Cytotoxicity, Pro-apoptotic Activity and in silico Studies of Dithiocarbamates and their Structure Based Design and SAR Studies

Author(s): Syeda S. Hamdani, Bilal A. Khan*, Shahid Hameed, Faisal Rashid, Sumera Zaib, Khalil Ahmad, Ehsan U. Mughal, Jamshed Iqbal*

Journal Name: Medicinal Chemistry

Volume 15 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer is a far-reaching and lethal but curable disease. Researchers have investigated numerous anticancer agents with only a few commercially available effective drugs which are very costly.

Objective: Herein, we report the synthesis , characterization and anti cancer assays of a series of novel dithiocarbamates derivatives.

Methods: All compounds were synthesized from different secondary amines and substituted benzyl chlorides in a single step. The structures of newly synthesized dithiocarbamate derivatives were confirmed by spectroscopic techniques (IR, NMR and HR-MS).

Results: The synthesized compounds showed a significant anti-proliferative effect in cancer cells (HeLa) with the maximum inhibitory activity of compound SHD-2 with an IC50 = 0.31 ± 0.09 μM. However, the same compound exhibited 19.2% inhibition towards Baby Hamster Kidney fibroblasts (BHK-21), normal cell lines. Moreover, quantification of cellular DNA by flow cytometry for the evaluation of pro-apoptotic activity in HeLa cells demonstrates that arrest in cell cycle along with apoptosis advance towards drug cytotoxicity. However, molecular docking studies of the potent compound suggested that it binds to the major groove of the DNA.

Conclusion: The cytotoxic and pro-apoptotic potential of the potent inhibitor may be further investigated in the animal models to advance their anti-cancer prospective.

Keywords: Dithiocarbamate, cancer, flow cytometric assay, propidium iodide staining, anti-proliferative effect, cancer.

[1]
Mallick, M.N.; Khan, W.; Parveen, R.; Ahmad, S. Sadaf; Najm, M.Z.; Ahmad, I.; Husain, S.A. Exploring the cytotoxic potential of triterpenoids-enriched fraction of Bacopa monnieri by implementing In vitro, In vivo, and In silico approaches. Pharmacogn. Mag., 2017, 13(Suppl. 3), S595-S606.
[http://dx.doi.org/10.4103/pm.pm_397_16] [PMID: 29142420]
[2]
Ankaiah, D.; Palanichamy, E.; Antonyraj, C.B.; Ayyanna, R.; Perumal, V.; Ahamed, S.I.B.; Arul, V. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells. Int. J. Biol. Macromol., 2018, 116, 502-512.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.002] [PMID: 29729340]
[3]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett., 2015, 356(2 Pt B), 536-546.
[http://dx.doi.org/10.1016/j.canlet.2014.09.037] [PMID: 25304375]
[4]
(a)de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology, 2004, 324(1), 17-27.
[http://dx.doi.org/10.1016/j.virol.2004.03.033] [PMID: 15183049]
(b)Münger, K.; Baldwin, A.; Edwards, K.M.; Hayakawa, H.; Nguyen, C.L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol., 2004, 78(21), 11451-11460.
[http://dx.doi.org/10.1128/JVI.78.21.11451-11460.2004] [PMID: 15479788]
[5]
Woodman, C.B.; Collins, S.I.; Young, L.S. The natural history of cervical HPV infection: unresolved issues. Nat. Rev. Cancer, 2007, 7(1), 11-22.
[http://dx.doi.org/10.1038/nrc2050] [PMID: 17186016]
[6]
(a)Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol., 1999, 189(1), 12-19.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1<12:AID-PATH431>3.0.CO;2-F] [PMID: 10451482]
(b)Bosch, F.X.; Lorincz, A.; Muñoz, N.; Meijer, C.J.; Shah, K.V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol., 2002, 55(4), 244-265.
[http://dx.doi.org/10.1136/jcp.55.4.244] [PMID: 11919208]
[7]
(a)Daling, J.R.; Madeleine, M.M.; Johnson, L.G.; Schwartz, S.M.; Shera, K.A.; Wurscher, M.A.; Carter, J.J.; Porter, P.L.; Galloway, D.A.; McDougall, J.K. Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer, 2004, 101(2), 270-280.
[http://dx.doi.org/10.1002/cncr.20365] [PMID: 15241823]
(b)Frisch, M.; Fenger, C.; van den Brule, A.J.; Sørensen, P.; Meijer, C.J.; Walboomers, J.M.; Adami, H-O.; Melbye, M.; Glimelius, B. Variants of squamous cell carcinoma of the anal canal and perianal skin and their relation to human papillomaviruses. Cancer Res., 1999, 59(3), 753-757.
[PMID: 9973228]
[8]
D’Abramo, C.M.; Archambault, J. Small molecule inhibitors of human papillomavirus protein - protein interactions. Open Virol. J., 2011, 5, 80-95.
[http://dx.doi.org/10.2174/1874357901105010080] [PMID: 21769307]
[9]
Chen, A.A.; Gheit, T.; Franceschi, S.; Tommasino, M.; Clifford, G.M. Human papillomavirus 18 genetic variation and cervical cancer risk worldwide. J. Virol., 2015, 89(20), 10680-10687.
[http://dx.doi.org/10.1128/JVI.01747-15] [PMID: 26269181]
[10]
Hong, W-X.; Huang, F.; Huan, T.; Xu, X.; Han, Q.; Wang, G.; Xu, H.; Duan, S.; Duan, Y.; Long, X.; Liu, Y.; Hu, Z. Comparative studies on DNA-binding and in vitro antitumor activity of enantiomeric ruthenium(II) complexes. J. Inorg. Biochem., 2018, 180, 54-60.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.024] [PMID: 29245062]
[11]
(a)Wong, R.; Dolman, S.J. Isothiocyanates from tosyl chloride mediated decomposition of in situ generated dithiocarbamic acid salts. J. Org. Chem., 2007, 72(10), 3969-3971.
[http://dx.doi.org/10.1021/jo070246n] [PMID: 17444687]
(b)Halimehjani, A.Z.; Maleki, H.; Saidi, M.R. Regiospecific iodocyclization of S-allyl dithiocarbamates: synthesis of 2-imino-1, 3-dithiolane and 2-iminium-1, 3-dithiolane derivatives. Tetrahedron Lett., 2009, 50(23), 2747-2749.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.127]
[12]
(a)Zhang, T-h.; Shan, X-q.; Liu, R-x.; Tang, H-x.; Zhang, S-z. Preconcentration of rare earth elements in seawater with poly (acrylaminophosphonic dithiocarbamate) chelating fiber prior to determination by inductively coupled plasma mass spectrometry. Anal. Chem., 1998, 70(18), 3964-3968.
[http://dx.doi.org/10.1021/ac980321h]
(b)Kanchi, S.; Singh, P.; Bisetty, K. Dithiocarbamates as hazardous remediation agent: a critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab. J. Chem., 2014, 7(1), 11-25.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.026]
[13]
Nieuwenhuizen, P.J.; Ehlers, A.W.; Haasnoot, J.G.; Janse, S.R.; Reedijk, J.; Baerends, E.J. The mechanism of zinc (II)-dithiocarbamate-accelerated vulcanization uncovered; theoretical and experimental evidence. J. Am. Chem. Soc., 1999, 121(1), 163-168.
[http://dx.doi.org/10.1021/ja982217n]
[14]
(a)Lai, J.T.; Shea, R. Controlled radical polymerization by carboxyl‐and hydroxyl‐terminated dithiocarbamates and xanthates. J. Polym. Sci. A Polym. Chem., 2006, 44(14), 4298-4316.
[http://dx.doi.org/10.1002/pola.21532]
(b)Rizzardo, E.; Chiefari, J.; Mayadunne, R.T.; Moad, G.; Thang, S.H. Synthesis of Defined Polymers by Reversible Addition—Fragmentation Chain Transfer: The RAFT Process; ACS Publications, 2000.
[http://dx.doi.org/10.1021/bk-2000-0768.ch020]
[15]
(a)Malik, A.K.; Faubel, W. Methods of analysis of dithiocarbamate pesticides: a review. Pestic. Sci., 1999, 55(10), 965-970.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199910)55:10<965:AID-PS59>3.0.CO;2-7]
(b)Weissmahr, K.W.; Houghton, C.L.; Sedlak, D.L. Analysis of the dithiocarbamate fungicides ziram, maneb, and zineb and the flotation agent ethylxanthogenate by ion-pair reversed-phase HPLC. Anal. Chem., 1998, 70(22), 4800-4804.
[http://dx.doi.org/10.1021/ac980626w]
[16]
Kiran Kumar, S.T.; Kumar, L.; Sharma, V.L.; Jain, A.; Jain, R.K.; Maikhuri, J.P.; Kumar, M.; Shukla, P.K.; Gupta, G. Carbodithioic acid esters of fluoxetine, a novel class of dual-function spermicides. Eur. J. Med. Chem., 2008, 43(10), 2247-2256.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.024] [PMID: 18061311]
[17]
Kumar, L.; Lal, N.; Kumar, V.; Sarswat, A.; Jangir, S.; Bala, V.; Kumar, L.; Kushwaha, B.; Pandey, A.K.; Siddiqi, M.I.; Shukla, P.K.; Maikhuri, J.P.; Gupta, G.; Sharma, V.L. Azole-carbodithioate hybrids as vaginal anti-Candida contraceptive agents: design, synthesis and docking studies. Eur. J. Med. Chem., 2013, 70, 68-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.007] [PMID: 24140949]
[18]
Tripathi, R.P. Khan, A. R.; Srinivasan Setty, B.; Bhaduri, A. P., Syntheses and spermicidal activities of dithiocarbamates. Acta Pharm., 1996, 46(3), 169-176.
[19]
(a)Madalageri, P.; Kotresh, O. Synthesis, DNA protection and antimicrobial activity of some novel chloromethyl benzimidazole derivatives bearing dithiocarbamates. J. Chem. Pharm. Res., 2012, 4(5), 2697-2703.
(b)Duan, Y-C.; Ma, Y-C.; Zhang, E.; Shi, X-J.; Wang, M-M.; Ye, X-W.; Liu, H-M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2013, 62, 11-19.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[20]
(a)Ronconi, L.; Marzano, C.; Zanello, P.; Corsini, M.; Miolo, G.; Maccà, C.; Trevisan, A.; Fregona, D. Gold(III) dithiocarbamate de-rivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties. J. Med. Chem., 2006, 49(5), 1648-1657.
[http://dx.doi.org/10.1021/jm0509288] [PMID: 16509581]
(b)Len, C.; Boulogne-Merlot, A-S.; Postel, D.; Ronco, G.; Villa, P.; Goubert, C.; Jeufrault, E.; Mathon, B.; Simon, H. Synthesis and antifungal activity of novel bis (dithiocarbamate) derivatives of glycerol. J. Agric. Food Chem., 1996, 44(9), 2856-2858.
[http://dx.doi.org/10.1021/jf950751y]
[21]
Imamura, H.; Ohtake, N.; Jona, H.; Shimizu, A.; Moriya, M.; Sato, H.; Sugimoto, Y.; Ikeura, C.; Kiyonaga, H.; Nakano, M.; Nagano, R.; Abe, S.; Yamada, K.; Hashizume, T.; Morishima, H. Dicationic dithiocarbamate carbapenems with anti-MRSA activity. Bioorg. Med. Chem., 2001, 9(6), 1571-1578.
[http://dx.doi.org/10.1016/S0968-0896(01)00044-X] [PMID: 11408176]
[22]
Cvek, B.; Dvorak, Z. Targeting of nuclear factor-kappaB and proteasome by dithiocarbamate complexes with metals. Curr. Pharm. Des., 2007, 13(30), 3155-3167.
[http://dx.doi.org/10.2174/138161207782110390] [PMID: 17979756]
[23]
(a)Adachi, Y.; Nakamura, K.; Kato, Y.; Hazumi, N.; Hashizume, T.; Nakagawa, S. In vitro evaluation of BO-3482, a novel dithiocarbamate carbapenem with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother., 1997, 41(10), 2282-2285.
[http://dx.doi.org/10.1128/AAC.41.10.2282] [PMID: 9333063]
bZheng, Y-C.; Duan, Y-C.; Ma, J-L.; Xu, R-M.; Zi, X.; Lv, W-L.; Wang, M-M.; Ye, X-W.; Zhu, S.; Mobley, D.; Zhu, Y.Y.; Wang, J.W.; Li, J.F.; Wang, Z.R.; Zhao, W.; Liu, H.M. Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J. Med. Chem., 2013, 56(21), 8543-8560.
[http://dx.doi.org/10.1021/jm401002r] [PMID: 24131029]
[24]
Bacharaju, K.; Jambula, S.R.; Sivan, S.; Jyostnatangeda, S.; Manga, V. Design, synthesis, molecular docking and biological evaluation of new dithiocarbamates substituted benzimidazole and chalcones as possible chemotherapeutic agents. Bioorg. Med. Chem. Lett., 2012, 22(9), 3274-3277.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.018] [PMID: 22460028]
[25]
(a)Zahran, M.A-H.; Salem, T.A-R.; Samaka, R.M.; Agwa, H.S.; Awad, A.R. Design, synthesis and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against Ehrlich ascites carcinoma-induced solid tumor in Swiss albino mice. Bioorg. Med. Chem., 2008, 16(22), 9708-9718.
[http://dx.doi.org/10.1016/j.bmc.2008.09.071] [PMID: 18951804]
(b)Huang, W.; Ding, Y.; Miao, Y.; Liu, M-Z.; Li, Y.; Yang, G-F. Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. Eur. J. Med. Chem., 2009, 44(9), 3687-3696.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.004] [PMID: 19410339]
(c)Cao, S-L.; Feng, Y-P.; Jiang, Y-Y.; Liu, S-Y.; Ding, G-Y.; Li, R-T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett., 2005, 15(7), 1915-1917.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.083] [PMID: 15780632]
(d)Cao, S.L.; Feng, Y.P.; Zheng, X.L.; Jiang, Y.Y.; Zhang, M.; Wang, Y.; Xu, M. Synthesis of substituted benzylamino- and heterocyclylmethylamino carbodithioate derivatives of 4-(3H)-quinazolinone and their cytotoxic activity. Arch. Pharm. (Weinheim), 2006, 339(5), 250-254. PMID: 15780632
[http://dx.doi.org/10.1002/ardp.200500264] [PMID: 16619282]
(e)Wang, X-J.; Xu, H-W.; Guo, L-L.; Zheng, J-X.; Xu, B.; Guo, X.; Zheng, C-X.; Liu, H-M. Synthesis and in vitro antitumor activity of new butenolide-containing dithiocarbamates. Bioorg. Med. Chem. Lett., 2011, 21(10), 3074-3077.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.029] [PMID: 21486694]
(f)Duan, Y-C.; Zheng, Y-C.; Li, X-C.; Wang, M-M.; Ye, X-W.; Guan, Y-Y.; Liu, G-Z.; Zheng, J-X.; Liu, H-M. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole-dithiocarbamate-urea hybrids. Eur. J. Med. Chem., 2013, 64, 99-110.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.058] [PMID: 23644193]
(g)Aly, A.A.; Brown, A.B.; Bedair, T.M.; Ishak, E.A. Dithiocarbamate salts: biological activity, preparation, and utility in organic synthesis. J. Sulfur Chem., 2012, 33(5), 605-617.
[http://dx.doi.org/10.1080/17415993.2012.718349]
[26]
(a)Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
(b)Nikš, M.; Otto, M. Towards an optimized MTT assay. J. Immunol. Methods, 1990, 130(1), 149-151.
[http://dx.doi.org/10.1016/0022-1759(90)90309-J] [PMID: 2358686]
[27]
Roy, A.M.; Baliga, M.S.; Elmets, C.A.; Katiyar, S.K. Grape seed proanthocyanidins induce apoptosis through p53, Bax, and caspase 3 pathways. Neoplasia, 2005, 7(1), 24-36.
[http://dx.doi.org/10.1593/neo.04412] [PMID: 15720815]
[28]
Toton, E.; Ignatowicz, E.; Bernard, M.K.; Kujawski, J.; Rybczynska, M. Evaluation of apoptotic activity of new condensed pyrazole derivatives. J. Physiol. Pharmacol., 2013, 64(1), 115-123.
[PMID: 23568979]
[29]
Saito, Y.; Uchida, N.; Tanaka, S.; Suzuki, N.; Tomizawa-Murasawa, M.; Sone, A.; Najima, Y.; Takagi, S.; Aoki, Y.; Wake, A.; Taniguchi, S.; Shultz, L.D.; Ishikawa, F. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol., 2010, 28(3), 275-280.
[http://dx.doi.org/10.1038/nbt.1607] [PMID: 20160717]
[30]
Lin, G-J.; Jiang, G-B.; Xie, Y-Y.; Huang, H-L.; Liang, Z-H.; Liu, Y-J. Cytotoxicity, apoptosis, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential, and Western blotting analysis of ruthenium(II) complexes. J. Biol. Inorg. Chem., 2013, 18(8), 873-882.
[http://dx.doi.org/10.1007/s00775-013-1032-2] [PMID: 23989405]
[31]
(a)Rieger, A. M.; Nelson, K. L.; Konowalchuk, J. D.; Barreda, D. R. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. Journal of visualized experiments: JoVE, 2011, (50)
(b)Ye, Y.; Zhang, T.; Yuan, H.; Li, D.; Lou, H.; Fan, P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J. Med. Chem., 2017, 60(14), 6353-6363.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00679] [PMID: 28671831]
[32]
Kim, S-S.; Tam, J.K.; Wang, A-F.; Hegde, R.S. The structural basis of DNA target discrimination by papillomavirus E2 proteins. J. Biol. Chem., 2000, 275(40), 31245-31254.
[http://dx.doi.org/10.1074/jbc.M004541200] [PMID: 10906136]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 8
Year: 2019
Page: [892 - 902]
Pages: 11
DOI: 10.2174/1573406415666190211162013
Price: $65

Article Metrics

PDF: 29
HTML: 2