Biotechnological Applications of Protein Splicing

Author(s): Corina Sarmiento, Julio A. Camarero*.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.

Keywords: Inteins, split-inteins, protein modification, protein trans-splicing, protein splicing, post-translational modification, conditional protein splicing, backbone cyclized proteins.

[1]
Perler, F.B.; Davis, E.O.; Dean, G.E.; Gimble, F.S.; Jack, W.E.; Neff, N.; Noren, C.J.; Thorner, J.; Belfort, M. Protein splicing elements - inteins and exteins - a definition of terms and recommended nomenclature. Nucleic Acids Res., 1994, 22(7), 1125-1127.
[2]
(a) Mathys, S.; Evans, T.C.; Chute, I.C.; Wu, H.; Chong, S.; Benner, J.; Liu, X-Q.; Xu, M-Q. Characterization of a self-splicing mini-intein and its conversion into autocatalytic N-and C-terminal cleavage elements: Facile production of protein building blocks for protein ligation. Gene, 1999, 231(1), 1-13.
(b) Myscofski, D.M.; Dutton, E.K.; Cantor, E.; Zhang, A.; Hruby, D.E. Cleavage and purification of intein fusion proteins using the Streptococcus gordonii spex system. Prep. Biochem. Biotechnol., 2001, 31(3), 275-290.
(c) Wood, D.W.; Wu, W.; Belfort, G.; Derbyshire, V.; Belfort, M. A genetic system yileds self-cleaving inteins for bioseparations. Nat. Niotechnol., 1999, 17, 889-892.
[3]
(a) Hirata, R.; Ohsumk, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H (+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem., 1990, 265(12), 6726-6733.
(b) Kane, P.M.; Yamashiro, C.T.; Wolczyk, D.F.; Neff, N.; Goebl, M.; Stevens, T.H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science, 1990, 250(4981), 651-657.
[4]
Perler, F.B. InBase: The intein database. Nucleic Acids Res., 2002, 30(1), 383-384.
[5]
(a) Gimble, F.S.; Thorner, J. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature, 1992, 357(6376), 301.
(b) Belfort, M.; Roberts, R.J. Homing endonucleases: Keeping the house in order. Nucleic Acids Res., 1997, 25(17), 3379-3388.
(c) Barzel, A.; Naor, A.; Privman, E.; Kupiec, M.; Gophna, U. Homing endonucleases residing within inteins: Evolutionary puzzles awaiting genetic solutions. Biochem. Soc. Trans., 2011, 39, 169-173.
[6]
Hafez, M.; Hausner, G. Homing endonucleases: DNA scissors on a mission. Genome, 2012, 55(8), 553-569.
[7]
(a) Pavankumar, T.L. Inteins: Localized distribution, gene regulation, and protein engineering for biological applications. Microorganisms, 2018, 6(1), pii: E19.
(b)Pietrokovski, S. Intein spread and extinction in evolution. Trends Genet., 2001, 17(8), 465-472.
[8]
Dalgaard, J.Z.; Moser, M.J.; Hughey, R.; Mian, I.S. Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J. Comput. Biol., 1997, 4(2), 193-214.
[9]
(a) Frischkorn, K.; Sander, P.; Scholz, M.; Teschner, K.; Prammananan, T.; Böttger, E.C. Investigation of mycobacterial recA function: Protein introns in the RecA of pathogenic mycobacteria do not affect competency for homologous recombination. Mol. Microbiol., 1998, 29(5), 1203-1214.
(b) Papavinasasundaram, K.; Colston, M.J.; Davis, E.O. Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol. Microbiol., 1998, 30(3), 525-534.
[10]
Callahan, B.P.; Topilina, N.I.; Stanger, M.J.; Van Roey, P.; Belfort, M. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat. Struct. Mol. Biol., 2011, 18(5), 630-633.
[11]
Derbyshire, V.; Wood, D.W.; Wu, W.; Dansereau, J.T.; Dalgaard, J.Z.; Belfort, M. Genetic definition of a protein-splicing domain: Functional mini-inteins support structure predictions and a model for intein evolution. Proc. Natl. Acad. Sci. USA, 1997, 94(21), 11466-11471.
[12]
Wu, H.; Hu, Z.; Liu, X.Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA, 1998, 95, 9226-9231.
[13]
Caspi, J.; Amitai, G.; Belenkiy, O.; Pietrokovski, S. Distribution of split DnaE inteins in cyanobacteria. Mol. Microbiol., 2003, 50(5), 1569-1577.
[14]
Iwai, H.; Züger, S.; Jin, J.; Tam, P-H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett., 2006, 580(7), 1853-1858.
[15]
Debelouchina, G.T.; Muir, T.W. A molecular engineering toolbox for the structural biologist. Q. Rev. Biophys., 2017, 50, e7.
[16]
(a) Appleby, J.H.; Zhou, K.; Volkmann, G.; Liu, X-Q. Novel split intein for trans-splicing synthetic peptide onto C terminus of protein. J. Biol. Chem., 2009, 284(10), 6194-6199.
(b) Aranko, A.S.; Züger, S.; Buchinger, E.; Iwaï, H. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS One, 2009, 4(4), e5185.
(c) Lee, Y-T.; Su, T-H.; Lo, W-C.; Lyu, P-C.; Sue, S-C. Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One, 2012, 7(8), e43820.
(d) Sun, W.; Yang, J.; Liu, X-Q. Synthetic two-piece and three-piece split-inteins for protein trans-splicing. J. Biol. Chem., 2004, 279(34), 35281-35286.
(e) Volkmann, G.; Liu, X-Q. Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS One, 2009, 4(12), e8381.
[17]
(a) Wood, D.W.; Camarero, J.A. Intein applications: from protein purification and labeling to metabolic control methods. J. Biol. Chem., 2014, 289(21), 14512-14519.
(b) Topilina, N.I.; Mills, K.V. Recent advances in in vivo applications of intein-mediated protein splicing. Mob. DNA, 2014, 5(1), 5.
(c) Belfort, M. Mobile self-splicing introns and inteins as environmental sensors. Curr. Opin. Microbiol., 2017, 38, 51-58.
[18]
Volkmann, G.; Mootz, H.D. Recent progress in intein research: From mechanism to directed evolution and applications. Cell. Mol. Life Sci., 2013, 70(7), 1185-1206.
[19]
Pietrokovski, S. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci., 1994, 3(12), 2340-2350.
[20]
Frutos, S.; Goger, M.; Giovani, B.; Cowburn, D.; Muir, T.W. Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nat. Chem. Biol., 2010, 6(7), 527-533.
[21]
Southworth, M.W.; Benner, J.; Perler, F.B. An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J., 2000, 19(18), 5019-5026.
[22]
Amitai, G.; Dassa, B.; Pietrokovski, S. Protein splicing of inteins with atypical glutamine and aspartate C-terminal residues. J. Biol. Chem., 2004, 279(5), 3121-3131.
[23]
(a) Southworth, M.W.; Amaya, K.; Evans, T.C.; Xu, M-Q.; Perler, F.B. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques, 1999, 27(1), 110-114, 116, 118-120.
(b) Chong, S.; Montenello, G.E.; Zhang, A.; Cantor, E.J.; Liao, W.; Xu, M-Q.; Benner, J. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res., 1998, 26(22), 5109-5115.
(c) Chong, S.; Mersha, F.B.; Comb, D.G.; Scott, M.E.; Landry, D.; Vence, L.M.; Perler, F.B.; Benner, J.; Kucera, R.B.; Hirvonen, C.A.; Pelletier, J.J.; Paulus, H.; Xu, M.Q. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene, 1997, 192(2), 271-281.
[24]
Berrade, L.; Camarero, J.A. Expressed protein ligation: A resourceful tool to study protein structure and function. Cell. Mol. Life Sci., 2009, 66(24), 3909-3922.
[25]
Camarero, J.A.; Muir, T.W. Native chemical ligation of polypeptides. Curr. Protoc. Protein Sci, 1999, (18.4)(1-21)
[26]
Li, Y.F. Split-inteins and their bioapplications. Biotechnol. Lett., 2015, 37(11), 2121-2137.
[27]
(a) Iwai, H.; Züger, S. Protein ligation: Applications in NMR studies of proteins. Biotechnol. Genet. Eng. Rev., 2007, 24(1), 129-146.
(b) Wilkinson, K.D.; Gan-Erdene, T.; Kolli, N. Derivitization of the C-terminus of ubiquitin and ubiquitin-like proteins using intein chemistry: Methods and uses. Methods Enzymol., 2005, 399, 37-51.
(c) Muir, T.W.; Sondhi, D.; Cole, P.A. Expressed protein ligation: A general method for protein engineering. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 6705-6710.
(d) Cotton, G.J.; Ayers, B.; Xu, R.; Muir, T.W. Insertion of a synthetic peptide into a recombinant protein framework; a protein biosensor. J. Am. Chem. Soc., 1999, 121(5), 1100-1101.
[28]
Borra, R.; Dong, D.; Elnagar, A.Y.; Woldemariam, G.A.; Camarero, J.A. In cell fluorescence activation and labeling of proteins mediated by FRET-quenched split-inteins. J. Am. Chem. Soc., 2012, 134(14), 6344.
[29]
(a) Kanno, A.; Ozawa, T.; Umezawa, Y. Detection of protein–protein interactions in bacteria by GFP-fragment reconstitution. Methods Mol. Biol., 2011, 705, 251-258.
(b) Kanno, A.; Ozawa, T.; Umezawa, Y. Bioluminescent imaging of MAPK function with intein-mediated reporter gene assay. Methods Mol. Biol., 2009, 574, 185-192.
(c) Kanno, A.; Umezawa, Y.; Ozawa, T. Detection of apoptosis using cyclic luciferase in living mammals. Methods Mol. Biol., 2009, 574, 105-114.
[30]
Wood, D.W.; Harcum, S.W.; Belfort, G. Industrial applications of intein technology. In: Homing endonucleases and inteins; Eds. Springer: Berlin, Heidelberg. , 2005. Vol. 16, pp. 345-364
[31]
Shah, N.H.; Muir, T.W. Inteins: Nature’s gift to protein chemists. Chem. Sci., 2014, 5(2), 446-461.
[32]
Chong, S.; Shao, Y.; Paulus, H.; Benner, J.; Perler, F.B.; Xu, M.Q. Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem., 1996, 271(36), 22159-22168.
[33]
(a) Evans, T.C.; Benner, J.; Xu, M.Q. Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci., 1998, 7(11), 2256-2264.
(b) Severinov, K.; Muir, T.W. Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J. Biol. Chem., 1998, 273(26), 16205-16209.
[34]
Zhao, W.; Zhang, Y.; Cui, C.; Li, Q.; Wang, J. An efficient on-column expressed protein ligation strategy: Application to segmental triple labeling of human apolipoprotein E3. Protein Sci., 2008, 17(4), 736-747.
[35]
Xu, M-Q.; Evans, T.C. Intein-mediated ligation and cyclization of expressed proteins. Methods, 2001, 24(3), 257-277.
[36]
Wood, D.W.; Derbyshire, V.; Wu, W.; Chartrain, M.; Belfort, M.; Belfort, G. Optimized single-step affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol. Prog., 2000, 16(6), 1055-1063.
[37]
(a) Xie, Y.G.; Luan, C.; Zhang, H.W.; Han, F.F.; Feng, J.; Choi, Y.J.; Groleau, D.; Wang, Y.Z. Effects of thioredoxin: SUMO and intein on soluble fusion expression of an antimicrobial peptide OG2 in Escherichia coli. Protein Pept. Lett., 2013, 20(1), 54-60.
(b) Wang, Z.; Li, N.; Wang, Y.; Wu, Y.; Mu, T.; Zheng, Y.; Huang, L.; Fang, X. Ubiquitin-intein and SUMO2-intein fusion systems for enhanced protein production and purification. Protein Expr. Purif., 2012, 82(1), 174-178.
[38]
(a) Banki, M.R.; Gerngross, T.U.; Wood, D.W. Novel and economical purification of recombinant proteins: Intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci., 2005, 14(6), 1387-1395.
(b) Wu, W-Y.; Mee, C.; Califano, F.; Banki, R.; Wood, D.W. Recombinant protein purification by self-cleaving aggregation tag. Nat. Protoc., 2006, 1(5), 2257-2262.
(c) Ge, X.; Yang, D.S.; Trabbic-Carlson, K.; Kim, B.; Chilkoti, A.; Filipe, C.D. Self-cleavable stimulus responsive tags for protein purification without chromatography. J. Am. Chem. Soc., 2005, 127(32), 11228-11229.
[39]
(a) Floss, D.M.; Schallau, K.; Rose-John, S.; Conrad, U.; Scheller, J. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol., 2010, 28(1), 37-45.
(b) Fong, B.A.; Wu, W-Y.; Wood, D.W. Optimization of ELP-intein mediated protein purification by salt substitution. Protein Expr. Purif., 2009, 66(2), 198-202.
[40]
Wieczorek, R.; Pries, A.; Steinbüchel, A.; Mayer, F. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J. Bacteriol., 1995, 177(9), 2425-2435.
[41]
Georgiou, G.; Jeong, K.J. Proteins from PHB granules. Protein Sci., 2005, 14(6), 1385-1386.
[42]
Lu, W.; Sun, Z.; Tang, Y.; Chen, J.; Tang, F.; Zhang, J.; Liu, J-N. Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage. J. Chromatogr. A, 2011, 1218(18), 2553-2560.
[43]
Berrade, L.; Kwon, Y.; Camarero, J.A. Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. ChemBioChem, 2010, 11(10), 1368-1372.
[44]
Guan, D.; Ramirez, M.; Chen, Z. Split intein mediated ultra-rapid purification of tagless protein (SIRP). Biotechnol. Bioeng., 2013, 110(9), 2471-2481.
[45]
Shi, C.; Meng, Q.; Wood, D.W. A dual ELP-tagged split intein system for non-chromatographic recombinant protein purification. Appl. Microbiol. Biotechnol., 2013, 97(2), 829-835.
[46]
Chacko, B.M.; Qin, B.Y.; Tiwari, A.; Shi, G.; Lam, S.; Hayward, L.J.; De Caestecker, M.; Lin, K. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol. Cell, 2004, 15(5), 813-823.
[47]
Qin, B.Y.; Lam, S.S.; Correia, J.J.; Lin, K. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev., 2002, 16(15), 1950-1963.
[48]
(a) Durek, T.; Alexandrov, K.; Goody, R.S.; Hildebrand, A.; Heinemann, I.; Waldmann, H. Synthesis of fluorescently labeled mono- and diprenylated Rab7 GTPase. J. Am. Chem. Soc., 2004, 126(50), 16368-16378.
(b) Brunsveld, L.; Watzke, A.; Durek, T.; Alexandrov, K.; Goody, R.S.; Waldmann, H. Synthesis of functionalized rab GTPases by a combination of solution- or solid-phase lipopeptide synthesis with expressed protein ligation. Chemistry (Easton), 2005, 11(9), 2756-2772.
[49]
(a) Rak, A.; Pylypenko, O.; Durek, T.; Watzke, A.; Kushnir, S.; Brunsveld, L.; Waldmann, H.; Goody, R.S.; Alexandrov, K. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science, 2003, 302(5645), 646-650.
(b) Pylypenko, O.; Rak, A.; Durek, T.; Kushnir, S.; Dursina, B.E.; Thomae, N.H.; Constantinescu, A.T.; Brunsveld, L.; Watzke, A.; Waldmann, H.; Goody, R.S.; Alexandrov, K. Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO J., 2006, 25(1), 13-23.
(c) Guo, Z.; Wu, Y.W.; Das, D.; Delon, C.; Cramer, J.; Yu, S.; Thuns, S.; Lupilova, N.; Waldmann, H.; Brunsveld, L.; Goody, R.S.; Alexandrov, K.; Blankenfeldt, W. Structures of RabGGTase-substrate/product complexes provide insights into the evolution of protein prenylation. EMBO J., 2008, 27(18), 2444-2456.
[50]
Flavell, R.R.; Muir, T.W. Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc. Chem. Res., 2009, 42(1), 107-116.
[51]
(a) Shogren-Knaak, M.A.; Fry, C.J.; Peterson, C.L. A native peptide ligation strategy for deciphering nucleosomal histone modifications. J. Biol. Chem., 2003, 278(18), 15744-15748.
(b) Shogren-Knaak, M.; Ishii, H.; Sun, J.M.; Pazin, M.J.; Davie, J.R.; Peterson, C.L. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 2006, 311(5762), 844-847.
(c) He, S.; Bauman, D.; Davis, J.S.; Loyola, A.; Nishioka, K.; Gronlund, J.L.; Reinberg, D.; Meng, F.; Kelleher, N.; McCafferty, D.G. Facile synthesis of site-specifically acetylated and methylated histone proteins: Reagents for evaluation of the histone code hypothesis. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12033-12038.
(d) Chatterjee, C.; McGinty, R.K.; Pellois, J.P.; Muir, T.W. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. Engl., 2007, 46(16), 2814-2818.
(e) McGinty, R.K.; Kim, J.; Chatterjee, C.; Roeder, R.G.; Muir, T.W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature, 2008, 453(7196), 812-816.
[52]
Borra, R.; Camarero, J.A. Protein chemical modification inside living cells using split-inteins. Methods Mol. Biol., 2017, 1495, 111-130.
[53]
Charalambous, A.; Andreou, M.; Skourides, P.A. Intein-mediated site-specific conjugation of Quantum Dots to proteins in vivo. J. Nanobiotechnology, 2009, 7, 9.
[54]
Charalambous, A.; Andreou, M.; Antoniades, I.; Christodoulou, N.; Skourides, P.A. In vivo, site-specific, covalent conjugation of quantum dots to proteins via split-intein splicing. Methods Mol. Biol., 2012, 906, 157-169.
[55]
Dhar, T.; Kurpiers, T.; Mootz, H.D. Extending the scope of site-specific cysteine bioconjugation by appending a prelabeled cysteine tag to proteins using protein trans-splicing. Methods Mol. Biol., 2011, 751, 131-142.
[56]
(a) Liu, D.; Cowburn, D. Segmental isotopic labeling of proteins for NMR study using intein technology. Methods Mol. Biol., 2017, 1495, 131-145.
(b) Volkmann, G.; Iwaï, H. Protein trans-splicing and its use in structural biology: Opportunities and limitations. Mol. Biosyst., 2010, 6(11), 2110-2121.
[57]
Salzmann, M.; Pervushin, K.; Wider, G.; Senn, H.; Wuthrich, K. TROSY in triple-resonance experiments: New perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA, 1998, 95(23), 13585-13590.
[58]
Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc. Natl. Acad. Sci. USA, 2004, 101(17), 6397-6402.
[59]
Vitali, F.; Henning, A.; Oberstrass, F.C.; Hargous, Y.; Auweter, S.D.; Erat, M.; Allain, F.H. Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J., 2006, 25(1), 150-162.
[60]
(a) Züger, S.; Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol., 2005, 23(6), 736.
(b) Muona, M.; Aranko, A.S.; Iwai, H. Segmental isotopic labelling of a multidomain protein by protein ligation by protein trans-splicing. ChemBioChem, 2008, 9(18), 2958-2961.
[61]
(a) Gupta, S.; Tycko, R. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. J. Biomol. NMR, 2018, 70(2), 103-114.
(b) Frederick, K.K.; Michaelis, V.K.; Caporini, M.A.; Andreas, L.B.; Debelouchina, G.T.; Griffin, R.G.; Lindquist, S. Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3642-3647.
[62]
(a) Yamazaki, T.; Otomo, T.; Oda, N.; Kyogoku, Y.; Uegaki, K.; Ito, N.; Ishino, Y.; Nakamura, H. Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc., 1998, 120, 5591-5592.
(b) Otomo, T.; Teruya, K.; Uegaki, K.; Yamazaki, T.; Kyogoku, Y. Improved segmental isotope labeling of proteins and application to a larger protein. J. Biomol. NMR, 1999, 14(2), 105-114.
(c) Yagi, H.; Tsujimoto, T.; Yamazaki, T.; Yoshida, M.; Akutsu, H. Conformational change of H+-ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. J. Am. Chem. Soc., 2004, 126(50), 16632-16638.
[63]
Otomo, T.; Ito, N.; Kyogoku, Y.; Yamazaki, T. NMR observation of selected segments in a larger protein: Central-segment isotope labeling through intein-mediated ligation. Biochemistry, 1999, 38(49), 16040-16044.
[64]
Schubeis, T.; Nagaraj, M.; Ritter, C. Segmental isotope labeling of insoluble proteins for solid-state NMR by protein trans-splicing. Methods Mol. Biol., 2017, 1495, 147-160.
[65]
Tatulian, S.A.; Qin, S.; Pande, A.H.; He, X. Positioning membrane proteins by novel protein engineering and biophysical approaches. J. Mol. Biol., 2005, 351(5), 939-947.
[66]
(a) Jagadish, K.; Camarero, J.A. Recombinant expression of cyclotides using split-inteins. Methods Mol. Biol., 2017, 1495, 41-55.
(b) Li, Y.; Bi, T.; Camarero, J.A. Chemical and biological production of cyclotides. Adv. Bot. Res., 2015, 76, 271-303.
(c) Borra, R.; Camarero, J.A. Recombinant expression of backbone-cyclized polypeptides. Biopolymers, 2013, 100(5), 502-509.
[67]
(a) Camarero, J.A.; Fushman, D.; Cowburn, D.; Muir, T.W. Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorg. Med. Chem., 2001, 9(9), 2479-2484.
(b) Camarero, J.A.; Muir, T.W. Biosynthesis of a head-to-tail cyclized protein with improved biological activity. J. Am. Chem. Soc., 1999, 121, 5597-5598.
[68]
(a) Camarero, J.A.; Fushman, D.; Sato, S.; Giriat, I.; Cowburn, D.; Raleigh, D.P.; Muir, T.W. Rescuing a destabilized protein fold through backbone cyclization. J. Mol. Biol., 2001, 308(5), 1045-1062.
(b) Schumann, F.H.; Varadan, R.; Tayakuniyil, P.P.; Grossman, J.H.; Camarero, J.A.; Fushman, D. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain. Front Chem., 2015, 3, 26.
[69]
(a) Iwai, H.; Lingel, A.; Pluckthun, A. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem., 2001, 276(19), 16548-16554.
(b) Iwai, H.; Pluckthum, A. Circular b-lactamase: Stability enhancement by cyclizing the backbone. FEBS Lett., 1999, 459, 166-172.
[70]
(a) Gould, A.; Ji, Y.L.; Aboye, T.A.; Camarero, J. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr. Pharm. Des., 2011, 17(38), 4294-4307.
(b) Garcia, A.; Camarero, J.A. Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Curr. Mol. Pharmacol., 2010, 3(3), 153-163.
(c) Jagadish, K.; Camarero, J.A. Cyclotides, a promising molecular scaffold for peptide-based therapeutics. Biopolymers, 2010, 94(5), 611-616.
[71]
Austin, J.; Wang, W.; Puttamadappa, S.; Shekhtman, A.; Camarero, J.A. Biosynthesis and biological screening of a genetically encoded library based on the cyclotide MCoTI-I. ChemBioChem, 2009, 10(16), 2663-2670.
[72]
(a) Gould, A.; Camarero, J.A. Cyclotides: Overview and biotechnological applications. ChemBioChem, 2017, 18(14), 1350-1363.
(b) Craik, D.J.; Du, J. Cyclotides as drug design scaffolds. Curr. Opin. Chem. Biol., 2017, 38, 8-16.
[73]
Austin, J.; Kimura, R.H.; Woo, Y.H.; Camarero, J.A. In vivo biosynthesis of an Ala-scan library based on the cyclic peptide SFTI-1. Amino Acids, 2010, 38(5), 1313-1322.
[74]
Gould, A.; Li, Y.; Majumder, S.; Garcia, A.E.; Carlsson, P.; Shekhtman, A.; Camarero, J.A. Recombinant production of rhesus theta-defensin-1 (RTD-1) using a bacterial expression system. Mol. Biosyst., 2012, 8(4), 1359-1365.
[75]
Conibear, A.C.; Wang, C.K.; Bi, T.; Rosengren, K.J.; Camarero, J.A.; Craik, D.J. Insights into the molecular flexibility of theta-defensins by NMR relaxation analysis. J. Phys. Chem. B, 2014, 118(49), 14257-14266.
[76]
Tavassoli, A. SICLOPPS cyclic peptide libraries in drug discovery. Curr. Opin. Chem. Biol., 2017, 38, 30-35.
[77]
Tavassoli, A.; Benkovic, S.J. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc., 2007, 2(5), 1126-1133.
[78]
(a) Jagadish, K.; Gould, A.; Borra, R.; Majumder, S.; Mushtaq, Z.; Shekhtman, A.; Camarero, J.A. Recombinant expression and phenotypic screening of a bioactive cyclotide against alpha-synuclein-induced cytotoxicity in baker’s yeast. Angew. Chem. Int. Ed. Engl., 2015, 54(29), 8390-8394.
(b) Jagadish, K.; Borra, R.; Lacey, V.; Majumder, S.; Shekhtman, A.; Wang, L.; Camarero, J.A. Expression of fluorescent cyclotides using protein trans-splicing for easy monitoring of cyclotide-protein interactions. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3126-3131.
[79]
Deschuyteneer, G.; Garcia, S.; Michiels, B.; Baudoux, B.; Degand, H.; Morsomme, P.; Soumillion, P. Intein-mediated cyclization of randomized peptides in the periplasm of Escherichia coli and their extracellular secretion. ACS Chem. Biol., 2010, 5(7), 691-700.
[80]
(a) Li, Y.; Aboye, T.; Breindel, L.; Shekhtman, A.; Camarero, J.A. Efficient recombinant expression of SFTI-1 in bacterial cells using intein-mediated protein trans-splicing. Biopolymers, 2016, 106(6), 818-824.
(b) Bi, T.; Li, Y.; Shekhtman, A.; Camarero, J.A. In-cell production of a genetically-encoded library based on the theta-defensin RTD-1 using a bacterial expression system. Bioorg. Med. Chem., 2018, 26(6), 1212-1219.
[81]
(a) Ozawa, T.; Kaihara, A.; Sato, M.; Tachihara, K.; Umezawa, Y. Split luciferase as an optical probe for detecting protein− protein interactions in mammalian cells based on protein splicing. Anal. Chem., 2001, 73(11), 2516-2521.
(b) Kaihara, A.; Kawai, Y.; Sato, M.; Ozawa, T.; Umezawa, Y. Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Anal. Chem., 2003, 75(16), 4176-4181.
(c) Kanno, A.; Ozawa, T.; Umezawa, Y. Intein-mediated reporter gene assay for detecting protein-protein interactions in living mammalian cells. Anal. Chem., 2006, 78(2), 556-560.
(d) Paulmurugan, R.; Umezawa, Y.; Gambhir, S. Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15608-15613.
[82]
(a) Kim, S.B.; Ozawa, T.; Watanabe, S.; Umezawa, Y. High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11542-11547.
(b) Kim, S.B.; Ozawa, T.; Umezawa, Y. A genetically encoded indicator for assaying bioactive chemicals that induce nuclear transport of glucocorticoid receptor. Anal. Biochem., 2005, 347(2), 213-220.
[83]
(a) Ozawa, T.; Nishitani, K.; Sako, Y.; Umezawa, Y. A high-throughput screening of genes that encode proteins transported into the endoplasmic reticulum in mammalian cells. Nucleic Acids Res., 2005, 33(4), e34.
(b) Ozawa, T.; Umezawa, Y. Identification of proteins targeted into the endoplasmic reticulum by cDNA library screening. Methods Mol. Biol., 2007, 390, 269-280.
[84]
Kanno, A.; Ozawa, T.; Umezawa, Y. Genetically encoded optical probe for detecting release of proteins from mitochondria toward cytosol in living cells and mammals. Anal. Chem., 2006, 78(23), 8076-8081.
[85]
(a) Skretas, G.; Wood, D.W. Regulation of protein activity with small-molecule-controlled inteins. Protein Sci., 2005, 14(2), 523-532.
(b) Skretas, G.; Wood, D.W. A bacterial biosensor of endocrine modulators. J. Mol. Biol., 2005, 349(3), 464-474.
(c) Skretas, G.; Meligova, A.K.; Villalonga-Barber, C.; Mitsiou, D.J.; Alexis, M.N.; Micha-Screttas, M.; Steele, B.R.; Screttas, C.G.; Wood, D.W. Engineered chimeric enzymes as tools for drug discovery: generating reliable bacterial screens for the detection, discovery, and assessment of estrogen receptor modulators. J. Am. Chem. Soc., 2007, 129(27), 8443-8457.
(d) Buskirk, A.R.; Ong, Y-C.; Gartner, Z.J.; Liu, D.R. Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10505-10510.
[86]
Callahan, B.P.; Stanger, M.; Belfort, M. A redox trap to augment the intein toolbox. Biotechnol. Bioeng., 2013, 110(6), 1565-1573.
[87]
Kanno, A.; Yamanaka, Y.; Hirano, H.; Umezawa, Y.; Ozawa, T. Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew. Chem. Int. Ed., 2007, 46(40), 7595-7599.
[88]
Mootz, H.D. Split-inteins as versatile tools for protein semisynthesis. ChemBioChem, 2009, 10(16), 2579-2589.
[89]
Ozawa, T.; Nogami, S.; Sato, M.; Ohya, Y.; Umezawa, Y. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal. Chem., 2000, 72(21), 5151-5157.
[90]
Huang, X.; Narayanaswamy, R.; Fenn, K.; Szpakowski, S.; Sasaki, C.; Costa, J.; Blancafort, P.; Lizardi, P.M. Sequence-specific biosensors report drug-induced changes in epigenetic silencing in living cells. DNA Cell Biol., 2012, 31(S1), S-2-S-10.
[91]
Kim, S.B.; Ozawa, T.; Umezawa, Y. Genetically encoded stress indicator for noninvasively imaging endogenous corticosterone in living mice. Anal. Chem., 2005, 77(20), 6588-6593.
[92]
(a) Zhang, Y.; Yang, W.; Chen, L.; Shi, Y.; Li, G.; Zhou, N. Development of a novel DnaE intein-based assay for quantitative analysis of G-protein-coupled receptor internalization. Anal. Biochem., 2011, 417(1), 65-72.
(b) Lu, B.; Chen, L.; Zhang, Y.; Shi, Y.; Zhou, N. Quantitative analysis of G-protein-coupled receptor internalization using DnaE intein-based assay. Methods Cell Biol., 2016, 132, 293-318.
[93]
Zhou, J.; Wang, D.; Xi, Y.; Zhu, X.; Yang, Y.; Lv, M.; Luo, C.; Chen, J.; Ye, X.; Fang, L. Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor. Biochem. Biophys. Res. Commun., 2017, 488(4), 621-627.
[94]
Gramespacher, J.A.; Stevens, A.J.; Nguyen, D.P.; Chin, J.W.; Muir, T.W. Intein zymogens: conditional assembly and splicing of split-inteins via targeted proteolysis. J. Am. Chem. Soc., 2017, 139(24), 8074-8077.
[95]
Gierach, I.; Li, J.; Wu, W-Y.; Grover, G.J.; Wood, D.W. Bacterial biosensors for screening isoform-selective ligands for human thyroid receptors α-1 and β-1. FEBS Open Bio, 2012, 2, 247-253.
[96]
Liang, R.; Zhou, J.; Liu, J. Construction of a bacterial assay for estrogen detection based on an estrogen-sensitive intein. Appl. Environ. Microbiol., 2011, 77(7), 2488-2495.
[97]
(a) Chin, H.G.; Kim, G.D.; Marin, I.; Mersha, F.; Evans, T.C., Jr; Chen, L.; Xu, M.Q.; Pradhan, S. Protein trans-splicing in transgenic plant chloroplast: Reconstruction of herbicide resistance from split genes. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4510-4515.
(b) Dun, B.Q.; Wang, X.J.; Lu, W.; Zhao, Z.L.; Hou, S.N.; Zhang, B.M.; Li, G.Y.; Evans, T.C., Jr; Xu, M.Q.; Lin, M. Reconstitution of glyphosate resistance from a split 5-enolpyruvyl shikimate-3-phosphate synthase gene in Escherichia coli and transgenic tobacco. Appl. Environ. Microbiol., 2007, 73(24), 7997-8000.
[98]
Yang, J.; Fox, G.C., Jr; Henry-Smith, T.V. Intein-mediated assembly of a functional beta-glucuronidase in transgenic plants. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3513-3518.
[99]
Yang, J.; Henry-Smith, T.V.; Qi, M. Functional analysis of the split Synechocystis DnaE intein in plant tissues by biolistic particle bombardment. Transgenic Res., 2006, 15(5), 583-593.
[100]
Shen, B.; Sun, X.; Zuo, X.; Shilling, T.; Apgar, J.; Ross, M.; Bougri, O.; Samoylov, V.; Parker, M.; Hancock, E.; Lucero, H.; Gray, B.; Ekborg, N.A.; Zhang, D.; Johnson, J.C.; Lazar, G.; Raab, R.M. Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing. Nat. Biotechnol., 2012, 30(11), 1131-1136.
[101]
Hauptmann, V.; Weichert, N.; Menzel, M.; Knoch, D.; Paege, N.; Scheller, J.; Spohn, U.; Conrad, U.; Gils, M. Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res., 2013, 22(2), 369-377.
[102]
(a) Zhu, F.; Liu, Z.; Chi, X.; Qu, H. Protein trans-splicing based dual-vector delivery of the coagulation factor VIII gene. Sci. China Life Sci., 2010, 53(6), 683-689.
(b) Zhu, F.; Liu, Z.; Wang, X.; Miao, J.; Qu, H.; Chi, X. Inter-chain disulfide bond improved protein trans-splicing increases plasma coagulation activity in C57BL/6 mice following portal vein FVIII gene delivery by dual vectors. Sci. China Life Sci., 2013, 56(3), 262-267.
[103]
Wang, P.; Chen, T.; Sakurai, K.; Han, B.X.; He, Z.; Feng, G.; Wang, F. Intersectional Cre driver lines generated using split-intein mediated split-Cre reconstitution. Sci. Rep., 2012, 2, 497.
[104]
Truong, D-J.J.; Kühner, K.; Kühn, R.; Werfel, S.; Engelhardt, S.; Wurst, W.; Ortiz, O. Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Res., 2015, 43(13), 6450-6458.
[105]
Carvajal-Vallejos, P.; Pallisse, R.; Mootz, H.D.; Schmidt, S.R. Unprecedented rates and efficiencies revealed for new natural split-inteins from metagenomic sources. J. Biol. Chem., 2012, 287(34), 28686-28696.
[106]
Stevens, A.J.; Sekar, G.; Shah, N.H.; Mostafavi, A.Z.; Cowburn, D.; Muir, T.W. A promiscuous split intein with expanded protein engineering applications. Proc. Natl. Acad. Sci. USA, 2017, 114(32), 8538-8543.
[107]
Kimura, R.H.; Tran, A.T.; Camarero, J.A. Biosynthesis of the cyclotide kalata B1 by using protein splicing. Angew. Chem. Int. Ed., 2006, 45(6), 973-976.
[108]
Camarero, J.A.; Kimura, R.H.; Woo, Y.H.; Shekhtman, A.; Cantor, J. Biosynthesis of a fully functional cyclotide inside living bacterial cells. ChemBioChem, 2007, 8(12), 1363-1366.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 5
Year: 2019
Page: [408 - 424]
Pages: 17
DOI: 10.2174/1389203720666190208110416
Price: $65

Article Metrics

PDF: 58
HTML: 13