Structure Activity Relationship of 4-Amino-2-thiopyrimidine Derivatives as Platelet Aggregation Inhibitors

Author(s): Barbara Cacciari*, Pamela Crepaldi, Chun Yan Cheng, Elena Bossi, Giampiero Spalluto, Stephanie Federico, Kenneth A. Jacobson, Marco Cattaneo.

Journal Name: Medicinal Chemistry

Volume 15 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Platelet aggregation plays a pathogenic role in the development of arterial thrombi, which are responsible for common diseases caused by thrombotic arterial occlusion, such as myocardial infarction and stroke. Much efforts are directed toward developing platelet aggregation inhibitors that act through several mechanisms: The main antiplatelet family of COXinhibitors, phosphodiesterase inhibitors, and thrombin inhibitors. Recently, the important role in the platelet aggregation of adenosine diphosphate (ADP)-activated P2Y12 and P2Y1 receptors, Gprotein coupled receptors of the P2 purinergic family, has emerged, and their inhibitors are explored as potential therapeutic antithrombotics. P2Y12 inhibitors, i.e. clopidogrel, prasugrel, ticagrelor, and cangrelor, are already used clinically to reduce coronary artery thrombosis risk and prevent acute coronary syndromes. The search for new P2Y12 inhibitors, with better risk-to-benefit profiles is still ongoing.

Methods: Several years ago, our group prepared a series of 6-amino-2-thio-3H-pyrimidin-4-one derivatives that displayed an interesting platelet aggregation inhibiting activity. In order to probe the structure-activity relationships and improve their inhibitory effects of these compounds, we synthesized variously substituted 6-amino-2-thio-3H-pyrimidin-4-one derivatives and substituted 4-amino-2-thiopyrimidine-5-carboxylic acid analogues. All the synthesized compounds were tested by light trasmission aggregometry (LTA) as inducers or inhibitors of platelet aggregation in citrated platelet-rich plasma (PRP).

Results: Among the 6-amino-2-thio-3H-pyrimidin-4-one derivatives, compounds 2c and 2h displayed marked inhibitory activity, with a capability to inhibit the ADP(10-6M)-induced platelet aggregation by 91% and 87% at 10-4M concentration, respectively. Selected 4-amino-2- thiopyrimidine-5-carboxylic acid derivatives were tested as P2Y12 and P2Y1 antagonists and found to display negligible activity.

Conclusion: These negative findings demonstrated that this heterocyclic nucleus is not a useful common pharmacophore for developing P2Y-dependent inhibitors of platelet aggregation. Nevertheless, compounds 2c and 2h could represent a new chemotype to further develop inhibitors of platelet aggregation.

Keywords: Substituted 4-amino-2-thiopyrimidine, 6-amino-2-thio-3H-pyrimin-4-one, 4-amino-2-thiopyrimidine-5-carboxylic acid, synthesis, platelet aggregation inhibition, clopidogrel.

[1]
Michelson, A.D. Antiplatelet therapies for the treatment of cardio-vascular disease. Nat. Rev. Drug Discov., 2010, 9(2), 154-169.
[http://dx.doi.org/10.1038/nrd2957] [PMID: 20118963]
[2]
Jennings, L.K. Role of platelets in atherothrombosis. Am. J. Cardiol., 2009, 103(3)(Suppl.), 4A-10A..
[http://dx.doi.org/10.1016/j.amjcard.2008.11.017] [PMID: 19166707]
[3]
Bhatt, D.L. Role of antiplatelet therapy across the spectrum of patients with coronary artery disease. Am. J. Cardiol., 2009, 103(3)(Suppl.), 11A-19A..
[http://dx.doi.org/10.1016/j.amjcard.2008.11.018] [PMID: 19166708]
[4]
Hirsh, J.; Guyatt, G.; Albers, G.W.; Harrington, R.; Schünemann, H.J. Executive summary: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).Chest; , 2008, 133, . (6)(Suppl.), 71S-109S..
[http://dx.doi.org/10.1378/chest.08-0693] [PMID: 18574259]
[5]
Gamboa, A.; Abraham, R.; Diedrich, A.; Shibao, C.; Paranjape, S.Y.; Farley, G.; Biaggioni, I. Role of adenosine and nitric oxide on the mechanisms of action of dipyridamole. Stroke, 2005, 36(10), 2170-2175.
[http://dx.doi.org/10.1161/01.STR.0000179044.37760.9d] [PMID: 16141426]
[6]
Lee, C.J.; Ansell, J.E. Direct thrombin inhibitors. Br. J. Clin. Pharmacol., 2011, 72(4), 581-592.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03916.x] [PMID: 21241354]
[7]
Cunningham, M.R.; Aungraheeta, R.; Mundell, S.J. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor. Mol. Cell. Endocrinol., 2017, 449, 74-81.
[http://dx.doi.org/10.1016/j.mce.2017.02.016] [PMID: 28212842]
[8]
Jacobson, K.A.; Paoletta, S.; Katritch, V.; Wu, B.; Gao, Z.G.; Zhao, Q.; Stevens, R.C.; Kiselev, E. Nucleotides acting at P2Y receptors: connecting structure and function. Mol. Pharmacol., 2015, 88(2), 220-230.
[http://dx.doi.org/10.1124/mol.114.095711] [PMID: 25837834]
[9]
Gachet, C.; Hechler, B. The P2Y receptors and thrombosis. Wiley Interdiscip. Rev. Membr. Transp. Signal., 2013, 2(6), 241-253.
[http://dx.doi.org/10.1002/wmts.97]
[10]
Cattaneo, M. New P2Y(12) inhibitors. Circulation, 2010, 121(1), 171-179.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.853069] [PMID: 20048234]
[11]
Sarafoff, N.; Byrne, R.A.; Sibbing, D. Clinical use of clopidogrel. Curr. Pharm. Des., 2012, 18(33), 5224-5239.
[http://dx.doi.org/10.2174/138161212803251853] [PMID: 22724411]
[12]
Ahmad, S.; Storey, R.F. Development and clinical use of prasugrel and ticagrelor. Curr. Pharm. Des., 2012, 18(33), 5240-5260.
[http://dx.doi.org/10.2174/138161212803251989] [PMID: 22724412]
[13]
Parlow, J.J.; Burney, M.W.; Case, B.L.; Girard, T.J.; Hall, K.A.; Harris, P.K.; Hiebsch, R.R.; Huff, R.M.; Lachance, R.M.; Mischke, D.A.; Rapp, S.R.; Woerndle, R.S.; Ennis, M.D. Piperazinyl glutamate pyridines as potent orally bioavailable P2Y12 antagonists for inhibition of platelet aggregation. J. Med. Chem., 2010, 53(5), 2010-2037.
[http://dx.doi.org/10.1021/jm901518t] [PMID: 20141147]
[14]
Baqi, Y.; Atzler, K.; Köse, M.; Glänzel, M.; Müller, C.E. High-affinity, non-nucleotide-derived competitive antagonists of platelet P2Y12 receptors. J. Med. Chem., 2009, 52(12), 3784-3793.
[http://dx.doi.org/10.1021/jm9003297] [PMID: 19463000]
[15]
Zech, G.; Hessler, G.; Evers, A.; Weiss, T.; Florian, P.; Just, M.; Czech, J.; Czechtizky, W.; Görlitzer, J.; Ruf, S.; Kohlmann, M.; Nazaré, M. Identification of high-affinity P2Y12 antagonists based on a phenylpyrazole glutamic acid piperazine backbone. J. Med. Chem., 2012, 55(20), 8615-8629.
[http://dx.doi.org/10.1021/jm300771j] [PMID: 22984835]
[16]
Bach, P.; Antonsson, T.; Bylund, R.; Björkman, J-A.; Österlund, K.; Giordanetto, F.; van Giezen, J.J.J.; Andersen, S.M.; Zachrisson, H.; Zetterberg, F. Lead optimization of ethyl 6-aminonicotinate acyl sulfonamides as antagonists of the P2Y12 receptor. separation of the an-tithrombotic effect and bleeding for candidate drug AZD1283. J. Med. Chem., 2013, 56(17), 7015-7024.
[http://dx.doi.org/10.1021/jm400820m] [PMID: 23899349]
[17]
Zhang, K.; Zhang, J.; Gao, Z-G.; Zhang, D.; Zhu, L.; Han, G.W.; Moss, S.M.; Paoletta, S.; Kiselev, E.; Lu, W.; Fenalti, G.; Zhang, W.; Mül-ler, C.E.; Yang, H.; Jiang, H.; Cherezov, V.; Katritch, V.; Jacobson, K.A.; Stevens, R.C.; Wu, B.; Zhao, Q. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature, 2014, 509(7498), 115-118.
[http://dx.doi.org/10.1038/nature13083] [PMID: 24670650]
[18]
Crepaldi, P.; Cacciari, B.; Bonache, M-C.; Spalluto, G.; Varani, K.; Borea, P.A.; Kügelgen, Iv.; Hoffmann, K.; Pugliano, M.; Razzari, C.; Cattaneo, M. 6-Amino-2-mercapto-3H-pyrimidin-4-one derivatives as new candidates for the antagonism at the P2Y12 receptors. Bioorg. Med. Chem., 2009, 17(13), 4612-4621.
[http://dx.doi.org/10.1016/j.bmc.2009.04.061] [PMID: 19464902]
[19]
Vardanyan, R.S.; Hruby, V.J.; Danagulyan, G.G.; Mkrtchyan, A.D. Isomerization/recyclization of some 5-ethoxycarbonyl-pyrimidines. J. Heterocycl. Chem., 2005, 42(4), 557-562.
[http://dx.doi.org/10.1002/jhet.5570420413] [PMID: 16467919]
[20]
Zhang, J.; Zhang, K. Gao, Z.G.; Paoletta, S.; Zhang, D.; Han, G.W.; Li, T.; Ma, L.; Zhang, W.; Muller, C.E.; Yang, H.; Jiang, H.; Cherezov, V.; Katritch, V.; Jacobson, K.A.; Stevens, R.C.; Wu, B.; Zhao, Q. Agonist- bound structure of the hu-man P2Y12 receptor. Nature, 2014, 509(7498), 119-122.
[http://dx.doi.org/10.1038/nature13288] [PMID: 24784220]
[21]
Gao, Z.G.; Jacobson, K.A. Distinct signaling patterns of allo-steric antagonism at the P2Y1 receptor. Mol. Pharmacol., 2017, 92(5), 613-626.
[http://dx.doi.org/10.1124/mol.117.109660] [PMID: 28864555]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 8
Year: 2019
Page: [863 - 872]
Pages: 10
DOI: 10.2174/1573406415666190208124534
Price: $65

Article Metrics

PDF: 29
HTML: 3