[http://dx.doi.org/10.1016/j.ejps.2008.11.015] [PMID: 19124077]
[58]
Bhattacharya K, Mukherjee SP, Gallud A, et al. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine (Lond) 2016; 12(2): 333-51.
[http://dx.doi.org/10.1016/j.nano.2015.11.011] [PMID: 26707820]
[59]
Khodabandehloo H, Zahednasab H, Ashrafi Hafez A. Nanocarriers usage for drug delivery in cancer therapy. Iran J Cancer Prev 2016; 9(2)e3966
[http://dx.doi.org/10.17795/ijcp-3966] [PMID: 27482328]
[60]
Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O’Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. 2016; 106: 367-380.
[http://dx.doi.org/10.1016/j.addr.2016.06.006]
[61]
Prego C, García M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release 2005; 101(1-3): 151-62.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.030] [PMID: 15588901]
[62]
Lalatsa A, Lee V, Malkinson JP, Zloh M, Schätzlein AG, Uchegbu IF. A prodrug nanoparticle approach for the oral delivery of a hydrophilic peptide, leucine(5)-enkephalin, to the brain. Mol Pharm 2012; 9(6): 1665-80.
[http://dx.doi.org/10.1021/mp300009u] [PMID: 22574705]
[63]
Gabizon A, Shmeeda H, Grenader T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. Eur J Pharm Sci 2012; 45(4): 388-98.
[http://dx.doi.org/10.1016/j.ejps.2011.09.006] [PMID: 21933707]
[64]
Khan DR. The use of nanocarriers for drug delivery in cancer therapy. J Cancer Sci 2010; 2: 58-62.
[http://dx.doi.org/10.4172/1948-5956.1000024]
[65]
Bourganis V, Karamanidou T, Samaridou E, Karidi K, Kammona O, Kiparissides C. On the synthesis of mucus permeating nanocarriers. Eur J Pharm Biopharm 2015; 97(Pt A): 239-49.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.021]
[66]
Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release 2000; 65(1-2): 63-71.
[http://dx.doi.org/10.1016/S0168-3659(99)00233-3] [PMID: 10699271]
[67]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[68]
Koboziev I, Karlsson F, Grisham MB. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann N Y Acad Sci 2010; 1207(Suppl. 1): E86-93.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05711.x] [PMID: 20961311]
[69]
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106(Pt B): 277-319.
[http://dx.doi.org/10.1016/j.addr.2016.06.005]
[70]
Beloqui A, des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev 2016; 106(Pt B): 242-55.
[http://dx.doi.org/10.1016/j.addr.2016.04.014]
[71]
Roger E, Kalscheuer S, Kirtane A, et al. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 2012; 9(7): 2103-10.
[http://dx.doi.org/10.1021/mp2005388] [PMID: 22670575]
[72]
Yu PT, Babicky M, Jaquish D, et al. The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int J Cancer 2012; 131(8): 1744-54.
[http://dx.doi.org/10.1002/ijc.27447] [PMID: 22275185]
[73]
Steinhauser I, Spänkuch B, Strebhardt K, Langer K. Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 2006; 27(28): 4975-83.
[http://dx.doi.org/10.1016/j.biomaterials.2006.05.016] [PMID: 16757022]
[74]
Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 2013; 31(11): 621-32.
[http://dx.doi.org/10.1016/j.tibtech.2013.08.007] [PMID: 24094861]
[75]
Ciappellano SG, Tedesco E, Venturini M, Benetti F. In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev 2016; 106(Pt B): 381-401.
[http://dx.doi.org/10.1016/j.addr.2016.08.007]
[76]
Kane AB, Hurt RH. Nanotoxicology: the asbestos analogy revisited. Nat Nanotechnol 2008; 3(7): 378-9.
[http://dx.doi.org/10.1038/nnano.2008.182] [PMID: 18654556]
[77]
Schrand AM, Dai L, Schlager JJ, Hussain SM. Toxicity testing of nanomaterials. New technologies for toxicity testing New York, NY 2012; 58-75.
[http://dx.doi.org/10.1007/978-1-4614-3055-1_5]
[78]
De Jong WH, Borm PJA. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[79]
Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target 2004; 12(2): 65-70.
[http://dx.doi.org/10.1080/10611860410001693706] [PMID: 15203899]
[80]
Heller AS, Johnstone T, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ. Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA Psychiatry 2013; 70(11): 1181-9.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.2430] [PMID: 24173657]
[81]
Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 2010; 4(3): 319-30.
[http://dx.doi.org/10.3109/17435390.2010.483745] [PMID: 20795913]
[82]
Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond) 2010; 5(4): 523-8.
[http://dx.doi.org/10.2217/nnm.10.23] [PMID: 20528447]
[83]
Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-88.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2020
Page: [130 - 148]
Pages: 19
DOI: 10.2174/2468187309666190212115201
Price: $65

Article Metrics

PDF: 13
HTML: 1