Thymoquinone Effects on Cell Viability, Apoptosis and VEGF-A Gene Expression Level in AGS(CRL-1739) Cell Line

Author(s): Mohsen Rashid, Forough Sanjarin*, Farzaneh Sabouni

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Cancer is one of the most fatal diseases across the world and it was reported that 90% of cancer fatality depends on its angiogenesis potential. Black seed or Nigella sativa L. is a medicinal plant native to southwest Asia. N. sativa has been used for medicinal purposes for centuries and predominantly has bioactive components like Thymoquinone, which is used as a candidate for anti-cancer and anti-angiogenesis drugs.

Methods: Callus was induced from leaf tissue, after that alcoholic extracts were prepared from three-month-old calluses. Thymoquinone content was measured by HPLC methods. AGS cell line was cultured and treated with standard Thymoquinone and extracts from callus. Then, cell proliferation, expression of angiogenic factor (VEGF-A gene), and apoptosis test were done by MTT assay, real-time PCR and Annexin-v kit, respectively.

Results: HPLC found the maximum amount of Thymoquinone in the extract of leaf calluses, which were grown in the dark. MTT assay revealed that particular doses of extracts reduced cell proliferation. Real-time and Fluorescence- Activated Cell Sorting (FACS) results demonstrated that standard Thymoquinone and callus extracts down-regulated the VEGF-A gene expression, and all three induced apoptosis in the AGS cell line.

Conclusion: It has been shown that TQ has pro-apoptotic and anti-metastatic effects on stomach cancer cell line, and these properties can introduce it as an anti-cancer drug in the near future.

Keywords: Thymoquinone, cell viability, apoptosis, VEGF-A gene expression, AGS cell line, HPLC methods.

Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
Levekar, G.; Chandra, K.; Dhar, B.; Mangal, A.; Dabur, R.; Gurav, A.M.; Yelne, M.; Joseph, G.; Chaudhari, B.; Mandal, T.K. Database on medicinal plants used in Ayurveda and Siddha. CCRAS, 2007, 8, 522-531.
Goreja, W. Black seed: Nature’s miracle remedy; Karger Publishers, 2003.
Bakathir, H.A.; Abbas, N.A. Detection of the antibacterial effect of Nigella sativa ground seedswith water. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(2), 159-164.
Bita, A.; Rosu, A.; Calina, D.; Rosu, L.; Zlatian, O.; Dindere, C.; Simionescu, A. An alternative treatment for Candida infections with Nigella sativa extracts. Eur. J. Hosp. Pharm. Sci. Pract., 2012, 19(2), 162-162.
Umar, S.; Zargan, J.; Umar, K.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem. Biol. Interact., 2012, 197(1), 40-46.
Abdelmeguid, N.E.; Fakhoury, R.; Kamal, S.M.; Al Wafai, R.J. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β‐cells of streptozotocin‐induced diabetic rats. J. Diabetes, 2010, 2(4), 256-266.
Salem, M.; Alenzi, F.; Attia, W. Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro. J. Biomed. Sci., 2011, 68(3), 131-137.
Ballout, F.; Habli, Z.; Rahal, O.N.; Fatfat, M.; Muhtasib, H-G. Thymoquinone-based nanotechnology for cancer therapy: Promises and challenges. Drug Discov. Today, 2018, 23, 1089-1098.
Barkat, M.A.; Ahmad, J.; Khan, M.A.; Beg, S.; Ahmad, F.J. Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr. Drug Targets, 2018, 19(1), 70-80.
Rahmani, A.H. Anticancer action of thymoquinone. InMolecular and Therapeutic actions of Thymoquinone; Springer, 2018, pp. 19-39.
Alkharfy, K.M.; Ahmad, A.; Jan, B.L.; Raish, M. Thymoquinone reduces mortality and suppresses early acute inflammatory markers of sepsis in a mouse model. Biomed. Pharmacother., 2018, 98, 801-805.
Shaterzadeh-Yazdi, H.; Noorbakhsh, M.-F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Hematol. Disord. Drug Targets (Formerly Current Drug Targets- Cardiovascular & Hematological Disorders),, 2018. 18(1), 52-60.
Alemi, M.; Sabouni, F.; Sanjarian, F.; Haghbeen, K.; Ansari, S. Anti-inflammatory effect of seeds and callus of Nigella sativa L. extracts on mix glial cells with regard to their thymoquinone content. AAPS PharmSciTech, 2013, 14(1), 160-167.
Yi, T.; Cho, S-G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal‐transducer‐and‐activator‐of‐transcription‐3 for prevention and therapy of cancer. Ann. N. Y. Acad. Sci., 2006, 1091(1), 151-169.
Yue, P.; Turkson, J. Targeting STAT3 in cancer: How successful are we? Expert Opin. Investig. Drugs, 2009, 18(1), 45-56.
Bowman, T.; Garcia, R.; Turkson, J.; Jove, R. STATs in oncogenesis. Oncogene, 2000, 19(21), 2474.
Brierley, M.M.; Fish, E.N. Stats: Multifaceted regulators of transcription. J. Interferon Cytokine Res., 2005, 25(12), 733-744.
Li, F.; Rajendran, P.; Sethi, G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol., 2010, 161(3), 541-554.
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348.
Goldfarb, M. The fibroblast growth factor family. Cell Growth Differ., 1990, 1, 439-445.
Ferrara, N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res. Treat., 1995, 36(2), 127-137.
Folkman, J. Clinical applications of research on angiogenesis. N. Engl. J. Med., 1995, 333(26), 1757-1763.
Gasparini, G.; Harris, A.L. Clinical importance of the determination of tumor angiogenesis in breast carcinoma: Much more than a new prognostic tool. J. Clin. Oncol., 1995, 13(3), 765-782.
Stewart, M. Vascular endothelial Growth Factor (VEGF) biochemistry and development of inhibitory drugs. Curr. Drug Ther., 2012, 7(2), 80-89.
Rössler, J.; Lagodny, J. Blood and lymph vessels in embryonic tumors. Hematol. Ancol., 2005, 23(3‐4), 94-101.
Wang, Z. Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D. InBroad targeting of angiogenesis for cancer prevention and therapy, Seminars in cancer biology; Elsevier, 2015, pp. S224-S243.
Voron, T.; Marcheteau, E.; Pernot, S.; Colussi, O.; Tartour, E.; Taieb, J.; Terme, M. Control of the immune response by pro-angiogenic factors. Front. Oncol., 2014, 4, 70.
Paramasivam, A.; Kalaimangai, M.; Sambantham, S.; Anandan, B.; Jayaraman, G. Anti-angiogenic activity of thymoquinone by the down-regulation of VEGF using zebrafish (Danio rerio) model. Biomed. Prev. Nutr., 2012, 2(3), 169-173.
Peng, L.; Liu, A.; Shen, Y.; Xu, H-Z.; Yang, S-Z.; Ying, X-Z.; Liao, W.; Liu, H-X.; Lin, Z-Q.; Chen, Q-Y. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol. Rep., 2013, 29(2), 571-578.
Suen, D-F.; Norris, K.L.; Youle, R.J. Mitochondrial dynamics and apoptosis. Genes Dev., 2008, 22(12), 1577-1590.
Rooney, S.; Ryan, M. Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer Res., 2005, 25(3B), 2199-2204.
Alhosin, M.; Abusnina, A.; Achour, M.; Sharif, T.; Muller, C.; Peluso, J.; Chataigneau, T.; Lugnier, C.; Schini-Kerth, V.B.; Bronner, C. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem. Pharmacol., 2010, 79(9), 1251-1260.
Hatiboglu, M.A.; Kocyigit, A.; Guler, E.M.; Akdur, K.; Nalli, A.; Karatas, E.; Tuzgen, S. Thymoquinone induces apoptosis in B16-F10 melanoma cell through inhibition of p-STAT3 and inhibits tumor growth in a murine intracerebral melanoma model. World Neurosurg., 2018, 114, e182-e190.
Halagali-Muhtasib, M-A.; Boltze, C.; Al-Hmaira, J.; Hartig, R.; Roessner, A.; Schneider-Stock, R. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int. J. Oncol., 2004, 25, 857-866.
Paramasivam, A.; Raghunandhakumar, S.; Sambantham, S.; Anandan, B.; Rajiv, R.; Priyadharsini, J.V.; Jayaraman, G. In vitro anticancer and anti-angiogenic effects of thymoquinone in mouse neuroblastoma cells (Neuro-2a). Biomed. Prev. Nutr., 2012, 2(4), 283-286.
Fidler, I.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
Shaterzadeh-Yazdi, H.; Noorbakhsh, M-F.; Samarghandian, S.; Farkhondeh, T. An overview on renoprotective effects of thymoquinone. Kidney Dis., 2018, 4, 74-82.
Diwaker, A.; Gunjan, J. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Int. J. Adv. Res. Pharm. Bio Sci., 2012, 1(2), 16-25.
Srivastava, V.; Negi, A.S.; Kumar, J.; Gupta, M.; Khanuja, S.P. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorg. Med. Chem., 2005, 13(21), 5892-5908.
Younus, H.; Younus, H. Sawhney, molecular and therapeutic: Actions of thymoquinone. 1st. ed, Springer: 2018.
Ozturk, S.A.; Alp, E.; Saglam, A.S.Y.; Konac, E.; Menevse, E.S. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J. Cancer Res. Ther., 2018, 14(2), 328-334.
Asfour, W.; Almadi, S.; Haffar, L. Thymoquinone suppresses cellular proliferation, inhibits VEGF production and obstructs tumor progression and invasion in the rat model of DMH-induced colon carcinogenesis. Pharmacol. Pharm., 2013, 4(01), 7.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [820 - 826]
Pages: 7
DOI: 10.2174/1871520619666190206163504
Price: $65

Article Metrics

PDF: 32