Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

New 99mTc Radiotracers for Myocardial Perfusion Imaging by SPECT

Author(s): Wei Fang* and Shuang Liu*

Volume 12, Issue 3, 2019

Page: [171 - 186] Pages: 16

DOI: 10.2174/1874471012666190206102214

Price: $65

Abstract

Objective: Myocardial Perfusion Imaging (MPI) with radiotracers is an integral component in evaluation of the patients with known or suspected coronary artery diseases (CAD). 99mTc-Sestamibi and 99mTc-Tetrofosmin are commercial radiopharmaceuticals for MPI by single photon-emission computed tomography (SPECT). Despite their widespread clinical applications, they do not meet the requirements of an ideal perfusion imaging agent due to their inability to linearly track the regional myocardial blood flow rate at >2.5 mL/min/g. With tremendous development of CZT-based SPECT cameras over the past several years, the nuclear cardiology community has been calling for better perfusion radiotracers with improved extraction and biodistribution properties.

Methods: This review will summarize recent research efforts on new cationic and neutral 99mTc radiotracers for SPECT MPI. The goal of these efforts is to develop a 99mTc radiotracer that can be used to detect perfusion defects at rest or under stress, determine the regional myocardial blood flow, and measure the perfusion and left ventricular function.

Results: The advantage of cationic radiotracers (e.g. 99mTc-Sestamibi) is their long myocardial retention because of the positive molecular charge and fast liver clearance kinetics. 99mTc-Teboroxime derivatives have a high initial heart uptake (high first-pass extraction fraction) due to their neutrality. 99mTc- 3SPboroxime is the most promising radiotracer for future clinical translation considering its initial heart uptake, myocardial retention time, liver clearance kinetics, heart/liver ratios and SPECT image quality.

Conclusion: 99mTc-3SPboroximine is an excellent example of perfusion radiotracers, the heart uptake of which is largely relies on the regional blood flow. It is possible to use 99mTc-3SPboroximine for detection of perfusion defect(s), accurate quantification and determination of regional blood flow rate. Development of such a 99mTc radiotracer is of great clinical benefit for accurate diagnosis of CAD and assessing the risk of future hard events (e.g. heart attack and sudden death) in cardiac patients.

Keywords: SPECT, 99mTc radiotracers, myocardial perfusion imaging, CAD, MPI, clearance kinetics.

Next »
Graphical Abstract
[1]
Henneman, M.M.; Schuijf, J.D.; van der Wall, E.E.; Bax, J.J. Non-invasive anatomical and functional imaging for the detection of coronary artery disease. Br. Med. Bull., 2006, 79-80, 187-202.
[2]
Di Carli, M.F.; Hachamovitch, R. New technology for noninvasive evaluation of coronary artery disease. Circulation, 2007, 115, 1464-1480.
[3]
Baggish, A.L.; Boucher, C.A. Radiopharmaceutical agents for myocardial perfusion imaging. Circulation, 2008, 118, 1668-1674.
[4]
Slomka, P.J.; Patton, J.A.; Berman, D.S.; Germano, G. Advances in technical aspects of myocardial perfusion SPECT imaging. J. Nucl. Cardiol., 2009, 16, 255-276.
[5]
Salerno, M.; Beller, G.A. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging, 2009, 2, 412-424.
[6]
Stirrup, J.; Wechalekar, K.; Maenhout, A.; Anagnostopoulos, C. Cardiac radionuclide imaging in stable coronary artery disease and acute coronary syndromes. Br. Med. Bull., 2009, 89, 63-78.
[7]
Slomka, P.J.; Berman, D.S.; Germano, G. Absolute myocardial blood flow quantification with SPECT/CT: Is it possible? J. Nucl. Cardiol., 2014, 21, 1092-1095.
[8]
Nekolla, S.G.; Rischpler, C.; Nakajima, K. Myocardial blood flow quantification with SPECT and conventional tracers: A critical appraisal. J. Nucl. Cardiol., 2014, 21, 1289-1291.
[9]
Heo, R.; Nakazato, R.; Kalra, D.; Min, J.K. Noninvasive imaging in coronary artery disease. Semin. Nucl. Med., 2014, 44, 398-409.
[10]
Henzlova, M.; Duvall, W. The future of SPECT MPI: Time and dose reduction. J. Nucl. Cardiol., 2011, 18, 580-587.
[11]
Klein, R.; Hung, G.; Wu, T.; Huang, W.S.; Li, D.; deKemp, R.A.; Hsu, B. Feasibility and operator variability of myocardial blood flow and reserve measurements with 99mTc-sestamibi quantitative dynamic SPECT/CT imaging. J. Nucl. Cardiol., 2014, 21, 1075-1088.
[12]
Bailey, D.L.; Willowson, K.P. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J. Nucl. Med., 2013, 54, 83-89.
[13]
Ben-Haim, S.; Murthy, V.L.; Breault, C.; Allie, R.; Sitek, A.; Roth, N.; Fantony, J.; Lemley, M.; Baavour, R.; Roth, N.; Slomka, P.J. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J. Nucl. Med., 2013, 54, 873-879.
[14]
Wells, R.G.; Timmins, R.; Klein, R.; Lockwood, J.; Marvin, R.; deKemp, A.; Wei, L.; Rudy, T.D. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J. Nucl. Med., 2014, 55, 1685-1691.
[15]
Nekolla, S.G.; Rischpler, C.; Nakajima, K. Myocardial blood flow quantification with SPECT and conventional tracers: a critical appraisal. J. Nucl. Cardiol., 2014, 21, 1289-1291.
[16]
Baggish, A.L.; Boucher, C.A. Radiopharmaceutical agents for myocardial perfusion imaging. Circulation, 2008, 118, 1668-1674.
[17]
Sogbein, O.O.; Pelletier-Galarneau, M.; Schindler, T.H.; Wei, L.H.; Wells, R.G.; Ruddy, T.D. BioMed. Res. Internat, 2014, Article ID 942960, 25 pages.
[18]
Liu, S. Ether and crown ether-containing cationic 99mTc complexes useful as radiopharmaceuticals for heart imaging. Dalton Trans., 2007, 28, 1183-1193.
[19]
Kim, Y.S.; Wang, F.; Liu, S. Minimizing liver uptake of cationic 99mTc radiotracers with ether and crown ether functional groups. World J. Hepatol., 2010, 2, 21-31.
[20]
Esteves, F.P.; Raggi, P.; Folks, R.D.; Keidar, Z.; Askew, J.W.; Rispler, S.; O’Connor, M.K.; Verdes, L.; Garcia, E.V. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J. Nucl. Cardiol., 2009, 16, 927-934.
[21]
Buechel, R.R.; Pazhenkottil, A.P.; Herzog, B.A.; Husmann, L.; Nkoulou, R.N.; Burger, I.A.; Valenta, I.; Wyss, C.A.; Ghadri, J.R.; Kaufmann, P.A. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 1903-1908.
[22]
Duvall, W.L.; Croft, L.B.; Godiwala, T.; Ginsberg, E.; George, T.; Henzlova, M.J. Reduced isotope dose with rapid SPECT MPI imaging: initial experience with a CZT SPECT camera. J. Nucl. Cardiol., 2010, 17, 1009-1014.
[23]
Schillaci, O.; Danieli, R. Dedicated cardiac cameras: a new option for nuclear myocardial perfusion imaging. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 1706-1709.
[24]
Henzlova, M.; Duvall, W. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J. Nucl. Cardiol., 2011, 18, 580-587.
[25]
Fiechter, M.; Ghadri, J.R.; Kuest, S.M.; Pazhenkottil, A.P.; Wolfrum, M.; Nkoulou, R.N.; Goetti, R.; Gaemperli, O.; Kaufmann, P.A. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38, 2025-2030.
[26]
Gimelli, A.; Bottai, M.; Genovesi, D.; Giorgetti, A.; Di Martino, F.; Marzullo, P. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: Preliminary clinical results. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39, 83-90.
[27]
Imbert, L.; Poussier, S.; Franken, P.R.; Songy, B.; Verger, A.; Morel, O.; Karcher, G.; Marie, P.Y. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J. Nucl. Med., 2012, 53, 1897-1903.
[28]
Nakazato, R.; Berman, D.; Hayes, M.; Fish, M.; Padgett, R.; Xu, Y.; Lemley, M.; Baavour, R.; Roth, N.; Slomka, P.J. Myocardial perfusion imaging with a solid-state camera: simulation of a very low dose imaging protocol. J. Nucl. Med., 2013, 54, 373-379.
[29]
Mouden, M.; Ottervanger, J.P.; Knollema, S.; Timmer, J.R.; Reiffers, S.; Oostdijk, A.H.J.; de Boer, M.J.; Jager, P.L. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41, 956-962.
[30]
van Dijk, J.D.; Jager, P.L.; Mouden, M.; Slump, C.H.; Ottervanger, J.P.; de Boer, J.; Oostdijk, A.H.J.; van Dalen, J.A. Development and validation of a patient-tailored dose regime in myocardial perfusion imaging using CZT-SPECT. J. Nucl. Cardiol., 2014, 21, 1158-1167.
[31]
Wells, R.G.; Timmins, R.; Klein, R.; Lockwood, J.; Marvin, B.; deKemp, R.A.; Wei, L.; Rudy, T.D. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J. Nucl. Med., 2014, 55, 1685-1691.
[32]
Liu, S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev., 2008, 60, 1347-1370.
[33]
Chakraborty, S.; Liu, S. 99mTc and 111In-labeling of small biomolecules: bifunctional chelators and related coordination chemistry. Curr. Top. Med. Chem., 2010, 10, 1113-1134.
[34]
Liu, S.; Chakraborty, S. 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans., 2011, 40, 6077-6086.
[35]
Bums, R.J. Technetium 99m-labeled teboroxime: Death in utero, infanticide, or failure to thrive? J. Nucl. Cardiol., 1995, 2, 88-91.
[36]
Underwood, S.R.; de Bondt, P.; Flotats, A.; Marcasa, C.; Pinto, F.; Schaefer, W.; Verberne, H.J. The current and future status of nuclear cardiology: a consensus report. Eur. Heart J. Cardiovasc. Imaging, 2014, 15, 949-955.
[37]
Narra, R.K.; Nunn, A.D.; Kuczynski, B.L.; Feld, T.; Wedeking, P.; Eckelman, W.C. A neutral technetium-99m complex for myocardial imaging. J. Nucl. Med., 1989, 30, 1830-1837.
[38]
Leppo, J.A.; Meerdink, D.J. Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ30217, SQ32014) and thallium. J. Nucl. Med., 1990, 31, 67-74.
[39]
Marshall, R.C.; Leidholdt, E.M., Jr; Zhang, D.Y.; Barnett, C.A. The effect of flow on technetium-99m-teboroxime (SQ30217) and thallium-201 extraction and retention in rabbit heart. J. Nucl. Med., 1991, 32, 1979-1988.
[40]
Rumsey, W.L.; Rosenspire, K.C.; Nunn, A.D. Myocardial extraction of teboroxime: effects of teboroxime interaction with blood. J. Nucl. Med., 1992, 33, 94-101.
[41]
Beanlands, R.; Muzik, O.; Nguyen, N.; Perry, N.; Schwaigner, M. The relationship between myocardial retention of technetium-99m teboroxime and myocardial blood flow. J. Am. Coll. Cardiol., 1992, 20, 712-719.
[42]
Iskandrian, A.S.; Heo, J.; Nguyen, T.; Mercuro, J. Myocardial imaging with Tc-99m teboroxime: technique and initial results. J. Am. Heart, 1991, 121, 889-894.
[43]
McSherry, B.A. Technetium-99m-Teboroxime: a new agent for myocardial perfusion imaging. J. Nucl. Med. Technol., 1991, 19, 22-26.
[44]
Johnson, L.L. Myocardial perfusion imaging with technetium-99m-teboroxime. J. Nucl. Med., 1994, 35, 689-692.
[45]
Williams, K.A.; Taillon, L.A.; Draho, J.M.; Foisy, M.F. First-pass radionuclide angiographic studies of left ventricular function with technetium99mteboroxime, technetium99msestamibi and technetium99mDTPA. J. Nucl. Med., 1993, 34, 394-399.
[46]
Fleming, R.M.; Kirkeeide, R.L.; Taegtmeyer, H.; Adyanthaya, A.; Cassidy, D.B.; Goldstein, R.A. Comparison of technetium-99m teboroxime tomography with automated quantitative coronary arteriography and thallium-201 tomographic imaging. J. Am. Coll. Cardiol., 1991, 17, 1297-1302.
[47]
Cerqueira, M.D.; Garcia, E.V.; Gropler, R.J.; Udelson, J.E. Eighth Nuclear Cardiology Invitational Conference Park City, Utah, 2006. J. Nucl. Cardiol., 2007, 14, e15-e25.
[48]
Ward, R.P.; Al-Mallah, M.H.; Grossman, G.B.; Hansen, C.L.; Hendel, R.C.; Kerwin, T.C.; McCallister, B.D., Jr; Mehta, R.; Polk, D.M.; Tilkemeier, P.L.; Vashist, A.; Williams, K.A.; Wolinsky, D.G.; Ficaro, E.P. American Society of Nuclear Cardiology review of the ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). J. Nucl. Cardiol., 2007, 14, e26-e38.
[49]
Garcia, E.V.; Gropler, R.J. Ninth nuclear cardiology invitational conference, Annapolis, Maryland, 2008. J. Nucl. Cardiol., 2008, 15, e37-e50.
[50]
Radioisotopes in medicine. World Nuclear Association website http://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx Updated December 28, 2016. Accessed January 30, 2017.
[51]
Filzen, L.M.; Ellingson, L.R.; Paulsen, A.M.; Hung, J.C. Potential ways to address shortage situations of 99Mo/99mTc. J. Nucl. Med. Technol., 2017, 45, 1-5.
[52]
Jones, A.G.; Abrams, M.J.; Davison, A.; Brodack, J.W.; Toothaker, A.K.; Adelstein, S.J.; Kassis, A.I. Biological studies of a new class of technetium complexes: the hexakis(alkylisonitrile)technetium(I) cations. Int. J. Nucl. Med. Biol., 1984, 11, 225-234.
[53]
Wackers, F.J.T.; Berman, D.S. Maddahi, J.; Watson, D.D.; Beller, G.A.; Strauss, H.W.; Boucher, C.A.; Picard, M.; Holman, B.L.; Fridrich, R.; Inglese, E.; Delaloye, B.; Bischof-Delaloye, A.; Camin, L.; McKusick, K. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to Tl-201 for myocardial perfusion imaging. J. Nucl. Med., 1989, 30, 301-311.
[54]
Iskandrian, A.S.; Heo, J.Y.; Kong, B.; Lyons, E.; Marsch, S. Use of technitium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am. J. Cardiol., 1989, 64, 270-275.
[55]
Higley, B.; Smith, F.W.; Smith, T.; Gemmell, H.G.; Dasgupta, P.; Gvozdanovic, D.V.; Graham, D.; Hinge, D.; Davidson, J.; Lahiri, A. Technetium-99m-1,2-bis[bis(2-ethoxyethyl)phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J. Nucl. Med., 1993, 34, 30-38.
[56]
Marmion, M.E.; Woulfe, S.R.; Neumann, W.L.; Nosco, D.L.; Deutsch, E. Preparation and characterization of technetium complexes with Schiff-base and phosphine coordination. 1. Complexes of technetium-99g and -99m with substituted acac2en and trialkyl phosphines (where acac2en = N,N′-ethylenebis[acetylacetone iminato]). Nucl. Med. Biol., 1999, 26, 755-770.
[57]
Lisic, E.C.; Heeg, M.J.; Deutsch, E. 99mTc(L-L)3+ complexes containing ether analogs of DMPE. Nucl. Med. Biol., 1999, 26, 563-571.
[58]
Boschi, A.; Bolzati, C.; Uccelli, L.; Duatti, A.; Benini, E.; Refosco, F.; Tisato, F.; Piffanelli, A. A class of asymmetrical nitrido 99mTc heterocomplexes as heart imaging agents with improved biological properties. Nucl. Med. Commun., 2002, 23, 689-693.
[59]
Boschi, A.; Uccelli, L.; Bolzati, C.; Duatti, A.; Sabba, N.; Moretti, E.; Di Domenico, G.; Zavattini, G.; Refosco, F.; Giganti, M. Synthesis and biologic evaluation of monocationic asymmetrical 99mTc-nitride heterocomplexes showing high heart uptake and improved imaging properties. J. Nucl. Med., 2003, 44, 806-814.
[60]
Hatada, K.; Riou, L.M.; Ruiz, M.; Yamamichi, Y.; Duatti, A.; Lima, R.L.; Goode, A.R.; Watson, D.D.; Beller, G.A.; Glover, D.K. 99mTc-N-DBODC5, a new myocardial perfusion imaging agent with rapid liver clearance: comparison with 99mTc-Sestamibi and 99mTc-Tetrofosmin in rats. J. Nucl. Med., 2004, 45, 2095-2101.
[61]
Hatada, K.; Ruiz, M.; Riou, L.M.; Lima, R.L.; Goode, A.R.; Watson, D.D.; Beller, G.A.; Glover, D.K. Organ biodistribution and myocardial uptake, washout, and redistribution kinetics of Tc-99m N-DBODC5 when injected during vasodilator stress in canine models of coronary stenoses. J. Nucl. Cardiol., 2006, 13, 779-790.
[62]
Cittanti, C.; Uccelli, L.; Pasquali, M.; Boschi, A.; Flammia, C.; Bagatin, E.; Casali, M.; Stabin, M.G.; Feggi, L.; Giganti, M.; Duatti, A. Whole-body biodistribution and radiation dosimetry of the new cardiac tracer 99mTc-N-DBODC. J. Nucl. Med., 2008, 49, 1299-1304.
[63]
Liu, S.; He, Z.J.; Hsieh, W.Y.; Kim, Y.S. Impact of bidentate chelators on lipophilicity, stability and biodistribution characteristics of cationic 99mTc-nitrido complexes. Bioconjug. Chem., 2007, 18, 929-936.
[64]
Kim, Y.S.; Wang, J.; Broisat, A.; Glover, D.K.; Liu, S. 99mTc-N-MPO: novel cationic 99mTc radiotracer for myocardial perfusion imaging. J. Nucl. Cardiol., 2008, 15, 535-546.
[65]
Kim, Y.S.; Shi, J.; Zhai, S.; Hou, G.; Liu, S. Mechanism for myocardial localization and rapid liver clearance of 99mTc-N-MPO: a new perfusion radiotracer for heart imaging. J. Nucl. Cardiol., 2009, 16, 571-579.
[66]
Bu, L.; Li, R.; Jin, Z.; Wen, X.; Liu, S.; Yang, B.; Shen, B.; Chen, X. Evaluation of 99mTcN-MPO as a new myocardial perfusion imaging agent in normal dogs and in an acute myocardial infarction canine model: comparison with 99mTc-sestamibi. Mol. Imaging Biol., 2011, 13, 121-127.
[67]
Zheng, Y.; Ji, S.; Tomaselli, E.; Liu, S. Formulation development for preparation of 99mTcN-MPO: a cationic SPECT radiotracer for myocardial perfusion imaging. J. Labelled Comp. Radiopharm., 2014, 57, 584-592.
[68]
Gao, S.; Zhao, G.; Wen, Q.; Bai, L.; Chen, B.; Ji, T.; Ji, B.; Ma, Q. Pharmacokinetics and biodistribution of 99mTcN-MPO in healthy human volunteers. Clin. Nucl. Med., 2014, 39, e14-e19.
[69]
Liu, S.; He, Z.J.; Hsieh, W.Y.; Kim, Y.S. Evaluation of novel cationic 99mTc-nitrido complexes radiopharmaceuticals for heart imaging: improving liver clearance with crown ether groups. Nucl. Med. Biol., 2006, 33, 419-432.
[70]
Fang, W.; Liu, Y.; Zhu, L.; Kim, Y.; Liu, S.; He, Z.X. Evaluation of 99mTcN-15C5 as a new myocardial perfusion imaging agent in normal dogs and canines with coronary stenosis. Nucl. Med. Commun., 2008, 29, 775-781.
[71]
Kim, Y.S.; He, Z.; Schibli, R.; Liu, S. Synthesis, characterization and X-ray crystal structure of [Re(PNP)(CO)3]Br·2CH3OH: a model compound for a novel cationic 99mTc radiotracers useful for heart imaging. Inorg. Chim. Acta, 2006, 359, 2479-2488.
[72]
He, Z.J.; Hsieh, W.Y.; Kim, Y.S.; Liu, S. Evaluation of novel cationic 99mTc(I)-tricarbonyl complexes as potential radiotracers for myocardial perfusion imaging. Nucl. Med. Biol., 2006, 33, 1045-1053.
[73]
Goethals, L.R.; Santos, I.; Caveliers, V.; Paulo, A.; De Geeter, F.; Lurdes, P.G.; Fernandes, C.; Lahoutte, T. Rapid hepatic clearance of 99mTc-TMEOP: A new candidate for myocardial perfusion imaging. Contrast Media Mol. Imaging, 2011, 6, 178-188.
[74]
Sharma, V. Radiopharmaceuticals for assessment of multidrug resistance P-glycoprotein-mediated drug transport activity. Bioconjug. Chem., 2004, 15, 1464-1474.
[75]
Vaidyanathan, G.; Zalutsky, M.R. Imaging drug resistance with radiolabeled molecules. Curr. Pharm. Des., 2004, 10, 2965-2979.
[76]
Gatmaitan, Z.C.; Arias, I.M. Structure and function of P-glycoprotein in normal liver and small intestine. Adv. Pharmacol., 1993, 24, 77-97.
[77]
Lee, C.H.; Bradley, G.; Zhang, J.T.; Ling, V. Differential expression of P-glycoprotein genes in primary rat hepatocyte culture. J. Cell. Physiol., 1993, 157, 392-402.
[78]
Mayer, R.; Kartenbeck, J.; Buchler, M.; Jedlitschky, G.; Leier, I.; Keppler, D. Expression of the MRP gene-encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport deficient mutant hepatocytes. J. Cell Biol., 1995, 131, 137-150.
[79]
Agrawal, M.; Abraham, J.; Balis, F.M.; Edgerly, M.; Stein, W.D.; Bates, S.; Fojo, T.; Chen, C.C. Increased 99mTc-Sestamibi accumulation in normal liver and drug resistant-tumors after the administration of the glycoprotein inhibitor, XR9576. Clin. Cancer Res., 2003, 9, 650-656.
[80]
Yu, M.; Guaraldi, M.T.; Mistry, M.; Kagan, M.; McDonald, J.L.; Drew, K.; Yu, M.; Guaraldi, M.T.; Mistry, M.; Kagan, M.; McDonald, J.L.; Drew, K.; Radeke, H.; Azure, M.; Purohit, A.; Casebier, D.S.; Robinson, S.P. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J. Nucl. Cardiol., 2007, 14, 789-798.
[81]
Yalamanchili, P.; Wexler, E.; Hayes, M. Mechanism of uptake and retention of 18F BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J. Nucl. Cardiol., 2007, 14, 782-788.
[82]
Sherif, H.M.; Saraste, A.; Weidl, E.; Weber, A.W.; Higuchi, T.; Reder, S.; Poethko, T.; Henriksen, G.; Casebier, D.; Robinson, S.P.; Wester, H.J.; Nekolla, S.G.; Schwaiger, M. Evaluation of a novel 18F-Labeled positron-emission tomography perfusion tracer for the assessment of myocardial infarct size in rats. Circ Cardiovasc Imaging, 2009, 2, 77-84.
[83]
Nekolla, S.G.; Reder, S.; Saraste, A.; Higuchi, T.; Dzewas, G.; Preissel, A.; Huisman, M.; Poethko, T.; Schuster, T.; Yu, M.; Robinson, S.P.; Casebier, D.; Henke, J.; Wester, H.J.; Schwaiger, M. Evaluation of the novel myocardial perfusion positron emission tomography tracer 18F-BMS-747158-02: Comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation, 2009, 119, 2333-2342.
[84]
Yu, M.; Guaraldi, M.T.; Bozek, J.; Kagan, M.; Azure, M.; Radeke, H.; Cdebaca, M.; Robinson, S.P. Effects of food intake and anesthetic on cardiac imaging and uptake of BMS747158-02 in comparison with FDG. J. Nucl. Cardiol., 2009, 16, 763-768.
[85]
Maddahi, J.; Czernin, J.; Lazewatsky, J.; Huang, S.C.; Dahlbom, M.; Schelbert, H.; Sparks, R.; Ehlgen, A.; Crane, P.; Zhu, Q.; Devine, M.; Phelps, M. Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: Dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J. Nucl. Med., 2011, 52, 1490-1498.
[86]
Berman, D.S.; Maddahi, J.; Tamarappoo, B.K.; Czernin, J.; Taillefer, R.; Udelson, J.E.; Gibson, C.M.; Devine, M.; Lazewatsky, J.; Bhat, G.; Washburn, D. Flurpiridaz F 18 PET: Phase II safety and clinical comparison with SPECT myocardial perfusion imaging for detection of coronary artery disease. J. Am. Coll. Cardiol., 2013, 61, 469-477.
[87]
Mallia, M.B.; Mathur, A.; Subramanian, S.; Banerjee, S.; Kothari, K.; Koiry, S.P.; Sarma, H.D.; Venkatesh, M. Synthesis and evaluation of ether containing 99mTc-nitrido dithiocarbamate complexes as brain perfusion imaging agent. Appl. Radiat. Isot., 2006, 64, 361-367.
[88]
Pasqualini, R.; Duatti, A.; Bellande, E.; Comazzi, V.; Brucato, V.; Hoffschir, D.; Fagret, D.; Comet, M. Bis (dithiocarbamato) nitrido technetium-99m radiopharmaceuticals: a class of neutral myocardial imaging agents. J. Nucl. Med., 1994, 35, 334-341.
[89]
Mannella, C.A. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim. Biophys. Acta, 2006, 1762, 140-147.
[90]
Piquereau, J.; Caffin, F.; Novotova, M.; Lemaire, C.; Veksler, V.; Garnier, A.; Ventura-Clapier, R.; Joubert, F. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front. Physiol., 2013, 4, 1-12.
[91]
Carvalho, P.A.; Chiu, M.L.; Kronauge, J.F.; Kawamura, M.; Jones, A.G.; Holman, B.L.; Piwnica-Worms, D. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J. Nucl. Med., 1992, 33, 1516-1522.
[92]
Younes, A.; Songadele, J.A.; Maublant, J.; Platts, E.; Pickett, R.; Veyre, A. Mechanism of uptake of technetium-tetrofosmin II: uptake into isolated adult rat heart mitochondria. J. Nucl. Cardiol., 1995, 2, 327-333.
[93]
Zhou, Y.; Liu, S. 64Cu-Labeled phosphonium cation as potential PET radiotracers for tumor imaging. Bioconjug. Chem., 2011, 22, 1459-1472.
[94]
Zheng, Y.; Ji, S.; Tomaselli, E.; Ernest, C.; Freiji, T.; Liu, S. Effect of co-ligands on chemical and biological properties of 99mTc(III) complexes [99mTc(L)(CDO)(CDOH)2BMe] (L = Cl, F, SCN and N3; CDOH2 = cyclohexanedione dioxime). Nucl. Med. Biol., 2014, 2, 412-424.
[95]
Yang, Y.; Zheng, Y.; Tomaselli, E.; Fang, W.; Liu, S. Impact of boronate-capping groups on biological characteristics of 99mTc(III) complexes [99mTcCl(CDO)(CDOH)2B-R] (CDOH2 = cyclohexanedione dioxime). Bioconjug. Chem., 2015, 26, 316-328.
[96]
Liu, M.; Zheng, Y.; Avcibasi, U.; Fang, W.; Liu, S. Novel 99mTc(III)-azide complexes [99mTc(N3)(CDO)(CDOH)2B-R] (CDOH2 = cyclohexanedione dioxime) as potential radiotracers for heart Imaging. Nucl. Med. Biol., 2016, 43, 732-741.
[97]
Liu, M.; Fang, W.; Liu, S. Novel 99mTc(III) complexes [99mTcCl(CDO)(CDOH)2B-R] (CDOH2 = cyclohexanedione dioxime) useful as radiotracers for heart imaging. Bioconjug. Chem., 2016, 27, 2770-2779.
[98]
Liu, M.; Liu, S. 99mTc-3Cboroxime: A novel 99mTc(III) complex [99mTcCl(CDO)(CDOH)2B-3C] (CDOH2 = Cyclohexanedione Dioxime; 3C-B(OH)2 = 3-(carbamoylphenyl)boronic acid) with high heart uptake and long myocardial retention. Dalton Trans., 2017, 46, 14509-14518.
[99]
Liu, M.; Yang, Y.; Wei, Fang. Liu, S. Sulfonyl-containing boronate caps for novel 99mTc(III) complexes [99mTcCl(CDO)(CDOH)2B-R] (CDOH2 = cyclohexanedione dioxime) with favorable properties for myocardial perfusion imaging. J. Med. Chem., 2018, 61, 319-328.
[100]
Tsukamoto, T.; Ito, Y.; Noriyasu, K.; Morita, K.; Katoh, C.; Okamoto, H.; Tamaki, N. Quantitative assessment of regional myocardial flow reserve using Tc-99m-Sestamibi imaging: comparison with results of O-15 water PET. Circ. J., 2005, 69, 188-193.
[101]
Dahlberg, S.T.; Gilmore, M.P.; Leppo, J.A. Interaction of technetium 99m-labeled teboroxime with red blood cells reduces the compound’s extraction and increases apparent cardiac washout. J. Nucl. Cardiol., 1994, 1, 270-279.
[102]
Kühlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biol., 2015, 13, 89.
[103]
Horvath, S.E.; Daum, G. Lipids of mitochondria. Prog. Lipid Res., 2013, 52, 590-614.
[104]
Brand, M.D. The role of mitochondria in longevity and healthspan. Longevity &. Healthspan, 2014, 3, 7.
[105]
Duchen, M.R. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med., 2004, 25, 365-451.
[106]
Modica-Napolitano, J.S.; Singh, K.K. Mitochondria as targets for detection and treatment of cancer. Expert Rev. Mol. Med., 2002, 4, 1-19.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy