Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Adrenergic Regulation of Macrophage-Mediated Innate/Inflammatory Responses in Obesity and Exercise in this Condition: Role of β2 Adrenergic Receptors

Author(s): Eduardo Ortega*, Isabel Gálvez* and Leticia Martín-Cordero

Volume 19, Issue 8, 2019

Page: [1089 - 1099] Pages: 11

DOI: 10.2174/1871530319666190206124520

Abstract

Background: The effects of exercise on the innate/inflammatory immune responses are crucially mediated by catecholamines and adrenoreceptors; and mediations in both stimulatory and anti-inflammatory responses have been attributed to them. Obesity and metabolic syndrome are included among low-grade chronic inflammatory pathologies; particularly because patients have a dysregulation of the inflammatory and stress responses, which can lead to high levels of inflammatory cytokines that induce insulin resistance, contributing to the onset or exacerbation of type 2 diabetes. Macrophages play a crucial role in this obesity-induced inflammation. Although most of the antiinflammatory effects of catecholamines are mediated by β adrenergic receptors (particularly β2), it is not known whether in altered homeostatic conditions, such as obesity and during exercise, innate/ inflammatory responses of macrophages to β2 adrenergic stimulation are similar to those in cells of healthy organisms at baseline.

Objective: This review aims to emphasize that there could be possible different responses to β2 adrenergic stimulation in obesity, and exercise in this condition.

Methods: A revision of the literature based on the hypothesis that obesity affects β2 adrenergic regulation of macrophage-mediated innate/inflammatory responses, as well as the effect of exercise in this context.

Conclusion: The inflammatory responses mediated by β2 adrenoreceptors are different in obese individuals with altered inflammatory states at baseline compared to healthy individuals, and exercise can also interfere with these responses. Nevertheless, it is clearly necessary to develop more studies that contribute to widening the knowledge of the neuroimmune regulation process in obesity, particularly in this context.

Keywords: Macrophages, monocytes, β2 adrenergic receptors, inflammation, cytokines, phagocytosis, obesity, exercise.

Next »
Graphical Abstract
[1]
Madden, L.T.; Livnat, S. Catecholamine action and immuno-logic reactivity.,Psychoneuroimmunology; 2nd ed; Ader, R.; Felten, D.L.; Cohen, N., Eds.;. Academic Press; , 1991, pp. 283-310.
[http://dx.doi.org/10.1016/B978-0-12-043780-1.50014-2]
[2]
Madden, K.S.; Sanders, V.M.; Felten, D.L. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu. Rev. Pharmacol. Toxicol., 1995, 35, 417-448.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.002221] [PMID: 7598501]
[3]
Sanders, V.M. Interdisciplinary research: noradrenergic regulation of adaptive immunity. Brain Behav. Immun., 2006, 20(1), 1-8.
[http://dx.doi.org/10.1016/j.bbi.2005.07.004] [PMID: 16140497]
[4]
Besedovsky, H.O.; Rey, A.D. Physiology of psychoneuroimmunology: a personal view. Brain Behav. Immun., 2007, 21(1), 34-44.
[http://dx.doi.org/10.1016/j.bbi.2006.09.008] [PMID: 17157762]
[5]
Ortega, E.; Giraldo, E.; Hinchado, M.D.; Martín, L.; García, J.J.; De la Fuente, M. Neuroimmunomodulation during exercise: role of catecholamines as ‘stress mediator’ and/or ‘danger signal’ for the innate immune response. Neuroimmunomodulation, 2007, 14(3-4), 206-212.
[http://dx.doi.org/10.1159/000110648] [PMID: 18073516]
[6]
Scanzano, A.; Cosentino, M. Adrenergic regulation of innate immunity: a review. Front. Pharmacol., 2015, 6, 171.
[http://dx.doi.org/10.3389/fphar.2015.00171] [PMID: 26321956]
[7]
Madden, K.S. Catecholamines, sympathetic innervation, and immunity. Brain Behav. Immun., 2003, 17(Suppl. 1), S5-S10.
[http://dx.doi.org/10.1016/S0889-1591(02)00059-4] [PMID: 12615180]
[8]
García, J.J.; del Carmen Sáez, M.; De la Fuente, M.; Ortega, E. Noradrenaline and its end metabolite 3-methoxy-4-hydroxyphenylglycol inhibit lymphocyte chemotaxis: role of alpha- and beta-adrenoreceptors. Mol. Cell. Biochem., 2003, 254(1-2), 305-309.
[http://dx.doi.org/10.1023/A:1027349904589] [PMID: 14674710]
[9]
Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev., 2000, 52(4), 595-638.
[PMID: 11121511]
[10]
Elenkov, I.J. Effects of catecholamines on the immune response.The Hypothalamus–Pituitary–Adrenal Axis; Del Rey, A.; Chrousos, G.P.; Besedovsky, O.H., Eds.; Elsevier. , 2008, pp. 189-206.
[11]
Cosentino, M.; Marino, F. Nerve driven immunity: Noradren-aline and Adrenaline. InNerve-Driven Immunity; Levite, M., Ed.; Springer-Verlag: Wien, 2012, pp. 47-96.
[http://dx.doi.org/10.1007/978-3-7091-0888-8_2]
[12]
García, J.J.; del Carmen Sáez, M.; De la Fuente, M.; Ortega, E. Regulation of phagocytic process of macrophages by noradrenaline and its end metabolite 4-hydroxy-3-metoxyphenyl-glycol. Role of alpha- and beta-adrenoreceptors. Mol. Cell. Biochem., 2003, 254(1-2), 299-304.
[http://dx.doi.org/10.1023/A:1027345820519] [PMID: 14674709]
[13]
Ortega, E.; Giraldo, E.; Hinchado, M.D.; Martín-Cordero, L.; García, J.J. 72 kDa extracellular heat shock protein (eHsp72), norepinephrine (NE), and the innate immune response fol-lowing moderate exercise. InHeat Shock Proteins and Whole Body Physiology; Asea, A; Pedersen, B.K., Ed.; Springer: USA, 2010, pp. 329-350.
[14]
Ortega, E.; García, J.J.; De la Fuente, M. Modulation of adherence and chemotaxis of macrophages by norepinephrine. Influence of ageing. Mol. Cell. Biochem., 2000, 203(1-2), 113-117.
[http://dx.doi.org/10.1023/A:1007094614047] [PMID: 10724339]
[15]
Ortega, E.; García, J.J.; Sáez, M.C.; De la Fuente, M. Changes with aging in the modulation of macrophages by norepinephrine. Mech. Ageing Dev., 2000, 118(3), 103-114.
[http://dx.doi.org/10.1016/S0047-6374(00)00160-3] [PMID: 11006444]
[16]
Saez, M.C.; Garcia, J.J.; De la Fuente, M.; Ortega, E. Modulation of superoxide anion levels of macrophages from young-adult and old mice by the norepinephrine metabolite, 4-hydroxy-3-methoxyphenyl-glycol. Exp. Gerontol., 2002, 37(2-3), 395-400.
[http://dx.doi.org/10.1016/S0531-5565(01)00206-6] [PMID: 11772526]
[17]
Elenkov, I.J.; Chrousos, G.P. Stress hormones, Th1/Th2 patterns. Pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol. Metab., 1999, 10(9), 359-368.
[http://dx.doi.org/10.1016/S1043-2760(99)00188-5] [PMID: 10511695]
[18]
Elenkov, I.J.; Chrousos, G.P. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. N. Y. Acad. Sci., 2002, 966, 290-303.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04229.x] [PMID: 12114286]
[19]
Martín-Cordero, L.; García, J.J.; Ortega, E. Noradrenaline-mediated inhibition of inflammatory cytokines is altered in macrophages from obese Zucker rats: effect of habitual exercise. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(3), 234-239.
[http://dx.doi.org/10.2174/18715303113139990035] [PMID: 23808809]
[20]
Martín-Cordero, L.; García, J.J.; Hinchado, M.D.; Ortega, E. The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: effect of exercise. Cardiovasc. Diabetol., 2011, 10, 42.
[http://dx.doi.org/10.1186/1475-2840-10-42] [PMID: 21599899]
[21]
Zhang, X.; Hartung, J.E.; Bortsov, A.V.; Kim, S.; O’Buckley, S.C.; Kozlowski, J.; Nackley, A.G. Sustained stimulation of β2- and β3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav. Immun., 2018, 73, 520-532.
[http://dx.doi.org/10.1016/j.bbi.2018.06.017] [PMID: 29935309]
[22]
Ortega Rincón, E. Physiology and biochemistry: influence of exercise on phagocytosis. Int. J. Sports Med., 1994, 15(Suppl. 3), S172-S178.
[http://dx.doi.org/10.1055/s-2007-1021133] [PMID: 7883400]
[23]
Nance, D.M.; Sanders, V.M. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav. Immun., 2007, 21(6), 736-745.
[http://dx.doi.org/10.1016/j.bbi.2007.03.008] [PMID: 17467231]
[24]
Berkowitz, D.E.; Nardone, N.A.; Smiley, R.M.; Price, D.T.; Kreutter, D.K.; Fremeau, R.T.; Schwinn, D.A. Distribution of beta 3-adrenoceptor mRNA in human tissues. Eur. J. Pharmacol., 1995, 289(2), 223-228.
[http://dx.doi.org/10.1016/0922-4106(95)90098-5] [PMID: 7621895]
[25]
Kalinichenko, V.V.; Mokyr, M.B.; Graf, L.H., Jr; Cohen, R.L.; Chambers, D.A. Norepinephrine-mediated inhibition of anti-tumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-alpha gene expression. J. Immunol., 1999, 163, 2492-2499.
[PMID: 10452985]
[26]
Farmer, P.; Pugin, J. beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(4), L675-L682.
[http://dx.doi.org/10.1152/ajplung.2000.279.4.L675] [PMID: 11000127]
[27]
Hetier, E.; Ayala, J.; Bousseau, A.; Prochiantz, A. Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp. Brain Res., 1991, 86(2), 407-413.
[http://dx.doi.org/10.1007/BF00228965] [PMID: 1684549]
[28]
Severn, A.; Rapson, N.T.; Hunter, C.A.; Liew, F.Y. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J. Immunol., 1992, 148(11), 3441-3445.
[PMID: 1350291]
[29]
Nakamura, A.; Johns, E.J.; Imaizumi, A.; Abe, T.; Kohsaka, T. Regulation of tumour necrosis factor and interleukin-6 gene transcription by beta2-adrenoceptor in the rat astrocytes. J. Neuroimmunol., 1998, 88(1-2), 144-153.
[http://dx.doi.org/10.1016/S0165-5728(98)00109-X] [PMID: 9688336]
[30]
Ağaç, D.; Estrada, L.D.; Maples, R.; Hooper, L.V.; Farrar, J.D. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav. Immun., 2018, 74, 176-185.
[http://dx.doi.org/10.1016/j.bbi.2018.09.004] [PMID: 30195028]
[31]
Spengler, R.N.; Allen, R.M.; Remick, D.G.; Strieter, R.M.; Kunkel, S.L. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J. Immunol., 1990, 145(5), 1430-1434.
[PMID: 2166759]
[32]
Spengler, R.N.; Chensue, S.W.; Giacherio, D.A.; Blenk, N.; Kunkel, S.L. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J. Immunol., 1994, 152(6), 3024-3031.
[PMID: 8144901]
[33]
Flierl, M.A.; Rittirsch, D.; Nadeau, B.A.; Chen, A.J.; Sarma, J.V.; Zetoune, F.S.; McGuire, S.R.; List, R.P.; Day, D.E.; Hoesel, L.M.; Gao, H.; Van Rooijen, N.; Huber-Lang, M.S.; Neubig, R.R.; Ward, P.A. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, 449(7163), 721-725.
[http://dx.doi.org/10.1038/nature06185] [PMID: 17914358]
[34]
Flierl, M.A.; Rittirsch, D.; Huber-Lang, M.; Sarma, J.V.; Ward, P.A. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box? Mol. Med., 2008, 14(3-4), 195-204.
[http://dx.doi.org/10.2119/2007-00105.Flierl] [PMID: 18079995]
[35]
Ortega, E. The “bioregulatory effect of exercise” on the innate/inflammatory responses. J. Physiol. Biochem., 2016, 72(2), 361-369.
[http://dx.doi.org/10.1007/s13105-016-0478-4] [PMID: 26979741]
[36]
Pires-Lapa, M.A.; Carvalho-Sousa, C.E.; Cecon, E.; Fernandes, P.A.; Markus, R.P. β-Adrenoceptors trigger melatonin synthesis in phagocytes. Int. J. Mol. Sci., 2018, 19(8)E2182
[http://dx.doi.org/10.3390/ijms19082182] [PMID: 30049944]
[37]
Flierl, M.A.; Rittirsch, D.; Nadeau, B.A.; Sarma, J.V.; Day, D.E.; Lentsch, A.B.; Huber-Lang, M.S.; Ward, P.A. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One, 2009, 4(2)e4414
[http://dx.doi.org/10.1371/journal.pone.0004414] [PMID: 19212441]
[38]
Bosmann, M.; Grailer, J.J.; Zhu, K.; Matthay, M.A.; Sarma, J.V.; Zetoune, F.S.; Ward, P.A. Anti-inflammatory effects of β2 adrenergic receptor agonists in experimental acute lung injury. FASEB J., 2012, 26(5), 2137-2144.
[http://dx.doi.org/10.1096/fj.11-201640] [PMID: 22318967]
[39]
Tang, S.T.; Su, H.; Zhang, Q.; Tang, H.Q.; Wang, C.J.; Zhou, Q.; Wei, W.; Zhu, H.Q.; Wang, Y. Melatonin attenuates aortic endothelial permeability and arteriosclerosis in streptozoto-cin-induced diabetic rats: Possible role of MLCK- and MLCP-dependent MLC phosphorylation. J. Cardiovasc. Pharmacol. Ther., 2016, 21(1), 82-92.
[http://dx.doi.org/10.1177/1074248415583090] [PMID: 25944844]
[40]
Assis de Brito, T.L.; Monte-Alto-Costa, A.; Romana-Souza, B. Propranolol impairs the closure of pressure ulcers in mice. Life Sci., 2014, 100(2), 138-146.
[http://dx.doi.org/10.1016/j.lfs.2014.02.007] [PMID: 24560961]
[41]
Giraldo, E.; Multhoff, G.; Ortega, E. Noradrenaline increases the expression and release of Hsp72 by human neutrophils. Brain Behav. Immun., 2010, 24(4), 672-677.
[http://dx.doi.org/10.1016/j.bbi.2010.02.003] [PMID: 20188818]
[42]
Giraldo, E.; Hinchado, M.D.; Ortega, E. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP. J. Cell. Physiol., 2013, 228(9), 1902-1906.
[http://dx.doi.org/10.1002/jcp.24354] [PMID: 23460302]
[43]
Hinchado, M.D.; Giraldo, E.; Ortega, E. Adrenoreceptors are involved in the stimulation of neutrophils by exercise-induced circulating concentrations of Hsp72: cAMP as a potential “intracellular danger signal”. J. Cell. Physiol., 2012, 227(2), 604-608.
[http://dx.doi.org/10.1002/jcp.22759] [PMID: 21448922]
[44]
Bacou, E.; Haurogné, K.; Allard, M.; Mignot, G.; Bach, J.M.; Hervé, J.; Lieubeau, B. β2-adrenoreceptor stimulation dampens the LPS-induced M1 polarization in pig macrophages. Dev. Comp. Immunol., 2017, 76, 169-176.
[http://dx.doi.org/10.1016/j.dci.2017.06.007] [PMID: 28633932]
[45]
Grailer, J.J.; Haggadone, M.D.; Sarma, J.V.; Zetoune, F.S.; Ward, P.A. Induction of M2 regulatory macrophages through the β2-adrenergic receptor with protection during endotoxemia and acute lung injury. J. Innate Immun., 2014, 6(5), 607-618.
[http://dx.doi.org/10.1159/000358524] [PMID: 24642449]
[46]
World Health Organization (WHO). Obesity and overweight., 2017.http://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight/ (Accessed May 2018).
[47]
Johnson, A.R.; Milner, J.J.; Makowski, L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol. Rev., 2012, 249(1), 218-238.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01151.x] [PMID: 22889225]
[48]
Lumeng, C.N. Innate immune activation in obesity. Mol. Aspects Med., 2013, 34(1), 12-29.
[http://dx.doi.org/10.1016/j.mam.2012.10.002] [PMID: 23068074]
[49]
McClean, K.M.; Kee, F.; Young, I.S.; Elborn, J.S. Obesity and the lung: 1. Epidemiology. Thorax, 2008, 63(7), 649-654.
[http://dx.doi.org/10.1136/thx.2007.086801] [PMID: 18587034]
[50]
Baumann, S.; Lorentz, A. Obesity - a promoter of allergy? Int. Arch. Allergy Immunol., 2013, 162(3), 205-213.
[http://dx.doi.org/10.1159/000353972] [PMID: 24021931]
[51]
Strandberg, L.; Verdrengh, M.; Enge, M.; Andersson, N.; Amu, S.; Onnheim, K.; Benrick, A.; Brisslert, M.; Bylund, J.; Bokarewa, M.; Nilsson, S.; Jansson, J.O. Mice chronically fed high-fat diet have increased mortality and disturbed immune response in sepsis. PLoS One, 2009, 4(10)e7605
[http://dx.doi.org/10.1371/journal.pone.0007605] [PMID: 19865485]
[52]
Martin-Cordero, L.; Garcia, J.J.; Giraldo, E.; De la Fuente, M.; Manso, R.; Ortega, E. Influence of exercise on the circulating levels and macrophage production of IL-1beta and IFNgamma affected by metabolic syndrome: an obese Zucker rat experimental animal model. Eur. J. Appl. Physiol., 2009, 107(5), 535-543.
[http://dx.doi.org/10.1007/s00421-009-1140-4] [PMID: 19688220]
[53]
Martín-Cordero, L.; García, J.J.; Hinchado, M.D.; Bote, E.; Manso, R.; Ortega, E. Habitual physical exercise improves macrophage IL-6 and TNF-α deregulated release in the obese zucker rat model of the metabolic syndrome. Neuroimmunomodulation, 2011, 18(2), 123-130.
[http://dx.doi.org/10.1159/000322053] [PMID: 21116112]
[54]
Huttunen, R.; Syrjänen, J. Obesity and the risk and outcome of infection. Int. J. Obes., 2013, 37(3), 333-340.
[http://dx.doi.org/10.1038/ijo.2012.62] [PMID: 22546772]
[55]
Amar, S.; Zhou, Q.; Shaik-Dasthagirisaheb, Y.; Leeman, S. Diet-induced obesity in mice causes changes in immune responses and bone loss manifested by bacterial challenge. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20466-20471.
[http://dx.doi.org/10.1073/pnas.0710335105] [PMID: 18077329]
[56]
Trottier, M.D.; Naaz, A.; Li, Y.; Fraker, P.J. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc. Natl. Acad. Sci. USA, 2012, 109(20), 7622-7629.
[http://dx.doi.org/10.1073/pnas.1205129109] [PMID: 22538809]
[57]
Gonzalez-Quintela, A.; Alonso, M.; Campos, J.; Vizcaino, L.; Loidi, L.; Gude, F. Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One, 2013, 8(1)e54600
[http://dx.doi.org/10.1371/journal.pone.0054600] [PMID: 23349936]
[58]
De Loera-Rodriguez, C.O.; Delgado-Rizo, V.; Alvarado-Navarro, A.; Agraz-Cibrian, J.M.; Segura-Ortega, J.E.; Fafutis-Morris, M. Over-expression of TLR4-CD14, pro-inflammatory cytokines, metabolic markers and NEFAs in obese non-diabetic Mexicans. J. Inflamm. (Lond.), 2014, 11(1), 39.
[http://dx.doi.org/10.1186/s12950-014-0039-y] [PMID: 25493077]
[59]
Ortega, E.; Martín-Cordero, L.; García-Roves, P.M.; Chicco, A.J.; González-Franquesa, A.; Marado, D. Diabetes Mellitus and Metabolic Syndrome.Biomarkers of Cardiometabolic Risk, Inflammation and Disease; Palavra, F.; Reis, F.; Marado, D; Sena, A., Ed.; Springer International Publishing Switzer-land, 2015, pp. 55-80.
[60]
Chawla, A.; Nguyen, K.D.; Goh, Y.P. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol., 2011, 11(11), 738-749.
[http://dx.doi.org/10.1038/nri3071] [PMID: 21984069]
[61]
Jin, C.; Henao-Mejia, J.; Flavell, R.A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab., 2013, 17(6), 873-882.
[http://dx.doi.org/10.1016/j.cmet.2013.05.011] [PMID: 23747246]
[62]
Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest., 2003, 112(12), 1785-1788.
[http://dx.doi.org/10.1172/JCI20514] [PMID: 14679172]
[63]
Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest., 2005, 115(5), 1111-1119.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[64]
Rogacev, K.S.; Ulrich, C.; Blömer, L.; Hornof, F.; Oster, K.; Ziegelin, M.; Cremers, B.; Grenner, Y.; Geisel, J.; Schlitt, A.; Köhler, H.; Fliser, D.; Girndt, M.; Heine, G.H. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur. Heart J., 2010, 31(3), 369-376.
[http://dx.doi.org/10.1093/eurheartj/ehp308] [PMID: 19687164]
[65]
Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol., 2011, 11(11), 762-774.
[http://dx.doi.org/10.1038/nri3070] [PMID: 21984070]
[66]
Ziegler-Heitbrock, L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol., 2007, 81(3), 584-592.
[http://dx.doi.org/10.1189/jlb.0806510] [PMID: 17135573]
[67]
Poitou, C.; Dalmas, E.; Renovato, M.; Benhamo, V.; Hajduch, F.; Abdennour, M.; Kahn, J.F.; Veyrie, N.; Rizkalla, S.; Fridman, W.H.; Sautès-Fridman, C.; Clément, K.; Cremer, I. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(10), 2322-2330.
[http://dx.doi.org/10.1161/ATVBAHA.111.230979] [PMID: 21799175]
[68]
Krinninger, P.; Ensenauer, R.; Ehlers, K.; Rauh, K.; Stoll, J.; Krauss-Etschmann, S.; Hauner, H.; Laumen, H. Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. J. Clin. Endocrinol. Metab., 2014, 99, 2500-2509.
[69]
Devêvre, E.F.; Renovato-Martins, M.; Clément, K.; Sautès-Fridman, C.; Cremer, I.; Poitou, C. Profiling of the three circulating monocyte subpopulations in human obesity. J. Immunol., 2015, 194(8), 3917-3923.
[http://dx.doi.org/10.4049/jimmunol.1402655] [PMID: 25786686]
[70]
Rose, S.; Misharin, A.; Perlman, H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry A, 2012, 81(4), 343-350.
[http://dx.doi.org/10.1002/cyto.a.22012] [PMID: 22213571]
[71]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[72]
Fujisaka, S.; Usui, I.; Bukhari, A.; Ikutani, M.; Oya, T.; Kanatani, Y.; Tsuneyama, K.; Nagai, Y.; Takatsu, K.; Urakaze, M.; Kobayashi, M.; Tobe, K. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes, 2009, 58(11), 2574-2582.
[http://dx.doi.org/10.2337/db08-1475] [PMID: 19690061]
[73]
Lee, B.C.; Lee, J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim. Biophys. Acta, 2014, 1842(3), 446-462.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.017] [PMID: 23707515]
[74]
Galvan, D.L.; Danesh, F.R. β2-adrenergic receptors in inflammation and vascular complications of diabetes. Kidney Int., 2017, 92(1), 14-16.
[http://dx.doi.org/10.1016/j.kint.2017.03.024] [PMID: 28646990]
[75]
Noh, H.; Yu, M.R.; Kim, H.J.; Lee, J.H.; Park, B.W.; Wu, I.H.; Matsumoto, M.; King, G.L. Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications. Kidney Int., 2017, 92(1), 101-113.
[http://dx.doi.org/10.1016/j.kint.2017.02.013] [PMID: 28396116]
[76]
Rudyk, M.P.; Pozur, V.V.; Voieikova, D.O.; Hurmach, Y.V.; Khranovska, N.M.; Skachkova, O.V.; Svyatetska, V.M.; Fedorchuk, O.G.; Skivka, L.M.; Berehova, T.V.; Ostapchenko, L.I. Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Sci. Rep., 2018, 8(1), 5419.
[http://dx.doi.org/10.1038/s41598-018-23664-0] [PMID: 29615659]
[77]
Sitkauskiene, B.; Sakalauskas, R. The role of beta(2)-adrenergic receptors in inflammation and allergy. Curr. Drug Targets Inflamm. Allergy, 2005, 4(2), 157-162.
[http://dx.doi.org/10.2174/1568010053586309] [PMID: 15853736]
[78]
Pasquali, R.; Vicennati, V.; Cacciari, M.; Pagotto, U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci., 2006, 1083, 111-128.
[http://dx.doi.org/10.1196/annals.1367.009] [PMID: 17148736]
[79]
Lambert, G.W.; Straznicky, N.E.; Lambert, E.A.; Dixon, J.B.; Schlaich, M.P. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol. Ther., 2010, 126(2), 159-172.
[http://dx.doi.org/10.1016/j.pharmthera.2010.02.002] [PMID: 20171982]
[80]
Bellinger, D.L.; Millar, B.A.; Perez, S.; Carter, J.; Wood, C. ThyagaRajan, S.; Molinaro, C.; Lubahn, C.; Lorton, D. Sym-pathetic modulation of immunity: relevance to disease. Cell. Immunol., 2008, 252, 27-56.
[http://dx.doi.org/10.1016/j.cellimm.2007.09.005] [PMID: 18308299]
[81]
Kumar, V.; Sharma, A. Is neuroimmunomodulation a future therapeutic approach for sepsis? Int. Immunopharmacol., 2010, 10(1), 9-17.
[http://dx.doi.org/10.1016/j.intimp.2009.10.003] [PMID: 19840870]
[82]
Bellinger, D.L.; Lorton, D. Autonomic regulation of cellular immune function. Auton. Neurosci., 2014, 182, 15-41.
[http://dx.doi.org/10.1016/j.autneu.2014.01.006] [PMID: 24685093]
[83]
De Souza, C.T.; Araujo, E.P.; Bordin, S.; Ashimine, R.; Zollner, R.L.; Boschero, A.C.; Saad, M.J.A.; Velloso, L.A. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology, 2005, 146(10), 4192-4199.
[http://dx.doi.org/10.1210/en.2004-1520] [PMID: 16002529]
[84]
Zhang, X.; Zhang, G.; Zhang, H.; Karin, M.; Bai, H.; Cai, D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell, 2008, 135(1), 61-73.
[http://dx.doi.org/10.1016/j.cell.2008.07.043] [PMID: 18854155]
[85]
Kawanishi, N.; Mizokami, T.; Yano, H.; Suzuki, K. Exercise attenuates M1 macrophages and CD8+ T cells in the adipose tissue of obese mice. Med. Sci. Sports Exerc., 2013, 45(9), 1684-1693.
[http://dx.doi.org/10.1249/MSS.0b013e31828ff9c6] [PMID: 23954991]
[86]
You, T.; Arsenis, N.C.; Disanzo, B.L.; Lamonte, M.J. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med., 2013, 43(4), 243-256.
[http://dx.doi.org/10.1007/s40279-013-0023-3] [PMID: 23494259]
[87]
Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep., 1985, 100(2), 126-131.
[PMID: 3920711]
[88]
Ortega, E. Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc. Immunol. Rev., 2003, 9, 70-93.
[PMID: 14686096]
[89]
Ortega, E.; García, J.J.; Bote, M.E.; Martín-Cordero, L.; Escalante, Y.; Saavedra, J.M.; Northoff, H.; Giraldo, E. Exercise in fibromyalgia and related inflammatory disorders: known effects and unknown chances. Exerc. Immunol. Rev., 2009, 15, 42-65.
[PMID: 19957871]
[90]
Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol., 2011, 11(9), 607-615.
[http://dx.doi.org/10.1038/nri3041] [PMID: 21818123]
[91]
Maisel, A.S.; Harris, T.; Rearden, C.A.; Michel, M.C. Beta-adrenergic receptors in lymphocyte subsets after exercise. Alterations in normal individuals and patients with congestive heart failure. Circulation, 1990, 82(6), 2003-2010.
[http://dx.doi.org/10.1161/01.CIR.82.6.2003] [PMID: 2173645]
[92]
Kawanishi, N.; Yano, H.; Yokogawa, Y.; Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev., 2010, 16, 105-118.
[PMID: 20839495]
[93]
Oliveira, A.G.; Carvalho, B.M.; Tobar, N.; Ropelle, E.R.; Pauli, J.R.; Bagarolli, R.A.; Guadagnini, D.; Carvalheira, J.B.; Saad, M.J. Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes, 2011, 60(3), 784-796.
[http://dx.doi.org/10.2337/db09-1907] [PMID: 21282367]
[94]
Carpenter, K.C.; Strohacker, K.; Breslin, W.L.; Lowder, T.W.; Agha, N.H.; McFarlin, B.K. Effects of exercise on weight loss and monocytes in obese mice. Comp. Med., 2012, 62(1), 21-26.
[PMID: 22330647]
[95]
Huang, C.J.; Zourdos, M.C.; Jo, E.; Ormsbee, M.J. Influence of physical activity and nutrition on obesity-related immune function. ScientificWorldJournal, 2013.2013752071
[http://dx.doi.org/10.1155/2013/752071] [PMID: 24324381]
[96]
Martín-Cordero, L.; Reis, F.; García, J.J.; Teixeira, F.; Ortega, E. Effect of exercise without diet on functional capacity of peritoneal macrophages and TNF-a levels in blood and in adi-pose tissue in the obese Zucker rat model of the metabolic syndrome. Proc. Nutr. Soc.,, 2013.72E76
[http://dx.doi.org/10.1017/S0029665113000785]
[97]
Martín-Cordero, L.; Francisco-Morcillo, J.; Cintas, R.; Gálvez, I.; Ortega, E. Increased macrophage infiltration and TNF-αlevels in the adipose tissue of obese Zucker rats after habitual exerciseinduced stress. Annals of research in sport and physical activity, 2018, 245-246.
[98]
Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest., 2007, 117(1), 175-184.
[http://dx.doi.org/10.1172/JCI29881] [PMID: 17200717]
[99]
Wentworth, J.M.; Naselli, G.; Brown, W.A.; Doyle, L.; Phipson, B.; Smyth, G.K.; Wabitsch, M.; O’Brien, P.E.; Harrison, L.C. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes, 2010, 59(7), 1648-1656.
[http://dx.doi.org/10.2337/db09-0287] [PMID: 20357360]
[100]
Lumeng, C.N.; DelProposto, J.B.; Westcott, D.J.; Saltiel, A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 2008, 57(12), 3239-3246.
[http://dx.doi.org/10.2337/db08-0872] [PMID: 18829989]
[101]
Nawaz, A.; Aminuddin, A.; Kado, T.; Takikawa, A.; Yamamoto, S.; Tsuneyama, K.; Igarashi, Y.; Ikutani, M.; Nishida, Y.; Nagai, Y.; Takatsu, K.; Imura, J.; Sasahara, M.; Okazaki, Y.; Ueki, K.; Okamura, T.; Tokuyama, K.; Ando, A.; Matsumoto, M.; Mori, H.; Nakagawa, T.; Kobayashi, N.; Saeki, K.; Usui, I.; Fujisaka, S.; Tobe, K. CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat. Commun., 2017, 8(1), 286.
[http://dx.doi.org/10.1038/s41467-017-00231-1] [PMID: 28819169]
[102]
Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res., 2005, 46(11), 2347-2355.
[http://dx.doi.org/10.1194/jlr.M500294-JLR200] [PMID: 16150820]
[103]
Murano, I.; Barbatelli, G.; Parisani, V.; Latini, C.; Muzzonigro, G.; Castellucci, M.; Cinti, S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res., 2008, 49(7), 1562-1568.
[http://dx.doi.org/10.1194/jlr.M800019-JLR200] [PMID: 18390487]
[104]
Bote, M.E.; Garcia, J.J.; Hinchado, M.D.; Ortega, E. Fibromyalgia: anti-inflammatory and stress responses after acute moderate exercise. PLoS One, 2013, 8(9)e74524
[http://dx.doi.org/10.1371/journal.pone.0074524] [PMID: 24023948]
[105]
Gálvez, I.; Martín-Cordero, L.; Álvarez-Barrientos, A.; Ortega, E. β2 adrenergic regulation of thephagocytic activity of peritonealmacrophages in obese mice: effectof an acute intense exercise. Annals of research in sport and physical activity,, 2018, 249-250.
[106]
Martín-Cordero, L.; Gálvez, I.; Álvarez-Barrientos, A.; Ortega, E. β2 adrenergic regulation of the phagocytic activity of monocytes in obese mice:effect of an acute intense exercise. Annals of research in sport and physical activity,, 2018, 247-248.
[107]
Martín-Cordero, L.; García, J.J.; Hinchado, M.D.; Bote, E.; Ortega, E. Influence of exercise on NA- and Hsp72-induced release of IFNγ by the peritoneal suspension of macrophages and lymphocytes from genetically obese Zucker rats. J. Physiol. Biochem., 2013, 69(1), 125-131.
[http://dx.doi.org/10.1007/s13105-012-0196-5] [PMID: 22798210]
[108]
Philipson, L.H. beta-Agonists and metabolism. J. Allergy Clin. Immunol., 2002, 110(6)(Suppl.), S313-S317.
[http://dx.doi.org/10.1067/mai.2002.129702] [PMID: 12464941]

© 2024 Bentham Science Publishers | Privacy Policy