Nanostructured Molecularly Imprinted Photonic Polymers for Sensing Applications

Author(s): Usman Latif, Adnan Mujahid, Muhammad Zahid, Ghulam Mustafa, Akhtar Hayat*

Journal Name: Current Nanoscience

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

This review article focused on fabrication of sensors by using a combination of highly ordered photonic crystals and molecular imprinted polymers as artificial recognition materials. In this article, we have discussed fundamental principle of photonic crystals, various synthetic approaches and their use in sensing applications. Moreover, nanostructuring of recognition materials, by using photonic crystals, for sensor fabrication and sensing mechanism has also been discussed. Molecular imprinted photonic polymer layers have been applied for developing sensor devices for diverse analytes such as environmental toxins, nerve gas agents, explosives, drug molecules and others. A comprehensive comparison of molecular imprinted photonic polymers based sensor systems has also been summarized in the table which contains all the related information about colloidal structure, polymer system including monomer, cross-linker and initiator as well as target analytes. Finally, emerging strategies and current challenges involved in the design of more efficient molecular imprinted photonic sensors and their possible solutions are also briefly discussed.

Keywords: Photonic crystals, molecular imprinting, Molecular imprinted photonic polymer (MIPP), sensors, silica, inverse opal photonic crystals.

[1]
Serpe, M.J.; Kang, Y.; Zhang, Q.M. Photonic materials for sensing, biosensing and display devices. Springer series in materials science.Vol. 229. Springer International Publishing: Switzerland AG, 2016.
[2]
Liu, G.; Shao, J.; Zhang, Y.; Wu, Y.; Wang, C.; Fan, Q.; Zhou, L. Self-assembly behavior of polystyrene/methacrylic acid (P(St- MAA)) colloidal microspheres on polyester fabrics by gravitational sedimentation. J. TEXT. I, 2015, 106(12), 1293-1305.
[3]
Hu, X.; An, Q.; Li, G.; Tao, S.; Liu, J. Imprinted photonic polymers for chiral recognition. Angew. Chem. Int. Ed., 2006, 45(48), 8145-8148.
[http://dx.doi.org/10.1002/anie.200601849] [PMID: 17103468]
[4]
(a) You, A.M.; Ni, X.J.; Cao, Y.H.; Cao, G.Q. Colloidal magnetically assembled molecularly imprinted photonic crystals and L phenylalanine sensing. Chem. J. Chin. Univ., 2017, 38(2), 182-186.
(b) Yang, Z.K.; Zhang, X.D.; Shi, D.J.; Chen, M.Q.; Liu, S.R. Preparation and characterization of L-tryptophan molecularly imprinted photonic hydrogels. Chem. J. Chin. Univ., 2016, 37(1), 37-42.
(c) Rong, F.; Wang, H.; Zhao, Y.J.; Feng, X.G.; Deng, J.J. Molecularly imprinted photonic crystal microspheres for label-free detection. Nanomed. Nanotechnol., 2016, 12(2), 524-524.
[http://dx.doi.org/10.1016/j.nano.2015.12.219]
[5]
Holtz, J.H.; Asher, S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389(6653), 829-832.
[http://dx.doi.org/10.1038/39834] [PMID: 9349814]
[6]
(a) MacConaghy, K.I.; Geary, C.I.; Kaar, J.L.; Stoykovich, M.P. Photonic crystal kinase biosensor. J. Am. Chem. Soc., 2014, 136(19), 6896-6899.
[http://dx.doi.org/10.1021/ja5031062] [PMID: 24761969]
(b) Bai, L.; Xie, Z.; Wang, W.; Yuan, C.; Zhao, Y.; Mu, Z.; Zhong, Q.; Gu, Z. Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing. ACS Nano., 2014, 8(11), 11094-11100.
[http://dx.doi.org/10.1021/nn504659p] [PMID: 25300045]
(c) Lee, H.S.; Shim, T.S.; Hwang, H.; Yang, S.M.; Kim, S.H. Colloidal photonic crystals toward structural color palettes for security materials. Chem. Mater., 2013, 25(13), 2684-2690.
[http://dx.doi.org/10.1021/cm4012603]
(d) Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem. Commun. (Camb.), 2011, 47(48), 12801-12803.
[http://dx.doi.org/10.1039/c1cc15588a] [PMID: 22037831]
[7]
Du, X.; Li, T.; Li, L.; Zhang, Z.; Wu, T. Water as a colorful ink: Transparent, rewritable photonic coatings based on colloidal crystals embedded in chitosan hydrogel. J. Mater. Chem. C Mater. Opt. Electron. Devices., 2015, 3(15), 3542-3546.
[http://dx.doi.org/10.1039/C5TC00217F]
[8]
Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev., 2011, 40(5), 2922-2942.
[http://dx.doi.org/10.1039/c0cs00084a] [PMID: 21359355]
[9]
You, A.; Cao, Y.; Cao, G. Colorimetric sensing of melamine using colloidal magnetically assembled molecularly imprinted photonic crystals. RSC Advances., 2016, 6(87), 83663-83667.
[http://dx.doi.org/10.1039/C6RA18617C]
[10]
(a) Furumi, S.; Fudouzi, H.; Sawada, T. Self-organized colloidal crystals for photonics and laser applications. Laser Photon. Rev., 2010, 4(2), 205-220.
[http://dx.doi.org/10.1002/lpor.200910005]
(b) Shimmin, R.G.; Vajtai, R.; Siegel, R.W.; Braun, P.V. Roomtemperature assembly of germanium photonic crystals through colloidal crystal templating. Chem. Mater, 2007, 19(8), 2102-2107.
[http://dx.doi.org/10.1021/cm062893l]
(c) Arsenault, A.; Fleischhaker, F.; Von Freymann, G.; Kitaev, V.; Miguez, H.; Mihi, A.; Tétreault, N.; Vekris, E.; Manners, I.; Aitchison, S.; Perovic, D.; Ozin, G.A. Perfecting imperfection - Designer defects in colloidal photonic crystals. Adv. Mater., 2006, 18(20), 2779-2785.
[http://dx.doi.org/10.1002/adma.200601332]
[11]
(a) Wang, L.; Asher, S.A. Fabrication of silica shell photonic crystals through flexible core. Chem. Mater., 2009, 21(19), 4608-4613.
[http://dx.doi.org/10.1021/cm901666b] [PMID: 20160972]
(b) Lotsch, B.V.; Ozin, G.A. All-clay photonic crystals. J. Am. Chem. Soc., 2008, 130(46), 15252-15253.
[http://dx.doi.org/10.1021/ja806508h] [PMID: 18954051]
[12]
(a) Bonifacio, L.D.; Lotsch, B.V.; Puzzo, D.P.; Scotognella, F.; Ozin, G.A. Stacking the nanochemistry deck: Structural and compositional diversity in one-dimensional photonic crystals. Adv. Mater., 2009, 21(16), 1641-1646.
[http://dx.doi.org/10.1002/adma.200802348]
(b) von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev., 2013, 42(7), 2528-2554.
[http://dx.doi.org/10.1039/C2CS35309A] [PMID: 23120753]
[13]
(a) Kang, C.; Kim, E.; Baek, H.; Hwang, K.; Kwak, D.; Kang, Y.; Thomas, E.L. Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing. J. Am. Chem. Soc., 2009, 131(22), 7538-7539.
[http://dx.doi.org/10.1021/ja9021478] [PMID: 19435365]
(b) Hofmann, C.; Fischer, S.; Reitz, C.; Richards, B.; Goldschmidt, J. In Comprehensive Analysis of Photonic Effects on Up-Conversion of β-NaYF4: Er3+ Nanoparticles in an Organic-Inorganic Hybrid 1D Photonic Crystal, SPIE Photonics Europe; International Society for Optics and Photonics., 2016, pp. 98851A-98851A, 9.
[14]
Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed., 2011, 50(7), 1492-1522.
[http://dx.doi.org/10.1002/anie.200907091] [PMID: 21254316]
[15]
Kang, Y.; Walish, J.J.; Gorishnyy, T.; Thomas, E.L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater., 2007, 6(12), 957-960.
[http://dx.doi.org/10.1038/nmat2032] [PMID: 17952084]
[16]
(a) Zhang, J-T.; Wang, L.; Lamont, D.N.; Velankar, S.S.; Asher, S.A. Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem. Int. Ed., 2012, 51(25), 6117-6120.
[http://dx.doi.org/10.1002/anie.201105439] [PMID: 22566073]
(b) Fuertes, M.C.; López-Alcaraz, F.J.; Marchi, M.C.; Troiani, H.E.; Luca, V.; Míguez, H.; Soler-Illia, G.J.A.A. Photonic crystals from ordered mesoporous thin-film functional building blocks. Adv. Funct. Mater., 2007, 17(8), 1247-1254.
[http://dx.doi.org/10.1002/adfm.200601190]
[17]
(a) Weissman, J.M.; Sunkara, H.B.; Tse, A.S.; Asher, S.A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science., 1996, 274(5289), 959-960.
[http://dx.doi.org/10.1126/science.274.5289.959] [PMID: 8875932]
(b) Hufziger, K.T.; Bykov, S.V.; Asher, S.A. Raman hyperspectral imaging spectrometer utilizing crystalline colloidal array photonic crystal diffraction. Appl. Spectrosc., 2014, 68(11), 1219-1223.
[http://dx.doi.org/10.1366/14-07599] [PMID: 25333852]
(c) Lambert, J.B.; Poinar, G.O. Amber: the organic gemstone. Acc. Chem. Res., 2002, 35(8), 628-636.
[http://dx.doi.org/10.1021/ar0001970] [PMID: 12186567]
[18]
(a) Takeoka, Y. Stimuli-responsive opals: Colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials. J. Mater. Chem. C Mater. Opt. Electron. Devices., 2013, 1(38), 6059-6074.
[http://dx.doi.org//10.1039/c3tc30885e]
(b) Marlow, F.; , Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Opals: Status and prospects. Angew. Chem. Int. Ed., 2009, 48(34), 6212-6233.
[http://dx.doi.org/10.1002/anie.200900210]
[19]
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26(1), 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[20]
(a) Khokhlov, P.E.; Sinitskii, A.S.; Tretyakov, Y.D. Inverse photonic crystals based on silica. Dokl. Chem., 2006, 408(1), 61-64.
[http://dx.doi.org/10.1134/S0012500806050028]
(b) Akhmadeev, A.; Sarandaev, E.; Salakhov, M.K. Synthesis optimization of photonic crystals based on silicon and vanadium dioxides. J. Phys. Conf. Ser., 2013. 461012022
[http://dx.doi.org/10.1088/1742-6596/461/1/012022]
[21]
Wang, L-Q.; Lin, F-Y.; Yu, L-P. A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst (Lond.), 2012, 137(15), 3502-3509.
[http://dx.doi.org/10.1039/c2an35460h] [PMID: 22705906]
[22]
Zhang, Y.; Huang, S.; Qian, C.; Wu, Q.; He, J. Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties. J. Appl. Polym. Sci., 2016, 133(11), 43191.
[http://dx.doi.org/10.1002/app.43191]
[23]
Lu, W.; Asher, S.A.; Meng, Z.; Yan, Z.; Xue, M.; Qiu, L.; Yi, D. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal. J. Hazard. Mater., 2016, 316, 87-93.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.022] [PMID: 27214001]
[24]
Peng, H.; Luo, M.; Xiong, H.; Yu, N.; Ning, F.; Fan, J.; Zeng, Z.; Li, J.; Chen, L. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol. J. Chromatogr. A, 2016, 1442, 1-11.
[http://dx.doi.org/10.1016/j.chroma.2016.03.003] [PMID: 27000739]
[25]
Yang, Z.K.; Shi, D.J.; Chen, M.Q.; Liu, S.R. Free-standing molecularly imprinted photonic hydrogels based on beta-cyclodextrin for the visual detection of L-tryptophan. Anal. Methods, 2015, 7(19), 8352-8359.
[http://dx.doi.org/10.1039/C5AY01839K]
[26]
Sai, N.; Wu, Y.; Sun, Z.; Huang, G.; Gao, Z. Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution. Talanta, 2015, 144, 157-162.
[http://dx.doi.org/10.1016/j.talanta.2015.05.079] [PMID: 26452805]
[27]
Hou, J.; Zhang, H.; Yang, Q.; Li, M.; Jiang, L.; Song, Y. Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small, 2015, 11(23), 2738-2742.
[http://dx.doi.org/10.1002/smll.201403640] [PMID: 25649896]
[28]
Lan, X.B.; Zhao, W.B.; Wang, M.F.; Qi, W.; Su, R.X.; He, Z.M. Preparation of molecular imprinted photonic crystal sensor and its application in determination of phthalate esters. Chin. J. Anal. Chem., 2015, 43(4), 471-478.
[29]
Meng, L.; Meng, P.J.; Zhang, Q.Q.; Wang, Y.J. Water-compatible molecularly imprinted photonic hydrogels for fast screening of morphine in urine. Chin. J. Anal. Chem., 2015, 43(4), 490-496.
[30]
Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Li, J.; Lan, Y.; Zhang, G.; Zhang, D.; Li, G. Label-free detection and discrimination of poly-brominated diphenylethers using molecularly imprinted photonic cross-reactive sensor arrays. Chem. Commun. (Camb.), 2014, 50(91), 14133-14136.
[http://dx.doi.org/10.1039/C4CC05810K] [PMID: 25275885]
[31]
Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Cui, J.; Li, J.; Wang, H.; Li, G. Molecularly imprinted photonic polymers as sensing elements for the creation of cross-reactive sensor arrays. Chemistry, 2014, 20(50), 16620-16625.
[http://dx.doi.org/10.1002/chem.201404101] [PMID: 25331488]
[32]
Zhang, Y.X.; Zhao, P.Y.; Yu, L.P. Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sens. Actuators B Chem., 2013, 181, 850-857.
[http://dx.doi.org/10.1016/j.snb.2013.02.079]
[33]
Zhang, Y.; Pan, Z.; Yuan, Y.; Sun, Z.; Ma, J.; Huang, G.; Xing, F.; Gao, J. Molecularly imprinted photonic crystals for the direct label-free distinguishing of L-proline and D-proline. Phys. Chem. Chem. Phys., 2013, 15(40), 17250-17256.
[http://dx.doi.org/10.1039/c3cp52213j] [PMID: 24018865]
[34]
Xue, F.; Duan, T.R.; Huang, S.Y.; Wang, Q.H.; Xue, M.; Meng, Z.H. A covalently imprinted photonic crystal for glucose sensing. J. Nanomater., 2013, 2013 530701
[http://dx.doi.org/10.1155/2013/530701]
[35]
Xu, S.F.; Li, J.H.; Song, X.L.; Liu, J.S.; Lu, H.Z.; Chen, L.X. Photonic and magnetic dual responsive molecularly imprinted polymers: Preparation, recognition characteristics and properties as a novel sorbent for caffeine in complicated samples. Anal. Methods, 2013, 5(1), 124-133.
[http://dx.doi.org/10.1039/C2AY25922B]
[36]
Wang, X.; Mu, Z.; Liu, R.; Pu, Y.; Yin, L. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chem., 2013, 141(4), 3947-3953.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.024] [PMID: 23993570]
[37]
Meng, L.; Meng, P.; Tang, B.; Zhang, Q.; Wang, Y. Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity. Forensic Sci. Int., 2013, 231(1-3), 6-12.
[http://dx.doi.org/10.1016/j.forsciint.2013.04.008] [PMID: 23890610]
[38]
Meng, L.; Meng, P.; Zhang, Q.; Wang, Y. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels. Anal. Chim. Acta, 2013, 771, 86-94.
[http://dx.doi.org/10.1016/j.aca.2013.01.055] [PMID: 23522116]
[39]
Liu, X.Y.; Fang, H.X.; Yu, L.P. Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta, 2013, 116, 283-289.
[http://dx.doi.org/10.1016/j.talanta.2013.05.003] [PMID: 24148405]
[40]
Zhou, C.; Wang, T.; Liu, J.; Guo, C.; Peng, Y.; Bai, J.; Liu, M.; Dong, J.; Gao, N.; Ning, B.; Gao, Z. Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol. Analyst (Lond.), 2012, 137(19), 4469-4474.
[http://dx.doi.org/10.1039/c2an35617a] [PMID: 22870501]
[41]
Peng, H.; Wang, S.; Zhang, Z.; Xiong, H.; Li, J.; Chen, L.; Li, Y. Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J. Agric. Food Chem., 2012, 60(8), 1921-1928.
[http://dx.doi.org/10.1021/jf204736p] [PMID: 22292481]
[42]
Liu, F.; Huang, S.; Xue, F.; Wang, Y.; Meng, Z.; Xue, M. Detection of organophosphorus compounds using a molecularly imprinted photonic crystal. Biosens. Bioelectron., 2012, 32(1), 273-277.
[http://dx.doi.org/10.1016/j.bios.2011.11.012] [PMID: 22196876]
[43]
Liu, F.; Huang, S.Y.; Xue, F.; Chang, J.; Xue, M.; Meng, Z.H. Preparation of molecularly imprinted photonic crystal sensor of ethyl phosphonate. Chin. J. Anal. Chem., 2012, 40(8), 1153-1158.
[44]
Li, J.H.; Zhang, Z.; Xu, S.F.; Chen, L.X.; Zhou, N.; Xiong, H.; Peng, H.L. Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. J. Mater. Chem., 2011, 21(48), 19267-19274.
[http://dx.doi.org/10.1039/c1jm14230e]
[45]
Griffete, N.; Frederich, H.; Maître, A.; Schwob, C.; Ravaine, S.; Carbonnier, B.; Chehimi, M.M.; Mangeney, C. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. J. Colloid Interface Sci., 2011, 364(1), 18-23.
[http://dx.doi.org/10.1016/j.jcis.2011.07.028] [PMID: 21889154]
[46]
Wu, Z.; Tao, C.A.; Lin, C.; Shen, D.; Li, G. Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chemistry, 2008, 14(36), 11358-11368.
[http://dx.doi.org/10.1002/chem.200801250] [PMID: 19016562]
[47]
Wu, Z.; Hu, X.B.; Tao, C.A.; Li, Y.; Liu, J.; Yang, C.D.; Shen, D.Z.; Li, G.T. Direct and label-free detection of cholic acid based on molecularly imprinted photonic hydrogels. J. Mater. Chem., 2008, 18(45), 5452-5458.
[http://dx.doi.org/10.1039/b811189h]
[48]
Hu, X.B.; Li, G.T.; Li, M.H.; Huang, J.; Li, Y.; Gao, Y.B.; Zhang, Y.H. Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Adv. Funct. Mater., 2008, 18(4), 575-583.
[http://dx.doi.org/10.1002/adfm.200700527]
[49]
Liu, Y.; Zhang, Y.; Guan, Y. New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. (Camb.), 2009, 1(14), 1867-1869.
[http://dx.doi.org/10.1039/b821706h] [PMID: 19319428]
[50]
Xue, F.; Meng, Z.; Wang, Y.; Huang, S.; Wang, Q.; Lu, W.; Xue, M. A molecularly imprinted colloidal array as a colorimetric sensor for label-free detection of p-nitrophenol. Anal. Methods, 2014, 6(3), 831-837.
[http://dx.doi.org/10.1039/C3AY42059K]
[51]
Lu, W.; Dong, X.; Qiu, L.; Yan, Z.; Meng, Z.; Xue, M.; He, X.; Liu, X. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J. Hazard. Mater., 2017, 326, 130-137.
[http://dx.doi.org/10.1016/j.jhazmat.2016.12.024] [PMID: 28013156]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 20 August, 2020
Page: [495 - 503]
Pages: 9
DOI: 10.2174/1573413715666190206144415
Price: $65

Article Metrics

PDF: 20
HTML: 2