Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

Neuroendocrine Mechanisms Involved in Male Sexual and Emotional Behavior

Author(s): Michele Iovino, Tullio Messana, Emanuela Iovino, Giovanni De Pergola, Edoardo Guastamacchia, Vito Angelo Giagulli and Vincenzo Triggiani*

Volume 19, Issue 4, 2019

Page: [472 - 480] Pages: 9

DOI: 10.2174/1871530319666190131155310

Abstract

Objective: The aim of this narrative review was to analyze the role played by brain areas, neurohormones and neurotransmitters in the regulation of emotional and sexual behavior in the male.

Methods: We analyzed the currently available literature dealing with brain structures, neurotransmitters and neurohormones involved in the regulation of emotional and sexual behavior in the male.

Results: A common brain pathway is involved in these two aspects. The Hippocampus seems to control the signals coming from the external environment, while the amygdala and the hypothalamus control the response to social stimuli. Stimulation of amygdala in the animal models increases sexual performance, while it triggers violent emotional responses. Stimulation of the hypothalamus causes reactions of violent anger and increases sexual activity. Catecholaminergic stimulation of the amygdala and hypothalamus increases emotional and sexual behavior, while serotonin plays an inhibitory role. Cholinergic inhibition leads to a suppression of copulatory activity, while the animal becomes hyperemotive. Opioids, such as β-endorphin and met-enkephalin, reduce copulatory activity and induce impotence. Gonadal steroid hormones, such as estrogen in female and testosterone in male, which play a major role in the control of sexual behavior and gender difference have been highlighted in this review. Vasopressin, oxytocin and their receptors are expressed in high density in the “social behavior neural network” and play a role as signal system controlling social behavior. Finally, the neuropeptide kisspeptin and its receptors, located in the limbic structures, mediate olfactory control of the gonadotropic axis.

Conclusion: Further studies are needed to evaluate possible implications in the treatment of psychosexual and reproductive disorders.

Keywords: Sexual behavior, emotional behavior, hippocampus-amygdala, hypothalamus, social behavior neural network, adrenal steroids, neurotransmitters, motivational behavior.

Graphical Abstract
[1]
Mc Ewen, B.S. Endocrine effects on the brain and their relationship to behavior. In: Brain Neurochemistry, 8th ed; Brady, S.T.; Siegel, G.J.; Albers, R.W.; Price, D.L., Eds.; Academic Press: Oxford, UK, 2012, pp. 945-965.
[2]
Kalantaridou, S.N.; Makrigiannakis, A.; Zoumakis, E.; Chrousos, G.P. Stress and the female reproductive system. J. Reprod. Immunol., 2004, 62(1-2), 61-68.
[3]
Shah, A.; Jhawar, S.S.; Goel, A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci., 2012, 19(2), 289-298.
[4]
Miczek, K.A. The psychopharmacology of aggression. New Directions in Behavioral Pharmacology; Iversen, L.L.; Iversen, S.D; Snyder, S.H., Ed.; Plenum Press: New York, London, 1987, Vol. 19, pp. 183-277.
[5]
Gregg, T.R.; Siegel, A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(1), 91-140.
[6]
Siever, L.J. Neurobiology of aggression and violence. Am. J. Psychiatry, 2008, 165(4), 429-442.
[7]
Raisman, G.; Cowan, W.M.; Powell, T.P.S. An experimental analysis of the efferent projection of the hippocampus. Brain, 1966, 89(1), 83-108.
[8]
Raisman, G. The connexions of the septum. Brain, 1966, 89(2), 317-348.
[9]
Raisman, G. An experimental study of the projection of the amygdala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp. Brain Res., 1972, 14(4), 395-408.
[10]
Liu, M.G.; Chen, J. Roles of the hippocampal formation in pain information processing. Neurosci. Bull., 2009, 25(5), 237-266.
[11]
Rothfield, L.; Harman, P.J. On the relation of the hippocampal-fornix system to the control of rage responses in cats. J. Comp. Neurol., 1954, 101(2), 265-282.
[12]
Cohen, R.A. Neural mechanisms of attention.The Neurophysiology of Attention; Cohen, R.A., Ed.; Springer: New York, 2014, pp. 228-233.
[13]
Myers, R.D. Emotional and autonomic responses following hypothalamic chemical stimulation. Can. J. Psychol., 1964, 18, 6-14.
[14]
Nagy, J.; Decsi, L. Simultaneous chemical stimulation of the hypothalamus and dorsal hippocampus in the waking cat. Pharmacol. Biochem. Behav., 1974, 2(3), 285-292.
[15]
Hull, E.M.; Muschamp, J.W.; Sato, S. Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav., 2004, 83(2), 291-307.
[16]
Davidson, J.M. Activation of the male rat’s sexual behavior by intracerebral implantation of androgen. Endocrinology, 1966, 79(4), 783-794.
[17]
Hansen, S.; Köhler, C.; Goldstein, M.; Steinbusch, H.V. Effects of ibotenic acid-induced neuronal degeneration in the medial preoptic area and the lateral hypothalamic area on sexual behavior in the male rat. Brain Res., 1982, 239(1), 213-232.
[18]
Motofei, I.G.; Rowland, D.L. The ventral-hypothalamic input route: a common neural network for abstract cognition and sexuality. BJU Int., 2014, 113(2), 296-303.
[19]
Dominguez, J.M.; Hull, E.M. Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav., 2005, 86(3), 356-368.
[20]
van Furth, W.R.; van Emst, M.G.; van Ree, J.M. Opioids and sexual behavior of male rats: involvement of the medial preoptic area. Behav. Neurosci., 1995, 109(1), 123-134.
[21]
Mallick, H.; Manchanda, S.K.; Kumar, V.M. β-adrenergic modulation of male sexual behavior elicited from the medial preoptic area in rats. Behav. Brain Res., 1996, 74(1-2), 181-187.
[22]
Kow, L.M.; Pfaff, D.W. Mapping of neural and signal transduction pathways for lordosis in the search for estrogen actions on the central nervous system. Behav. Brain Res., 1998, 92(2), 169-180.
[23]
Simerly, R.B.; Chang, C.; Muramatsu, M.; Swanson, L.W. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol., 1990, 294(1), 76-95.
[24]
Kondo, Y. Lesions of the medial amygdala produce severe impairment of copulatory behavior in sexually inexperienced male rats. Physiol. Behav., 1992, 51(5), 939-943.
[25]
de Jonge, F.H.; Oldenburger, W.P.; Louwerse, A.L.; Van de Poll, N.E. Changes in male copulatory behavior after sexual exciting stimuli: effects of medial amygdala lesions. Physiol. Behav., 1992, 52(2), 327-332.
[26]
Kondo, Y.; Arai, Y. Functional association between the medial amygdala and the medial preoptic area in regulation of mating behavior in the male rat. Physiol. Behav., 1995, 57(1), 69-73.
[27]
Bialy, M.; Sachs, B.D. Androgen implants in medial amygdala briefly maintain noncontact erection in castrated male rats. Horm. Behav., 2002, 42(3), 345-355.
[28]
Bialy, M.; Nikolaev-Diak, A.; Kalata, U.; Nikolaev, E. Blockade of androgen receptor in the medial amygdala inhibits noncontact erections in male rats. Physiol. Behav., 2011, 103(3-4), 295-301.
[29]
Kondo, Y.; Sachs, B.D.; Sakuma, Y. Importance of the medial amygdala in rat penile erection evoked by remote stimuli from estrous females. Behav. Brain Res., 1997, 88(2), 153-160.
[30]
Kanda, S.; Oka, Y. Structure, synthesis, and phylogeny of kisspeptin and its receptor. Adv. Exp. Med. Biol., 2013, 784, 9-26.
[31]
Kauffman, A.S.; Park, J.H.; McPhie-Lalmansingh, A.A.; Gottsch, M.L.; Bodo, C.; Hohmann, J.G.; Pavlova, M.N.; Rohde, A.D.; Clifton, D.K.; Steiner, R.A.; Rissman, E.F. The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J. Neurosci., 2007, 27(33), 8826-8835.
[32]
Thompson, E.L.; Patterson, M.; Murphy, K.G.; Smith, K.L.; Dhillo, W.S.; Todd, J.F.; Ghatei, M.A.; Bloom, S.R. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J. Neuroendocrinol., 2004, 16(10), 850-858.
[33]
Dhillo, W.S.; Chaudhri, O.B.; Patterson, M.; Thompson, E.L.; Murphy, K.G.; Badman, M.K.; McGowan, B.M.; Amber, V.; Patel, S.; Ghatei, M.A.; Bloom, S.R. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J. Clin. Endocrinol. Metab., 2005, 90(12), 6609-6615.
[34]
Gresham, R.; Li, S.; Adekunbi, D.A.; Hu, M.; Li, X.F.; O’Byrne, K.T. Kisspeptin in the medial amygdala and sexual behavior in male rats. Neurosci. Lett., 2016, 627, 13-17.
[35]
Bermant, G.; Glickman, S.E.; Davidson, J.M. Effects of limbic lesions on copulatory behavior of male rats. J. Comp. Physiol. Psychol., 1968, 65(1), 118-125.
[36]
Kim, C.; Choi, H.; Kim, J.K.; Chang, H.K.; Park, R.S.; Kang, I.Y. General behavioral activity and its component patterns in hippocampectomized rats. Brain Res., 1970, 19(3), 379-394.
[37]
Smock, T.; Albeck, D.; Stark, P. A peptidergic basis for sexual behavior in mammals. Prog. Brain Res., 1998, 119, 467-481.
[38]
Bermant, G.; Davidson, J.M. Biological Bases of Sexual Behavior; Harper and Row: New York, 1974.
[39]
Waxenberg, S.E.; Drellich, M.G.; Sutherland, A.M. The role of hormones in human behavior. I. Changes in female sexuality after adrenalectomy. J. Clin. Endocrinol. Metab., 1959, 19(2), 193-202.
[40]
Cappelletti, M.; Wallen, K. Increasing women’s sexual desire: The comparative effectiveness of estrogens and androgens. Horm. Behav., 2016, 78, 178-193.
[41]
Montgomery, K.A. Sexual desire disorders. Psychiatry (Edgmont Pa.), 2008, 5(6), 50-55.
[42]
Everitt, B.J.; Herbert, J.; Hamer, J.D. Sexual receptivity of bilaterally adrenalectomised female rhesus monkeys. Physiol. Behav., 1972, 8(3), 409-415.
[43]
Macfarland, L.A.; Mann, D.R. The inhibitory effects of ACTH and adrenalectomy on reproductive maturation in female rats. Biol. Reprod., 1977, 16(3), 306-314.
[44]
Mann, D.R.; Korowitz, C.D.; Barraclough, C.A. Adrenal gland involvement in synchronizing the preovulatory release of LH in rats. Proc. Soc. Exp. Biol. Med., 1975, 150(1), 115-120.
[45]
Mann, D.R.; Barraclough, C.A. Changes in peripheral plasma progesterone during the rat 4-day estrous cycle: An adrenal diurnal rhythm. Proc. Soc. Exp. Biol. Med., 1973, 142(4), 1226-1229.
[46]
Resko, J.A. Endocrine control of adrenal progesterone secretion in the ovariectomized rat. Science, 1969, 164(3875), 70-71.
[47]
Moss, R.L.; McCann, S.M. Action of luteinizing hormone-releasing factor (lrf) in the initiation of lordosis behavior in the estrone-primed ovariectomized female rat. Neuroendocrinology, 1975, 17(4), 309-318.
[48]
Chantaraprateep, P.; Thibier, M. Effects of dexamethasone on the responses of luteinizing hormone and testosterone to two injections of luteinizing hormone releasing hormone in young postpubertal bulls. J. Endocrinol., 1978, 77(3), 389-395.
[49]
Umathe, S.N.; Bhutada, P.S.; Jain, N.S.; Shukla, N.R.; Mundhada, Y.R.; Dixit, P.V. Gonadotropin-releasing hormone agonist blocks anxiogenic-like and depressant-like effect of corticotrophin-releasing hormone in mice. Neuropeptides, 2008, 42(4), 399-410.
[50]
Umathe, S.N.; Bhutada, P.S.; Jain, N.S.; Dixit, P.V.; Wanjari, M.M. Effects of central administration of gonadotropin-releasing hormone agonists and antagonist on elevated plus-maze and social interaction behavior in rats. Behav. Pharmacol., 2008, 19(4), 308-316.
[51]
Piekaski, D.J.; Zhao, S.; Jennings, K.J. Gonadotropin-inhibitory hormone reduces sexual motivation but not lordosis in female Syrian hamsters. Horm. Behav., 2013, 64, 501-510.
[52]
Estrada-Camarena, E.; López-Rubalcava, C.; Vega-Rivera, N.; Récamier-Carballo, S.; Fernández-Guasti, A. Antidepressant effects of estrogens: A basic approximation. Behav. Pharmacol., 2010, 21(5-6), 451-464.
[53]
Derntl, B.; Windischberger, C.; Robinson, S.; Kryspin-Exner, I.; Gur, R.C.; Moser, E.; Habel, U. Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 2009, 34(5), 687-693.
[54]
Bancroft, J. Androgen Heal. Dis; Human Press: Totowa, 2003.
[55]
Sofroniew, M.V. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog. Brain Res., 1983, 60, 101-114.
[56]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Triggiani, V. Vasopressin secretion control: central neural pathways, neurotransmitters and effects of drugs. Curr. Pharm. Des., 2012, 18(30), 4714-4724.
[57]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Triggiani, V. Molecular mechanisms involved in the control of neurohypophyseal hormones secretion. Curr. Pharm. Des., 2014, 20(42), 6702-6713.
[58]
Iovino, M.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Triggiani, V. Synaptic inputs of neural afferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 276-287.
[59]
Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci., 2012, 35(11), 649-659.
[60]
Appenrodt, E.; Schnabel, R.; Schwarzberg, H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol. Behav., 1998, 64(4), 543-547.
[61]
Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci., 2005, 25(49), 11489-11493.
[62]
Domes, G.; Heinrichs, M.; Gläscher, J.; Büchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry, 2007, 62(10), 1187-1190.
[63]
Caldwell, H.K.; Young, W.S. Oxytocin and vasopressin: genetics and behavioral implications.Neuroactive proteins and peptides; Lim, R., Ed.; Springer: New York, 2006, pp. 573-607.
[64]
Iovino, M.; Messana, T.; De Pergola, G.; Iovino, E.; Dicuonzo, F.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. The role of neurohypophyseal hormones vasopressin and oxytocin in neuropsychiatric disorders. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(4), 341-347.
[65]
Bisagno, V.; Cadet, J.L. Stress, gender, and addiction: potential role of CRF, oxytocin and arginin-vasopressin. Behav. Pharmacol., 2014, 25, 445-457.
[66]
Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Wilkins, P.L.; Berti-Mattera, L.N.; Mattera, R. Molecular pharmacology of human vasopressin receptors. Adv. Exp. Med. Biol., 1998, 449, 251-276.
[67]
Peter, J.; Burbach, H.; Adan, R.A.; Lolait, S.J.; van Leeuwen, F.W.; Mezey, E.; Palkovits, M.; Barberis, C. Molecular neurobiology and pharmacology of the vasopressin/oxytocin receptor family. Cell. Mol. Neurobiol., 1995, 15(5), 573-595.
[68]
Holmes, C.L.; Landry, D.W.; Granton, J.T. Science review: Vasopressin and the cardiovascular system part 1--receptor physiology. Crit. Care, 2003, 7(6), 427-434.
[69]
Albers, H.E.; Pollock, J.; Simmons, W.H.; Ferris, C.F.A.A. V1-like receptor mediates vasopressin-induced flank marking behavior in hamster hypothalamus. J. Neurosci., 1986, 6(7), 2085-2089.
[70]
Newman, S.W. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann. N. Y. Acad. Sci., 1999, 877, 242-257.
[71]
Albers, H.E. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network. Horm. Behav., 2012, 61(3), 283-292.
[72]
Bosch, O.J.; Neumann, I.D. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm. Behav., 2012, 61(3), 293-303.
[73]
Mayes, C.R.; Watts, A.G.; McQueen, J.K.; Fink, G.; Charlton, H.M. Gonadal steroids influence neurophysin II distribution in the forebrain of normal and mutant mice. Neuroscience, 1988, 25(3), 1013-1022.
[74]
de Vries, G.J.; Buijs, R.M.; Sluiter, A.A. Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res., 1984, 298(1), 141-145.
[75]
Young, L.J. Wang, Z.; Cooper, T.T.; Albers, H.E. Vasopressin receptor (V1a) in the hamster brain: synthesis, transport and transcriptional regulation by androgen. J. Neuroendocrinol., 2000, 12, 1179-1185.
[76]
Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 2005, 308(5719), 245-248.
[77]
Viviani, D.; Stoop, R. Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response.Advances in Vasopressin and Oxytocin From Genes to Behavior to Disease; Neuman, I.D; Landgraf, R., Ed.; Elsevier: Amsterdam, 2008, pp. 207-218.
[78]
Phelps, E.A.; LeDoux, J.E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 2005, 48(2), 175-187.
[79]
McGinnis, M.; Nance, D.M.; Gorski, R.A. Olfactory, septal and amygdala lesions alone or in combination: effects on lordosis behavior and emotionality. Physiol. Behav., 1978, 20(4), 435-440.
[80]
Schwartzbaum, J.S.; Gay, P.E. Interacting behavioral effects of septal and amygdaloid lesions in the rat. J. Comp. Physiol. Psychol., 1966, 61(1), 59-65.
[81]
Kheirbek, M.A.; Hen, R. Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology, 2011, 36(1), 373-374.
[82]
Cooper, P. Physiology and Pathophysiology of the Endocrine Brain and Hypothalamus.Principles and Practice of Endocrinology and Metabolism, 3rd ed; Becker, K., Ed.; Lippincott Williams and Wilkins: Philadelphia, USA, 2001, pp. 90-97.
[83]
Lewis, P.R.; Shute, C.C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain, 1967, 90(3), 521-540.
[84]
Mead, L.A.; Vanderwolf, C.H. Hippocampal electrical activity in the female rat: the estrous cycle, copulation, parturition, and pup retrieval. Behav. Brain Res., 1992, 50(1-2), 105-113.
[85]
Strange, B.A.; Hurlemann, R.; Dolan, R.J. An emotion-induced retrograde amnesia in humans is amygdala- and β-adrenergic-dependent. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13626-13631.
[86]
Strange, B.A.; Dolan, R.J. β-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proc. Natl. Acad. Sci. USA, 2004, 101(31), 11454-11458.
[87]
Leuner, B.; Glasper, E.R.; Gould, E. Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS One, 2010, 5(7), e11597.
[88]
Clarkson, J.; d’Anglemont de Tassigny, X.; Colledge, W.H.; Caraty, A.; Herbison, A.E. Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol., 2009, 21(8), 673-682.
[89]
Yang, L.; Comninos, A.N.; Dhillo, W.S. Intrinsic links among sex, emotion, and reproduction. Cell. Mol. Life Sci., 2018, 75(12), 2197-2210.
[90]
Pineda, R.; Plaisier, F.; Millar, R.P.; Ludwig, M. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology, 2017, 104(3), 223-238.
[91]
Comninos, A.N.; Wall, M.B.; Demetriou, L.; Shah, A.J.; Clarke, S.A.; Narayanaswamy, S.; Nesbitt, A.; Izzi-Engbeaya, C.; Prague, J.K.; Abbara, A.; Ratnasabapathy, R.; Salem, V.; Nijher, G.M.; Jayasena, C.N.; Tanner, M.; Bassett, P.; Mehta, A.; Rabiner, E.A.; Hönigsperger, C.; Silva, M.R.; Brandtzaeg, O.K.; Lundanes, E.; Wilson, S.R.; Brown, R.C.; Thomas, S.A.; Bloom, S.R.; Dhillo, W.S. Kisspeptin modulates sexual and emotional brain processing in humans. J. Clin. Invest., 2017, 127(2), 709-719.
[92]
George, J.T.; Veldhuis, J.D.; Tena-Sempere, M.; Millar, R.P.; Anderson, R.A. Exploring the pathophysiology of hypogonadism in men with type 2 diabetes: kisspeptin-10 stimulates serum testosterone and LH secretion in men with type 2 diabetes and mild biochemical hypogonadism. Clin. Endocrinol. (Oxf.), 2013, 79(1), 100-104.
[93]
Jayasena, C.N.; Abbara, A.; Veldhuis, J.D.; Comninos, A.N.; Ratnasabapathy, R.; De Silva, A.; Nijher, G.M.; Ganiyu-Dada, Z.; Mehta, A.; Todd, C.; Ghatei, M.A.; Bloom, S.R.; Dhillo, W.S. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of Kisspeptin-54. J. Clin. Endocrinol. Metab., 2014, 99(6), E953-E961.
[94]
Sonigo, C.; Bouilly, J.; Carré, N.; Tolle, V.; Caraty, A.; Tello, J.; Simony-Conesa, F.J.; Millar, R.; Young, J.; Binart, N. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J. Clin. Invest., 2012, 122(10), 3791-3795.

© 2024 Bentham Science Publishers | Privacy Policy