[1]
Amara, D.; Grinblat, J.; Marge, S. Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J. Mater. Chem., 2012, 22, 2188-2195.
[2]
Bhattacharjee, A.; Rooj, A.; Roy, M.; Kusz, J.; Gütlich, P. Solventless synthesis of hematite nanoparticles using ferrocene. J. Mater. Sci., 2013, 48, 2961-2968.
[3]
Perez De Berti, I.O.; Cagnoli, M.V.; Pecchi, G.; Alessandrini, J.L.; Stewart, S.J.; Bengoa, J.F.; Marchetti, S.G. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology, 2013, 24, 175601-175611.
[4]
Monteiro, S.D.; Da Souza, G.M.O. Thermal decomposition of precursors and iron oxide properties: influence of promoters (Mn and Cu) and preparation method. J. Therm. Anal. Calorim., 2016, 123, 955-963.
[5]
Das, B.; Kusz, J.; Reddy, V.R.; Zubko, M.; Bhattacharjee, A. Solventless synthesis, morphology, structure and magnetic properties of iron oxide nanoparticles. Solid State Sci., 2017, 74, 62-69.
[6]
Das, B.; Bhattacharjee, A. Kinetic analysis of nonisothermal decomposition of acetyl ferrocene. Int. J. Chem. Kinet., 2018, 51(1), 74-80.
[7]
Vlaev, L.; Nedelchev, N.; Gyurova, K.; Zagorcheva, M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis, 2008, 81, 253-262.
[8]
Jankovi’c, B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem. Eng. J., 2008, 139, 128-135.
[9]
Vyazovkin, S. The handbook of thermal analysis & calorimetry, in recent advances, techniques and applications.1st Ed.; Brown, M.E.; Gallagher, P.K.; Eds.; Elsevier: Amsterdam, The Netherlands; , 2008, Vol. 5,, pp. 1-691.
[10]
Farjas, J.; Roura, P. Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater., 2006, 54, 5573-5579.
[11]
Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn., 1965, 38, 1881-1886.
[12]
Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett., 1966, 4, 323-328.
[13]
Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1957, 29, 1702-1706.
[14]
Akahira, T.; Sunose, T. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba. Instrum. Technol., 1971, 16, 22-31.
[15]
Starink, M.J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta, 2003, 404, 163-176.
[16]
Gao, Z.; Nakada, M.; Amasaki, I. A consideration of errors and accuracy in the isoconversional methods. Thermochim. Acta, 2001, 369, 137-142.
[17]
Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem., 2001, 22, 178-183.
[18]
Vyazovkin, S. Model-free kinetics staying free of multiplying entities without necessity. J. Therm. Anal. Calorim., 2006, 83, 45-51.
[19]
Liavitskaya, T.; Vyazovkin, S. Delving into the kinetics of reversible thermal decomposition of solids measured on heating and cooling. J. Phys. Chem. C, 2017, 121(28), 15392-15401.
[20]
Cai, J.; Yao, F.; Yi, W.; He, F. New temperature integral approximation for nonisothermal kinetics. AIChE J., 2006, 52, 1554-1557.
[21]
M’alek, J. The kinetic analysis of non-isothermal data. Thermochim. Acta, 1992, 200, 257-269.
[22]
Gotor, F.J.; Criado, J.M.; M’alek, J.; Koga, M. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. A, 2000, 104, 10777-10782.
[23]
Young, D. Decomposition of solids, 1st ed; Pergamon Press: Oxford, 1966, p. 209.
[24]
Cordes, H.M. Pre-exponential factors for solid-state thermal decomposition. J. Phys. Chem., 1968, 72, 2185-2189.
[25]
Das, B.; Bhattacharjee, A. Study on the melting
mechanism of maleic anhydride. Communicated.,
[26]
Yang, H.C.; Eun, H.C.; Cho, Y.Z.; Kim, E.H.; Kim, I.T. Kinetic study of a thermal dechlorination and oxidation of neodymium oxychloride. Thermochim. Acta, 2007, 460, 53-59.
[27]
Vyazovkin, S.; Wight, C.A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta, 1999, 340-341, 53-68.
[28]
Wanjun, T.; Donghua, C.; Cunxin, W. Kinetic study on the thermal dehydration of CaCO3·H2O by the master plots method. AIChE J., 2006, 52, 2211-2216.