Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Research Article

Downregulation of TdT Expression through Splicing Modulation by Antisense Peptide Nucleic Acid (PNA)

Author(s): Soheila Montazersaheb, Masoumeh Kazemi, Elahe Nabat, Peter E. Nielsen* and Mohammad S. Hejazi*

Volume 20, Issue 2, 2019

Page: [168 - 178] Pages: 11

DOI: 10.2174/1389201020666190206202650

Price: $65

Abstract

Background and Objective: Antisense oligonucleotides are able to modulate splicing patterns and offer therapeutic intervention for cancer and other diseases. Considering TdT potential as a target in cancer therapy, the present study aimed to investigate splicing alteration of TdT pre-mRNA in Molt-4 cells using peptide nucleic acid (PNA) octaarginine and cholic acid conjugates.

Method: We examined 16 mer PNAs targeting 5' and 3' junctions of intron 7 and addressed their mRNA splicing modulation effects using RT-PCR analysis. We also tested corresponding 2-base mismatch PNAs to confirm the sequence specificity. In addition, protien level of TdT, apoptosis induction and cell viability rate were analysed.

Results: PCR analysis showed that full match PNAs could modulate the splicing process, thereby producing a longer mRNA still including intron 7. PCR results also implied exon 7 skipping. In addition, reduced level of TdT protein in Molt-4 cells was observed. Downregulation of TdT level in PNA treated cells was accompanied by an increased rate of apoptosis and decreased the level of cell survival.

Conclusion: PNA-mediated splicing modulation can specifically downregulate TdT expression. TdT dowregulation results in apoptosis induction and reduced cell survival in Molt-4 cells. These observations could draw more attentions to develop PNA based strategies for TdT suppression and consequent apoptosis induction in acute lymphoblastic leukemia.

Keywords: PNA (peptide nucleic acid), Antisense, TdT, splicing inhibition, intron retention, exon skipping.

Graphical Abstract
[1]
Abes, R.; Arzumanov, A.; Moulton, H.; Abes, S.; Ivanova, G.; Gait, M.; Iversen, P.; Lebleu, B. Arginine‐rich cell penetrating peptides: Design, structure-activity, and applications to alter pre‐mRNA splicing by steric‐block oligonucleotides. J. Pept. Sci., 2008, 14(4), 455-460.
[2]
Doyle, D.F.; Braasch, D.A.; Simmons, C.G.; Janowski, B.A.; Corey, D.R. Inhibition of gene expression inside cells by peptide nucleic acids: Effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry, 2001, 40(1), 53-64.
[3]
Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991, 254(5037), 1497-1500.
[4]
Rozners, E. Recent advances in chemical modification of peptide nucleic acids. J. Nucleic Acids, 2012, 2012
[5]
Nielsen, P.E. Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem. Biodivers., 2010, 7(4), 786-804.
[6]
Montazersaheb, S.; Hejazi, M.S.; Charoudeh, H.N. Potential of peptide nucleic acids in future therapeutic applications. Adv. Pharm. Bull., 2018, 8(4), 551-563.
[7]
Nielsen, P.E.; Shiraishi, T. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers. Artif. DNA PNA XNA, 2011, 2(3), 90-99.
[8]
Shakeel, S.; Karim, S.; Ali, A. Peptide nucleic acid (PNA)-a review. J. Chem. Technol. Biotechnol.: Int. Res. Process. Environ. Clean Technol., 2006, 81(6), 892-899.
[9]
Mologni, L.; Nielsen, P.E.; Gambacorti-Passerini, C. In vitro transcriptional and translational block of the bcl-2 gene operated by peptide nucleic acid. Biochem. Biophys. Res. Commun., 1999, 264(2), 537-543.
[10]
Nielsen, P.E. Gene targeting using peptide nucleic acid.In Oligonucleotide Synthesis; Springer, 2005, pp. 343-358.
[11]
Sazani, P.; Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest., 2003, 112(4), 481-486.
[12]
Yang, S-P.; Song, S-T.; Song, H-F. Advancements of antisense oligonucleotides in the treatment of breast cancer. Acta Pharmacol. Sin., 2003, 24(4), 289-295.
[13]
Aartsma-Rus, A.; Van Ommen, G-J.B. Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications. RNA, 2007, 13(10), 1609-1624.
[14]
Garcia-Blanco, M.A. Alternative splicing: Therapeutic target and tool.In Alternative Splicing and Disease; Springer, 2006, pp. 47-64.
[15]
Garcia-Blanco, M.A.; Baraniak, A.P.; Lasda, E.L. Alternative splicing in disease and therapy. Nat. Biotechnol., 2004, 22(5), 535.
[16]
Wahl, M.C.; Will, C.L.; Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell, 2009, 136(4), 701-718.
[17]
Sur, M.; AlArdati, H.; Ross, C.; Alowami, S. TdT expression in Merkel cell carcinoma: Potential diagnostic pitfall with blastic hematological malignancies and expanded immunohistochemical analysis. Mod. Pathol., 2007, 20(11), 1113.
[18]
Motea, E.A.; Berdis, A.J. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase. Biochim. Biophys. Acta, 2010, 1804(5), 1151-1166.
[19]
Di Santo, R.; Maga, G. Human terminal deoxynucleotidyl transferases as novel targets for anticancer chemotherapy. Curr. Med. Chem., 2006, 13(20), 2353-2368.
[20]
Christensen, L.; Fitzpatrick, R.; Gildea, B.; Petersen, K.H.; Hansen, H.F.; Koch, T.; Egholm, M.; Buchardt, O.; Nielsen, P.E.; Coull, J. Solid‐Phase synthesis of peptide nucleic acids. J. Pept. Sci., 1995, 1(3), 175-183.
[21]
Shiraishi, T.; Nielsen, P.E. Cellular delivery of peptide nucleic acids (PNAs).In Peptide Nucleic Acids; Springer, 2014, pp. 193-205.
[22]
Tarhriz, V.; Wagner, K.D.; Masoumi, Z.; Molavi, O.; Hejazi, M.S.; Ghanbarian, H. CDK9 regulates apoptosis of myoblast cells by modulation of microRNA‐1 expression. J. Cell. Biochem., 2018, 119(1), 547-554.
[23]
Shiraishi, T.; Nielsen, P.E. Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption. Nat. Protoc., 2006, 1(2), 633.
[24]
Shiraishi, T.; Eysturskarð, J.; Nielsen, P.E. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions. BMC Cancer, 2010, 10(1), 342.
[25]
Motea, E.A.; Lee, I.; Berdis, A.J. A non-natural nucleoside with combined therapeutic and diagnostic activities against leukemia. ACS Chem. Biol., 2012, 7(6), 988-998.
[26]
Koc, Y.; Urbano, A.; Sweeney, E.; McCaffrey, R. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia, 1996, 10(6), 1019-1024.
[27]
Shiraishi, T.; Nielsen, P.E. Down-regulation of MDM2 and activation of p53 in human cancer cells by antisense 9-aminoacridine-PNA (peptide nucleic acid) conjugates. Nucleic Acids Res., 2004, 32(16), 4893-4902.
[28]
Karras, J.G.; Maier, M.A.; Lu, T.; Watt, A.; Manoharan, M. Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-α chain. Biochemistry, 2001, 40(26), 7853-7859.
[29]
Shiraishi, T.; Nielsen, P.E. Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid (“umbrella”) and cholesterol conjugates delivered by cationic lipids. Bioconjug. Chem., 2012, 23(2), 196-202.
[30]
Pankratova, S.; Nielsen, B.N.; Shiraishi, T.; Nielsen, P.E. PNA-mediated modulation and redirection of Her-2 pre-mRNA splicing: Specific skipping of erbB-2 exon 19 coding for the ATP catalytic domain. Int. J. Oncol., 2010, 36(1), 29-38.
[31]
Yang, J.; Yu, Y.; Hamrick, H.E.; Duerksen-Hughes, P.J. ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis, 2003, 24(10), 1571-1580.
[32]
Mickelsen, S.; Snyder, C.; Trujillo, K.; Bogue, M.; Roth, D.B.; Meek, K. Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase. J. Immunol., 1999, 163(2), 834-843.
[33]
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine., 2006, 12(9), 440-450.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy