Electrochemical Synthesis of Conducting Polymers Involving Deep Eutectic Solvents

Author(s): Florentina Golgovici, Liana Anicai*, Andreea Florea, Teodor Visan

Journal Name: Current Nanoscience

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Deep eutectic solvents (DESs) represent a new generation of ionic liquids which are widely promoted as “green solvents”. They are gaining widespread application in materials chemistry and electrochemistry. DESs are defined as eutectic mixtures of quaternary ammonium salt with a hydrogen bond donor in certain molar ratios. Their use as solvents for electrochemical synthesis of conducting polymers could influence the polymer properties and reduce their economic cost.

Objective: This review presents the most recent results regarding the electropolymerization of common conductive polymers involving choline chloride based ionic liquids. New findings from our laboratory on the electrochemical growth of conductive polymers are also discussed.

Methods: The electrochemical polymerization mechanisms during synthesis of polypyrrole (PPy), polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) using various formulations of DESs are reviewed, as well as their characteristics, mainly from surface morphology view point.

Results: Some general information related to the preparation and characterization of DESs is also presented, followed by an overview of the recent advances in the field of electropolymerization using DESs.

Conclusion: Electropolymerization of conducting polymers involving DESs represents an attractive route of synthesis due to their compositional flexibility which makes possible the preparation of unlimited formulations further influencing the polymer morphology and properties. The use of these inexpensive eutectic mixtures has a large potential to contribute to the development of more sustainable technological processes meeting many of the required features characteristic to the green chemistry.

Keywords: Electropolymerization, conducting polymers, choline chloride based eutectics, polypyrrole, polyaniline, polyethylenedioxythiophene

Ramanavičius, A.; Ramanavičienė, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim. Acta, 2006, 51, 6025-6037.
Carquigny, S.; Segut, O.; Lakard, B.; Lallemand, F.; Fievet, P. Effect of electrolyte solvent on the morphology of polypyrrole films: Application to the use of polypyrrole in pH sensors. Synth. Met., 2008, 158, 453-461.
Akieh, M.N.; Latonen, R-M.; Lindholm, S.; Ralph, S.F.; Bobacka, J.; Ivaska, A. Electrochemically controlled ion transport across polypyrrole/multi-walled carbon nanotube composite membranes. Synth. Met., 2011, 161, 1906-1914.
Da Silva, A.J.C.; Ribeiro Nogueira, F.A.; Tonholo, J.; Ribeiro, A.S. Dual-type electrochromic device based on polypyrrole and polythiophene derivatives. Sol. Energy Mater. Sol. Cells, 2011, 95, 2255-2259.
Ruotolo, L.; Gubulin, J. Reduction of hexavalent chromium using polyaniline films. Effect of film thickness, potential and flow velocity on the reaction rate and polymer stability. J. Appl. Electrochem., 2003, 33, 1217-1222.
Conroy, K.G.; Breslin, C.B. Reduction of hexavalent chromium at a polypyrrole-coated aluminium electrode: Synergistic interactions. J. Appl. Electrochem., 2004, 34, 191-195.
Castagno, K.R.L.; Azambuja, D.S.; Dalmoro, V. Polypyrrole electropolymerized on aluminum alloy 1100 doped with oxalate and tungstate anions. J. Appl. Electrochem., 2009, 39, 93-100.
Martins, J.I.; Costa, S.C.; Bazzaoui, M.; Goncalves, G.; Fortunato, E.; Martins, R. Electrodeposition of polypyrrole on aluminium in aqueous tartaric solution. Electrochim. Acta, 2006, 51, 5802-5810.
Ates, M. A review on conducting polymer coatings for corrosion protection. J. Adhes. Sci. Technol., 2016, 30, 1510-1536.
Anicai, L.; Florea, A.; Buda, M.; Visan, T. Polypyrrole films doped with phosphomolybdate anions on Al surfaces - formation and corrosion protection characterisation. Z. Phys. Chem., 2013, 227, 1121-1141.
Li, Y. Conducting polymers. In: Organic Optoelectronic Materials; Li, Y., Ed.; Springer, 2015; pp. 23-50.
Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater., 2014, 10(6), 2341-2353.
[http://dx.doi.org/10.1016/j.actbio.2014.02.015] [PMID: 24556448]
Alshammary, B.; Walsh, F.C.; Herrasti, P.; Ponce de Leon, C. Electrodeposited conductive polymers for controlled drug release. Polypyrrole. J. Solid State Electrochem., 2016, 20, 839-859.
Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci., 2007, 32, 876-921.
Pater, E.; Bruckenstein, S.; Hillman, A.R. Theory for solvent and salt transfer accompanying partial redox conversion of electroactive polymer films under permselective and nonpermselective conditions. J. Phys. Chem. B, 2006, 110(30), 14761-14769.
[http://dx.doi.org/10.1021/jp058214w] [PMID: 16869584]
Hillman, A.R.; Mohamoud, M.A.; Efimov, I. Time-temperature superposition and the controlling role of solvation in the viscoelastic properties of polyaniline thin films. Anal. Chem., 2011, 83(14), 5696-5707.
[http://dx.doi.org/10.1021/ac200901d] [PMID: 21635008]
Tang, Y.; Baker, G.A.; Zeng, X. Ionic liquid conditioning of poly(vinylferrocene) for the doping/undoping of glycylglycylglycine tripeptide. J. Phys. Chem. C, 2010, 114, 13709-13715.
Qu, K.; Zeng, X. Ionic liquid-doped polyaniline and its redox activities in the zwitterionic biological buffer MOPS. Electrochim. Acta, 2016, 202, 73-83.
Kankare, J. Conducting Polymers: Basic Methods of Synthesis and Characterization. In: Electrical and Optical Polymer Systems: Fundamentals, Methods and Applications; Wise, D.; Wnek, D.; Trantolo, G.; Cooper, J.; Gresser, D., Eds.; CRC Press: New York, 1998; pp. 167-199.
Skotheim, T.A.; Reynolds, J. Conducting Polymers-Theory, Synthesis, Properties and Characterization; CRC-Press, Taylor & Francis Group: New York, 2007.
Gvozdenović, M.M.; Jugović, B.Z.; Stevanović, J.S.; Grgur, B.N. Electrochemical synthesis of electroconducting polymers. Hem. Ind., 2014, 68, 673-684.
Pringle, J.M. Conducting Polymers In:  ; Endres, F.; Abbott, A.; MacFarlane, D., Eds.; Electrodeposition from Ionic Liquids, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA, , 2017 ; Chap. 7, pp. 211-252.
Sakmeche, N.; Aeiyach, S.; Aaron, J-J.; Jouini, M.; Lacroix, J.C.; Lacaze, P-C. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir, 1999, 15, 2566-2574.
Chen, S.; Zhitomirsky, I. Influence of additives on performance of polypyrrole–carbon nanotube supercapacitors. Mater. Manuf. Process., 2016, 31, 1246-1252.
Deepa, M.; Ahmad, S. Polypyrrole films electropolymerized from ionic liquids and in a traditional liquid electrolyte: A comparison of morphology and electro-optical properties. Eur. Polym. J., 2008, 44, 3288-3299.
Pringle, J.M.; Forsyth, M.; Wallace, G.G.; MacFarlane, D.R. Solution-surface electropolymerization: A route to morphologically novel poly(pyrrole) using an ionic liquid. Macromolecules, 2006, 39, 7193-7195.
Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramon, D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem., 2016, 2016, 612-632.
Lesch, V.; Heuer, A.; Rad, B.R.; Winter, M.; Smiatek, J. Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications. Phys. Chem. Chem. Phys., 2016, 18(41), 28403-28408.
[http://dx.doi.org/10.1039/C6CP04217A] [PMID: 27711486]
Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34, 431-448.
Torriero, A.A.J., Ed.; Electrochemistry in Ionic Liquids; Fundamentals; Springer: Switzerland, 2015, p. 1.
Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH Verlag: Weinheim, 2007.
Johnson, K.E. What’s an ionic liquid? Interface Electrochem. Soc., 2007, 16, 38-41.
Dalmolin, C.; Biaggio, S.R.; Bocchi, N.; Rocha-Filho, R.C. Changes of electrochemical properties of polypyrrole when synthesized in a room-temperature ionic liquid. Mater. Chem. Phys., 2014, 147, 99-104.
Pickup, P.G.; Osteryoung, R.A. Charging and discharging rate studies of polypyrrole films in AlCl3: 1-methyl-(3-ethyl)-imidazolium chloride molten salts and in CH3CN. J. Electroanal. Chem. Interfacial Electrochem., 1985, 195, 271-288.
Pickup, P.G.; Osteryoung, R.A. Electrochemical polymerization of pyrrole and electrochemistry of polypyrrole films in ambient temperature molten salts. J. Am. Chem. Soc., 1984, 106(8), 2294-2299.
Janiszewska, L.; Osteryoung, R.A. Electrochemistry of polythiophene and polybithiophene films in ambient temperature molten salts. J. Electrochem. Soc., 1987, 134, 2787-2794.
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 0, 965-967.
Beyersdorf, T.; Schubert, T.J.S.; Welz-Biermann, U.; Pitner, W.; Abbott, A.P.; McKenzie, K.J.; Ryder, K.S. Synthesis of Ionic Liquids In: Endres, F.; Abbott, A.; MacFarlane, D., (Eds.). Electrodeposition from Ionic Liquids 2nd ed; Wiley-VCH Verlag GmbH & Co. KGaA, 2017. Chap.2, pp. 17-53.
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A, 2010, 373, 1-56.
Elaheh Kowsari, E. Advanced applications of ionic liquids. In: Polymer Science, Ionic Liquids: Applications and Perspectives; Kokorin, A., Ed.; IntechOpen Limited: London, 2011.
Mecerreyes, D., Ed.; Applications of Ionic Liquids in Polymer Science and Technology; Springer-Verlag Berlin Heidelberg, 2015.
Fernández, R.A.; Benedetti, T.M.; Torresi, R.M. Comparative electrochemical performance of electrodeposited polypyrrole in protic and aprotic ionic liquids. J. Electroanal. Chem. (Lausanne Switz.), 2015, 737, 23-29.
Carquigny, S.; Lakard, B.; Lakard, S.; Moutarlier, V.; Hihn, J-Y.; Viau, L. Investigation of pharmaceutically active ionic liquids as electrolyte for the electrosynthesis of polypyrrole and active component in controlled drug delivery. Electrochim. Acta, 2016, 211, 950-961.
Li, X.; Liu, Y.; Guo, W.; Chen, J.; He, W.; Peng, F. Synthesis of spherical PANI particles via chemical polymerization in ionic liquid for high-performance supercapacitors. Electrochim. Acta, 2014, 135, 550-557.
Sebogodi, K.R.; Kotlhao, K.; Klink, M.J. Synthesis and characterization of graphene/polyaniline nanocomposite using green solvents. Asian J. Chem., 2017, 29, 1206-1214.
Ispas, A.; Peipmann, R.; Bund, A.; Efimov, I. On the p-doping of PEDOT layers in various ionic liquids studied by EQCM and acoustic impedance. Electrochim. Acta, 2009, 54, 4668-4675.
Lagoutte, S.; Aubert, P-H.; Pinault, M.; Tran-Van, F.; Mayne-L’Hermite, M.; Chevrot, C. Poly(3-methylthiophene)/vertically aligned multi-walled carbon nanotubes: Electrochemical synthesis, characterizations and electrochemical storage properties in ionic liquids. Electrochim. Acta, 2014, 130, 754-765.
Damplin, P.; Suominen, M.; Heinonen, M.; Kvarnstrom, C. Noncovalent modification of graphene sheets in PEDOT composite materials by ionic liquids. Carbon, 2015, 93, 533-543.
Gorke, J.; Srienc, F.; Kazlauskas, R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess Eng., 2010, 15, 40-53.
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. (Camb.), 2001, (19), 2010-2011.
[http://dx.doi.org/10.1039/b106357j] [PMID: 12240264]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, 0(1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
Sun, I-W.; Chen, P-Y. Electrodeposition of alloys, 2017.
Abbott, A.P.; Ryder, K.S. Deposition of Metals from Nonchloroaluminate Eutectic Mixtures. In: Electrodeposition from Ionic Liquids, 2nd ed; Schab-Balcerzak, E., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2017; pp. 119-132. Chap. 4.3.
Golgovici, F.; Catrangiu, A.S.; Stoian, A.B.; Anicai, L.; Visan, T. Preparation of copper telluride films by co-reduction of Cu(I) and Te(IV) ions in choline chloride: Ethylene glycol ionic liquid. J. Electron. Mater., 2016, 45, 3629-3639.
Catrangiu, A.S.; Sin, I.; Prioteasa, P.; Cotarta, A.; Cojocaru, A.; Anicai, L.; Visan, T. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids. Thin Solid Films, 2016, 611, 88-100.
Rahman, M.F.; Bernasconi, R.; Magagnin, L. Electrodeposition of indium from a deep eutectic solvent. J. Optoelectron. Adv. Mater., 2015, 17, 122-126.
Malaquias, J.C.; Steichen, M.; Thomassey, M.; Dale, P.J. Electrodeposition of Cu–In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications. Electrochim. Acta, 2013, 103, 15-22.
Alcanfor, A.A.C.; dos Santos, L.P.M.; Dias, D.F.; Correia, A.N.; de Lima-Neto, P. Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol. Electrochim. Acta, 2017, 235, 553-560.
Wagle, D.V.; Zhao, H.; Baker, G.A. Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc. Chem. Res., 2014, 47(8), 2299-2308.
[http://dx.doi.org/10.1021/ar5000488] [PMID: 24892971]
Li, R.; Hou, Y.; Liu, B.; Wang, D.; Liang, J. Electrodeposition of homogenous Ni/SiO2 nanocomposite coatings from deep eutectic solvent with in-situ synthesized SiO2 nanoparticles. Electrochim. Acta, 2016, 222, 1272-1280.
Pereira, N.M.; Brincoveanu, O.; Pantazi, A.G.; Pereira, C.M.; Araújo, J.P.; Silva, A.F.; Enachescu, M.; Anicai, L. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids. Surf. Coat. Tech., 2017, 324, 451-462.
Abbott, A.P.; Capper, G.; McKenzie, K.J.; Ryder, K.S. Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim. Acta, 2006, 51, 4420-4425.
Pastushenko, V.; Malkova, O.; Palmieri, V.; Rossi, A.A.; Stivanello, F.; Yu, G. Fluorine Free Ionic Liquid Electropolishing of Niobium Cavities Proceedings of SRF 2013, Paris, France2013, pp. 407-410.
Costovici, S.; Petica, A.; Dumitru, C-S.; Cojocaru, A.; Anicai, L. Electrochemical synthesis of ZnO nanopowder involving choline chloride based ionic liquids. Chem. Eng. Trans., 2014, 41, 343-348.
Anicai, L.; Petica, A.; Patroi, D.; Marinescu, V.; Prioteasa, P.; Costovici, S. Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids. Mater. Sci. Eng. B, 2015, 199, 87-95.
Center for Surface Science and Nanotechnology University POLITEHNICA of Bucharest. Projects: NANOCOATIL Results 2015_EN. Available from: http://cssnt-upb.ro/pro/nanocoatil_en/results_nanocoatil_2015/?lang=en (Accessed on: October 10,2017)
Abood, H.M.A.; Abbott, A.P.; Ballantyne, A.D.; Ryder, K.S. Do all ionic liquids need organic cations? Characterisation of [AlCl2•nAmide]+ AlCl4(-) and comparison with imidazolium based systems. Chem. Commun. (Camb.), 2011, 47(12), 3523-3525.
[http://dx.doi.org/10.1039/c0cc04989a] [PMID: 21301722]
Abbott, A.P.; Al-Barzinjy, A.A.; Abbott, P.D.; Frisch, G.; Harris, R.C.; Hartley, J.; Ryder, K.S. Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3•6H2O and urea. Phys. Chem. Chem. Phys., 2014, 16(19), 9047-9055.
[http://dx.doi.org/10.1039/c4cp00057a] [PMID: 24695874]
Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today, 2018, 10, 30-50.
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
Shahbaz, K.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Using deep eutectic solvents for the removal of glycerol from palm oil based biodiesel. J. Appl. Sci. (Faisalabad), 2010, 10, 3349-3354.
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13, 82-90.
Hayyan, M.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process. Technol., 2010, 91, 116-120.
Maugeri, Z.; Dominguez de Maria, P. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Advances, 2012, 2, 421-425.
Carriazo, D.; Gutierrez, M.C.; Ferrer, M.L.; del Monte, F. Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monoliths. Chem. Mater., 2010, 22, 6146-6152.
Mares(Badea), M.L.; Ciocirlan, O.; Cojocaru, A.; Anicai, L. Physico chemical and electrochemical studies in choline chloride based ionic liquid analogues containing trivalent chromium chloride. Rev. Chim. (Bucharest), 2013, 64(8), 815-824.
Abbott, A.P. Application of hole theory to the viscosity of ionic and molecular liquids. ChemPhysChem, 2004, 5(8), 1242-1246.
[http://dx.doi.org/10.1002/cphc.200400190] [PMID: 15446751]
Abbott, A.P. Model for the conductivity of ionic liquids based on an infinite dilution of holes. ChemPhysChem, 2005, 6(12), 2502-2505.
[http://dx.doi.org/10.1002/cphc.200500283] [PMID: 16259027]
Bagh, F.S.G.; Shahbaz, K.; Mjalli, F.S.; AlNashef, I.M.; Hashim, M.A. Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction. Fluid Phase Equilib., 2013, 356, 30-37.
D’Agostino, C.; Harris, R.C.; Abbott, A.P.; Gladden, L.F.; Mantle, M.D. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Phys. Chem. Chem. Phys., 2011, 13(48), 21383-21391.
[http://dx.doi.org/10.1039/c1cp22554e] [PMID: 22033601]
Figueiredo, M.; Gomes, C.; Costa, R.; Martins, A.; Pereira, C.M.; Silva, F. Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochim. Acta, 2009, 54, 2630-2634.
Costa, R.; Figueiredo, M.; Pereira, C.M.; Silva, F. Electrochemical double layer at the interfaces of Hg/choline chloride based solvents. Electrochim. Acta, 2010, 55, 8916-8920.
Yue, D.; Jia, Y.; Yao, Y.; Sun, J.; Jing, Y. Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea. Electrochim. Acta, 2012, 65, 30-36.
Du, C.; Zhao, B.; Chen, X-B.; Birbilis, N.; Yang, H. Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci. Rep., 2016, 6, 29225.
[http://dx.doi.org/10.1038/srep29225] [PMID: 27381851]
Mares-Badea, M.L.; Cojocaru, A.; Anicai, L. Electrode processes in ionic liquid solvents as mixtures of choline chloride with urea, ethylene glycol or malonic acid. U.P.B. Sci. Bull., Series B, 2014, 76(30), 21-32.
Pertache (Florea). A.L. Metals and conducting polymers electrochemical coatings with controlled characteristics involving ionic liquids media, Ph.D. Thesis POLITEHNICA. University of Bucharest, 2010.
Abbas, Q.; Binder, L. Synthesis and characterization of choline chloride based binary mixtures. ECS Trans., 2010, 33(7), 49-59.
Cojocaru, A.; Sima, M. Electrochemical investigation of the deposition/dissolution of selenium in choline chloride with urea or ethylene glycol ionic liquids. Rev. Chim. (Bucharest), 2012, 63(2), 217-223.
Mares-Badea, M.L.; Ciocirlan, O.; Cojocaru, A.; Anicai, L. Physico-chemical and electrochemical studies in choline chloride based ionic liquid analogues containing trivalent chromium chloride. Rev.Chim. (Bucharest), 2013, 64(8), 815-824.
Dhanalakshmi, K.; Saraswathi, R.; Srinivasan, C. Synthesis and electrochemical stability of polyaniline and polypyrrole in an ambient temperature acetamide-urea-ammonium nitrate eutectic melt. Synth. Met., 1996, 82, 237-243.
Syed Abthagir, P.; Saraswathi, R. Thermal stability of polypyrrole prepared from a ternary eutectic melt. Mater. Chem. Phys., 2005, 92, 21-26.
Syed Abthagir, P.; Saraswathi, R. Junction properties of metal/polypyrrole schottky barriers. J. Appl. Polym. Sci., 2001, 81, 2127-2135.
Skopek, M.A.; Mohamoud, M.A.; Ryder, K.S.; Hillman, A.R. Nanogravimetric observation of unexpected ion exchange characteristics for polypyrrole film p-doping in a deep eutectic ionic liquid. Chem. Commun. (Camb.), 2009, 0(8), 935-937.
[http://dx.doi.org/10.1039/b819084d] [PMID: 19214321]
Pigani, L.; Tezi, F.; Dossi, N.; Toniolo, R. In: Electropolymerisation and electrochemical behavior of polypyrrole in deep eutectic solventsAn EQCM study, Book of abstracts of GS 2015: Sensori e biosensori: stato dell’arte e nuove prospettive Parma, Italy June 15-17, 2015; 2015, pp. 56 (P-12). Available from:. http://www.gs2015.unipr.it/book_of_abstracts2015.pdf (Accessed April 12, 2017).7)
Viau, L.; Hihn, J.Y.; Lakard, S.; Moutarlier, V.; Flaud, V.; Lakard, B. Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile. Electrochim. Acta, 2014, 137, 298-310.
Zhou, M.; Heinze, J. Electropolymerization of pyrrole and electrochemical study of polypyrrole. 3. Nature of water effect in acetonitrile. J. Phys. Chem. B, 1999, 103, 8451-8457.
Pringle, J.M.; Efthimiadis, J.; Howlett, P.C.; Efthimiadis, J.; MacFarlane, D.R.; Chaplin, A.B.; Hall, S.B.; Officer, D.L.; Wallace, G.G.; Forsyth, M. Electrochemical synthesis of polypyrrole in ionic liquids. Polymer (Guildf.), 2004, 45, 1447-1453.
Pringle, J.M.; MacFarlane, D.R.; Forsyth, M. Solid state NMR analysis of polypyrrole grown in a phosphonium ionic liquid. Synth. Met., 2005, 155, 684-689.
Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev., 2000, 29, 283-293.
Gvozdenović, M.M.; Jugović, B.Z.; Stevanović, J.S.; Trišović, T.L.; Grgur, B.N. Electrochemical polymerization of aniline. In: Electropolymerization; Schab-Balcerzak, E., Ed.; InTech, 2011; pp. 77-96.
Inzelt, G. Conducting Polymers – A New Era in Electrochemistry; Springer-Verlag: Berlin, Heidelberg, 2008.
Fernandes, P.M.V.; Campiña, J.M.; Pereira, C.M.; Silva, F. Electrosynthesis of polyaniline from choline-based deep eutectic solvents: Morphology, stability and electrochromism. J. Electrochem. Soc., 2012, 159(9), G97-G105.
Fernandes, P.M.V.; Campiña, J.M.; Pereira, N.M.; Pereira, C.M.; Silva, F. Biodegradable deep-eutectic mixtures as electrolytes for the electrochemical synthesis of conducting polymers. J. Appl. Electrochem., 2012, 42, 997-1003.
Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrooxidative polymerization of aromatic compounds in 1-ethyl-3- methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid. J. Electroanal. Chem. (Lausanne Switz.), 2003, 557, 1-7.
Ahmad, S.; Carstens, T.; Berger, R.; Butt, H-J.; Endres, F. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids. Nanoscale, 2011, 3(1), 251-257.
[http://dx.doi.org/10.1039/C0NR00579G] [PMID: 21060965]
MacFarlane, D.R.; Forsyth, M.; Howlett, P.C.; Kar, M.; Passerini, S.; Pringle, J.M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W.; Zhang, S.; Zhang, J. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater., 2016, 1, 15005.
Richardson-Burns, S.M.; Hendricks, J.L.; Foster, B.; Povlich, L.K.; Kim, D.H.; Martin, D.C. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials, 2007, 28(8), 1539-1552.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.026] [PMID: 17169420]
Mantione, D.; Del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: Innovative conductive polymers for bioelectronics. Polymers (Basel), 2017, 9(8), 354.
[http://dx.doi.org/10.3390/polym9080354] [PMID: 30971030]
Prathish, K.P.; Carvalho, R.C.; Brett, C.M.A. Highly sensitive poly(3,4-ethylenedioxythiophene) modified electrodes by electropolymerisation in deep eutectic solvents. Electrochem. Commun., 2014, 44, 8-11.
Prathish, K.P.; Carvalho, R.C.; Brett, C.M.A. Electrochemical characterisation of poly(3,4-ethylenedioxythiophene) film modified glassy carbon electrodes prepared in deep eutectic solvents for simultaneous sensing of biomarkers. Electrochim. Acta, 2016, 187, 704-713.
Hillman, A.R.; Ryder, K.S.; Zaleski, C.J.; Fullarton, C.; Smith, E.L. Ion transfer mechanisms accompanying p-doping of poly(3,4-ethylenedioxythiophene) films in deep eutectic solvents. Z. Phys. Chem., 2012, 226, 1049-1068.
Hillman, A.R.; Ryder, K.S.; Ferreira, V.C.; Zaleski, C.J.; Vieil, E. Ion transfer dynamics of poly(3,4-ethylenedioxythiophene) films in deep eutectic solvents. Electrochim. Acta, 2013, 110, 418-427.
Brett, C.M.A. Deep eutectic solvents and applications in electrochemical sensing. Curr. Opin. Electrochem., 2018, 10, 143-148.
Hosu, O.; Barsan, M.M.; Cristea, C.; Sandulescu, R.; Brett, C.M.A. Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Mikrochim. Acta, 2017, 184, 3919-3927.
Mota-Morales, J.D.; Sánchez-Leija, R.J.; Carranza, A.; Pojman, J.A.; del Monte, F.; Luna-Bárcenas, G. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci., 2018, 78, 139-153.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 20 August, 2020
Page: [478 - 494]
Pages: 17
DOI: 10.2174/1573413715666190206145036
Price: $65

Article Metrics

PDF: 20