Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector

Author(s): Ludovic Roudil, Pasquale Russo*, Carmen Berbegal, Warren Albertin, Giuseppe Spano, Vittorio Capozzi

Journal Name: Recent Patents on Food, Nutrition & Agriculture

Volume 11 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

For 15 years, non-Saccharomyces starter cultures represent a new interesting segment in the dynamic field of multinationals and national companies that develop and sell microbial-based biotechnological solutions for the wine sector. Although the diversity and the properties of non- Saccharomyces species/strains have been recently fully reviewed, less attention has been deserved to the commercial starter cultures in term of scientific findings, patents, and their innovative applications.

Considering the potential reservoir of biotechnological innovation, these issues represent an underestimated possible driver of coordination and harmonization of research and development activities in the field of wine microbiology. After a wide survey, we encompassed 26 different commercial yeasts starter cultures formulated in combination with at least one non-Saccharomyces strain. The most recent scientific advances have been explored delving into the oenological significance of these commercial starter cultures. Finally, we propose an examination of patent literature for the main yeasts species commercialised in non-Saccharomyces based products.

We highlight the presence of asymmetries among scientific findings and the number of patents concerning non-Saccharomyces-based commercial products for oenological purposes. Further investigations on these microbial resources might open new perspectives and stimulate attractive innovations in the field of wine-making biotechnologies.

Keywords: Wine, alcoholic fermentation, non-Saccharomyces, starter cultures, yeasts, patents.

[1]
Petruzzi L, Capozzi V, Berbegal C. , Corbo MR, Bevilacqua A,Spano G, et al. Microbial resources and enological significance: Opportunities and benefits. Front Microbiol 2017; 8: 995.
[http://dx.doi.org/10.3389/fmicb.2017.00995] [PMID: 28642742]
[2]
Di Maro E, Ercolini D, Coppola S. Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. Int J Food Microbiol 2007; 117(2): 201-10.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.007] [PMID: 17512625]
[3]
Berbegal C, Spano G, Tristezza M, Grieco F, Capozzi V. Microbial resources and innovation in the wine production sector. S Afr J Enol Vitic 2017; 38: 156-66.
[http://dx.doi.org/10.21548/38-2-1333]
[4]
Andorrà I, Landi S, Mas A, Guillamón JM, Esteve-Zarzoso B. Effect of oenological practices on microbial populations using culture-independent techniques. Food Microbiol 2008; 25(7): 849-56.
[http://dx.doi.org/10.1016/j.fm.2008.05.005] [PMID: 18721672]
[5]
Mendoza LM, Manca de Nadra MC, Farías ME. Antagonistic interaction between yeasts and lactic acid bacteria of oenological relevance: Partial characterization of inhibitory compounds produced by yeasts. Food Res Int 2010; 43: 1990-8.
[http://dx.doi.org/10.1016/j.foodres.2010.05.017]
[6]
Russo P, Spano G, Capozzi V. Safety evaluation of starter cultures. In: Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M, EdsStarter Cultures in Food Production. Hoboken: Wiley-Blackwell 2016; pp. 101-28.
[7]
Batt C, Robinson R. Encyclopedia of Food Microbiology. 2nd ed. Cambridge: Elsevier 2014.
[8]
Vogel RF, Hammes WP, Habermeyer M, Engel K-H, Knorr D, Eisenbrand G. Microbial food cultures--opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res 2011; 55(4): 654-62.
[http://dx.doi.org/10.1002/mnfr.201100010] [PMID: 21351251]
[9]
Capozzi V, Fragasso M, Romaniello R, Berbegal C, Russo P, Spano G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017; 3: 49.
[http://dx.doi.org/10.3390/fermentation3040049]
[10]
Garofalo C, Arena MP, Laddomada B, Cappello MS, Bleve G, Grieco F, et al. Starter cultures for sparkling wine. Fermentation 2016; 2: 21.
[http://dx.doi.org/10.3390/fermentation2040021]
[11]
Bartowsky EJ. Oenococcus oeni and malolactic fermentation - moving into the molecular arena. Aust J Grape Wine Res 2005; 11: 174-87.
[http://dx.doi.org/10.1111/j.1755-0238.2005.tb00286.x]
[12]
Mateo JJ, Jiménez M, Pastor A, Huerta T. Yeast starter cultures affecting wine fermentation and volatiles. Food Res Int 2001; 34: 307-14.
[http://dx.doi.org/10.1016/S0963-9969(00)00168-X]
[13]
Benito S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl Microbiol Biotechnol 2018; 102(16): 6775-90.
[http://dx.doi.org/10.1007/s00253-018-9117-z] [PMID: 29876604]
[14]
Benito S, Hofmann T, Laier M, Lochbühler B, Schüttler A, Ebert K, et al. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur Food Res Technol 2015; 241: 707-17.
[http://dx.doi.org/10.1007/s00217-015-2497-8]
[15]
Whitener M, Carlin S, Jacobson D, Weighill D, Divol B, Conterno L, et al. Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. Lebensm Wiss Technol 2015; 64: 412-22.
[http://dx.doi.org/10.1016/j.lwt.2015.05.018]
[16]
Chasseriaud L, Coulon J, Marullo P, Albertin W, Bely M. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide. Appl Microbiol Biotechnol 2018; 102(8): 3779-91.
[http://dx.doi.org/10.1007/s00253-018-8861-4] [PMID: 29516146]
[17]
Liu Y, Rousseaux S, Tourdot-Maréchal R. Sadoudi M, Gougeon R,Schmitt-Kopplin P, et al. Wine microbiome: A dynamic world of microbial interactions. Crit Rev Food Sci Nutr 2017; 57(4): 856-73.
[http://dx.doi.org/10.1080/10408398.2014.983591] [PMID: 26066835]
[18]
Renault P, Coulon J, Moine V, Thibon C, Bely M. Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae Reveals a situation of synergistic interaction between two industrial strains. Front Microbiol 2016; 7: 293.
[http://dx.doi.org/10.3389/fmicb.2016.00293] [PMID: 27014216]
[19]
Wang C, Mas A, Esteve-Zarzoso B. The Interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific. Front Microbiol 2016; 7: 502.
[http://dx.doi.org/10.3389/fmicb.2016.00502] [PMID: 27148191]
[20]
Jolly NP, Augustyn OPR, Pretorius IS. The effect of non-Saccharomyces yeasts on fermentation and wine quality. S Afr J Enol Vitic 2017; 24: 55-62.
[21]
Canonico L, Comitini F, Oro L, Ciani M. Sequential Fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine. Front Microbiol 2016; 7: 278.
[http://dx.doi.org/10.3389/fmicb.2016.00278] [PMID: 27014203]
[22]
Escribano R, González-Arenzana L, Portu J. Garijo P, López-Alfaro I, López R, et al. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. J Appl Microbiol 2018; 124(6): 1521-31.
[http://dx.doi.org/10.1111/jam.13735] [PMID: 29457321]
[23]
Saerens SM, Swiegers H, Reynolds D. Increasing the sensorial enrichment of white wine with non-Saccharomyces yeast strains. Aust N Z Grapegrower Winemaker 2013; 599: 96-7.
[24]
Whitener MEB, Stanstrup J, Carlin S, Divol B, Toit MD, Vrhovsek U. Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Aust J Grape Wine Res 2017; 23: 179-92.
[http://dx.doi.org/10.1111/ajgw.12269]
[25]
Whitener MEB, Stanstrup J, Panzeri V, Carlin S, Divol B, Toit MD, et al. Untangling the wine metabolome by combining untargeted SPME-GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts. Metabolomics 2016; 12: 53.
[http://dx.doi.org/10.1007/s11306-016-0962-4]
[26]
Whitener MEB. Metabolomic profiling of non-saccharomyces yeasts in wine PhD thesis, Stellenbosch University. 2016.
[27]
González-Royo E, Pascual O, Kontoudakis N, Esteruelas M, Esteve-Zarzoso B, Mas A, et al. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur Food Res Technol 2015; 240: 999-1012.
[http://dx.doi.org/10.1007/s00217-014-2404-8]
[28]
Bagheri B, Bauer FF, Setati ME. The impact of Saccharomyces cerevisiae on a wine yeast consortium in natural and inoculated fermentations. Front Microbiol 2017; 8: 1988.
[http://dx.doi.org/10.3389/fmicb.2017.01988] [PMID: 29085347]
[29]
González B, Vázquez J, Cullen PJ, Mas A, Beltran G, Torija M-J. Aromatic amino acid-derived compounds induce morphological changes and modulate the cell growth of wine yeast species. Front Microbiol 2018; 9: 670.
[http://dx.doi.org/10.3389/fmicb.2018.00670] [PMID: 29696002]
[30]
Lu Y, Chua J-Y, Huang D, Lee P-R, Liu S-Q. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Appl Microbiol Biotechnol 2016; 100(20): 8877-88.
[http://dx.doi.org/10.1007/s00253-016-7720-4] [PMID: 27405438]
[31]
Medina-Trujillo L, González-Royo E, Sieczkowski N, Heras J, Canals JM, Zamora F. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the first fermentation on the foaming properties of sparkling wine. Eur Food Res Technol 2017; 243: 681-8.
[http://dx.doi.org/10.1007/s00217-016-2781-2]
[32]
Lu Y, Huang D, Lee P-R, Liu S-Q. Effects of cofermentation and sequential inoculation of Saccharomyces bayanus and Torulaspora delbruckii on durian wine composition. Int J Food Sci Technol 2015; 50: 2653-63.
[http://dx.doi.org/10.1111/ijfs.12937]
[33]
Hranilovic A, Li S, Boss PK, Bindon K, Ristic R, Grbin PR, et al. Chemical and sensory profiling of Shiraz wines co-fermented with commercial non-Saccharomyces inocula. Aust J Grape Wine Res 2018; 24: 166-80.
[http://dx.doi.org/10.1111/ajgw.12320]
[34]
Bañuelos MA, Loira I, Escott C, Fresno JMD, Morata A, Sanz PD, et al. Grape processing by high hydrostatic pressure: Effect on use of non-Saccharomyces in must fermentation. Food Bioprocess Technol 2016; 9: 1769-78.
[http://dx.doi.org/10.1007/s11947-016-1760-8]
[35]
Domizio P, House JF, Joseph CML, Bisson LF, Bamforth CW. Lachancea thermotolerans as an alternative yeast for the production of beer. J Inst Brew 2016; 122: 599-604.
[http://dx.doi.org/10.1002/jib.362]
[36]
Su J, Wang T, Wang Y, Li Y-Y, Li H. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Appl Microbiol Biotechnol 2014; 98(6): 2395-413.
[http://dx.doi.org/10.1007/s00253-014-5508-y] [PMID: 24430209]
[37]
Ganga MA, Carriles P, Raynal C, Heras JM, Ortiz-Julien A, Dumont A. Vincular la Metschnikowia pulcherrima y la Saccharomyces cerevisiae para una máxima revelación del aroma en vinos blancos Available Online: . https://www.lallemandwine.com/wp-content/uploads/2014/10/Flavia-Lee-el-documento.pdf
[38]
Sankar V, Kurian A. Probiotics - a review. PharmaTutor 2014; 2: 61-6.
[39]
Portugal I, Ribeiro SC, Xavier AMRB, Centeno F, Strehaiano P. Immobilised yeast grape must deacidification in a recycle fixed bed reactor. Int J Food Sci Technol 2011; 46: 284-9.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02472.x]
[40]
Comi G, Croattini I. The oenological characteristics of commercial dry yeasts. J Wine Res 1997; 8: 81-6.
[http://dx.doi.org/10.1080/09571269708718105]
[41]
du Plessis HW, du Toit M, Hoff JW, Hart RS, Ndimba BK, Jolly NP. Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. S Afr J Enol Vitic 2017; 38: 46-63.
[http://dx.doi.org/10.21548/38-1-819]
[42]
König H, Claus H. Yeast mixtures and Saccharomyces hybrids: Suitable tools for performing more sophisticated must fermentations.König H, Unden G, Fröhlich J EdsBiology of microorganisms on grapes, in must and in wine. Cham: Springer 2017; pp. 155-63.
[http://dx.doi.org/10.1007/978-3-319-60021-5_6]
[43]
Lange JN, Faasse E, Tantikachornkiat M. Gustafsson FS, Halvorsen LC, Kluftinger, A et al. Implantation and persistence of yeast inoculum in Pinot noir fermentations at three Canadian wineries. Int J Food Microbiol 2014; 180: 56-61.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.003] [PMID: 24786553]
[44]
Taillandier P, Lai QP, Julien-Ortiz A, Brandam C. Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content. World J Microbiol Biotechnol 2014; 30(7): 1959-67.
[http://dx.doi.org/10.1007/s11274-014-1618-z] [PMID: 24500666]
[45]
Loira I, Vejarano R, Bañuelos MA, Morata A, Tesfaye W, Uthurry C, et al. Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. Lebensm Wiss Technol 2014; 59: 915-22.
[http://dx.doi.org/10.1016/j.lwt.2014.06.019]
[46]
van Breda V, Jolly N, van Wyk J. Characterisation of commercial and natural Torulaspora delbrueckii wine yeast strains. Int J Food Microbiol 2013; 163(2-3): 80-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.02.011] [PMID: 23558190]
[47]
Jolly NP, Varela C, Pretorius IS. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 2014; 14(2): 215-37.
[http://dx.doi.org/10.1111/1567-1364.12111] [PMID: 24164726]
[48]
Pretorius IS, Curtin CD, Chambers PJ. Designing wine yeast for the future. In: Holzapfel W Advances in Fermented Foods and Beverages. Cambridge: Woodhead Publishing 2015; pp. 197-226.
[http://dx.doi.org/10.1016/B978-1-78242-015-6.00009-8]
[49]
Benito S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl Microbiol Biotechnol 2018; 102(7): 3081-94.
[http://dx.doi.org/10.1007/s00253-018-8849-0] [PMID: 29492641]
[50]
Vong WC, Liu S-Q. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts. J Sci Food Agric 2017; 97(1): 135-43.
[http://dx.doi.org/10.1002/jsfa.7700] [PMID: 26940283]
[51]
Simonin S, Alexandre H, Nikolantonaki M, Coelho C, Tourdot-Maréchal R. Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking. Food Res Int 2018; 107: 451-61.
[http://dx.doi.org/10.1016/j.foodres.2018.02.034] [PMID: 29580506]
[52]
Pérez-Torrado R, Querol A, Guillamón JM. Genetic improvement of non-GMO wine yeasts: Strategies, advantages and safety. Trends Food Sci Technol 2015; 45: 1-11.
[http://dx.doi.org/10.1016/j.tifs.2015.05.002]
[53]
Belda I, Ruiz J, Navascués E, Marquina D, Santos A. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int J Food Microbiol 2016; 225: 1-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.001] [PMID: 26971012]
[54]
Tronchoni J, Curiel JA, Sáenz-Navajas MP. Moralesa P, Aranchade-la-Fuente-Blanco F, Fernández-Zurbano P, et al.Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale. Food Microbiol 2018; 70: 214-23.
[http://dx.doi.org/10.1016/j.fm.2017.10.008] [PMID: 29173630]
[55]
Belda I, Ruiz J, Beisert B. Navascués E, Marquina D, Calderón F, etal.Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol 2017; 257: 183-91.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.028] [PMID: 28668728]
[56]
Sun SY, Gong HS, Jiang XM, Zhao YP. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiol 2014; 44: 15-23.
[http://dx.doi.org/10.1016/j.fm.2014.05.007] [PMID: 25084640]
[57]
Renault P, Coulon J, de Revel G, Barbe J-C, Bely M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int J Food Microbiol 2015; 207: 40-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.037] [PMID: 26001522]
[58]
Comitini F, Gobbi M, Domizio P. Romani C, Lencioni L, Mannazzu I, et al. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 2011; 28(5): 873-82.
[http://dx.doi.org/10.1016/j.fm.2010.12.001] [PMID: 21569929]
[59]
Tempère S, Marchal A, Barbe JC. Bely M, Masneuf-Pomarede I,Marullo P, et al. The complexity of wine: clarifying the role of microorganisms. Appl Microbiol Biotechnol 2018; 102(9): 3995-4007.
[http://dx.doi.org/10.1007/s00253-018-8914-8] [PMID: 29552694]
[60]
Masneuf-Pomarede I, Juquin E, Miot-Sertier C. Renault P, Laizet Y, Salin F, et al. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res 2015; 15(5) fov045
[http://dx.doi.org/10.1093/femsyr/fov045] [PMID: 26071435]
[61]
Ciani M, Maccarelli F. Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 1997; 14: 199-203.
[http://dx.doi.org/10.1023/A:1008825928354]
[62]
Ciani M, Comitini F, Mannazzu I, Domizio P. Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 2010; 10(2): 123-33.
[http://dx.doi.org/10.1111/j.1567-1364.2009.00579.x] [PMID: 19807789]
[63]
Ciani M, Picciotti G. The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making. Biotechnol Lett 1995; 17: 1247-50.
[http://dx.doi.org/10.1007/BF00128395]
[64]
Garofalo C, Russo P, Beneduce L, Massa S, Spano G, Capozzi V. Non-Saccharomyces biodiversity in wine and the ‘microbial terroir’: A survey on Nero di Troia wine from the Apulian region, Italy. Ann Microbiol 2016; 66: 143-50.
[http://dx.doi.org/10.1007/s13213-015-1090-5]
[65]
Jolly NP, Augustyn OPH, Pretorius IS. The role and use of non-saccharomyces yeasts in wine production. S Afr J Enol Vitic 2006; 27: 15-38.
[66]
Padilla B, Gil JV, Manzanares P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front Microbiol 2016; 7: 411.
[http://dx.doi.org/10.3389/fmicb.2016.00411] [PMID: 27065975]
[67]
Renault P, Miot-Sertier C, Marullo P. Hernández-Orte P, Lagarrigue L, Lonvaud-Funel A et al. Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. Int J Food Microbiol 2009; 134(3): 201-10.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.06.008] [PMID: 19619911]
[68]
Azzolini M, Tosi E, Lorenzini M, Finato F, Zapparoli G. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World J Microbiol Biotechnol 2015; 31(2): 277-93.
[http://dx.doi.org/10.1007/s11274-014-1774-1] [PMID: 25388474]
[69]
Belda I, Navascués E, Marquina D, Santos A, Calderon F, Benito S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl Microbiol Biotechnol 2015; 99(4): 1911-22.
[http://dx.doi.org/10.1007/s00253-014-6197-2] [PMID: 25408314]
[70]
Oro L, Ciani M, Comitini F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol 2014; 116(5): 1209-17.
[http://dx.doi.org/10.1111/jam.12446] [PMID: 24443784]
[71]
Contreras A, Curtin C, Varela C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl Microbiol Biotechnol 2015; 99(4): 1885-95.
[http://dx.doi.org/10.1007/s00253-014-6193-6] [PMID: 25388943]
[72]
Varela C, Sengler F, Solomon M, Curtin C. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 2016; 209: 57-64.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.024] [PMID: 27173534]
[73]
Liu J, Wisniewski M, Droby S, Tian S, Hershkovitz V, Tworkoski T. Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol 2011; 76(1): 145-55.
[http://dx.doi.org/10.1111/j.1574-6941.2010.01037.x] [PMID: 21223330]
[74]
Benucci I, Luziatelli F, Cerreti M, Liburdi K, Nardi T, Vagnoli P, et al. Pre-fermentative cold maceration in the presence of non-Saccharomyces strains: Effect on fermentation behaviour and volatile composition of a red wine. Aust J Grape Wine Res 2018; 24: 267-74.
[http://dx.doi.org/10.1111/ajgw.12326]
[75]
Liu J, Arneborg N, Toldam-Andersen TB, Zhang S, Petersen MA, Bredie WLP. Impact of sequential co-culture fermentations on flavour characters of Solaris wines. Eur Food Res Technol 2017; 243: 437-45.
[http://dx.doi.org/10.1007/s00217-016-2757-2]
[76]
Benucci I, Cerreti M, Liburdi K. Nardi T, Vagnoli P, Ortiz-Julien A etal.Pre-fermentative cold maceration in presence of non-Saccharomyces strains: Evolution of chromatic characteristics of Sangiovese red wine elaborated by sequential inoculation. Food Res Int 2018; 107: 257-66.
[http://dx.doi.org/10.1016/j.foodres.2018.02.029] [PMID: 29580483]
[77]
Nally MC, Ponsone ML, Pesce VM, Toro ME, Vazquez F, Chulze S. Evaluation of behaviour of Lachancea thermotolerans biocontrol agents on grape fermentations. Lett Appl Microbiol 2018; 67(1): 89-96.
[http://dx.doi.org/10.1111/lam.13001] [PMID: 29709063]
[78]
Benito Á, Calderón F, Benito S. The combined use of Schizosaccharomyces pombe and Lachancea thermotolerans- effect on the anthocyanin wine composition. Molecules 2017; 22(5): 739.
[http://dx.doi.org/10.3390/molecules22050739] [PMID: 28471391]
[79]
Escott C, Del Fresno JM, Loira I. Morata A, Tesfaye W, González MDC, et al.Formation of polymeric pigments in red wines through sequential fermentation of flavanol-enriched musts with non-Saccharomyces yeasts. Food Chem 2018; 239: 975-83.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.037] [PMID: 28873660]
[80]
Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M, Ciani M. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 2004; 238(1): 235-40.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09761.x] [PMID: 15336427]
[81]
Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Int J Food Microbiol 2015; 199: 33-40.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.01.009] [PMID: 25625909]
[82]
Rantsiou K, Dolci P, Giacosa S. Torchio F, Tofalo R, Torriani S, etal.Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol 2012; 78(6): 1987-94.
[http://dx.doi.org/10.1128/AEM.06768-11] [PMID: 22247148]
[83]
Benito Á, Calderón F, Palomero F, Benito S. Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to thetraditional malolactic fermentation in red wine production. Molecules 2015; 20(6): 9510-23.
[http://dx.doi.org/10.3390/molecules20069510] [PMID: 26016543]
[84]
Benito Á, Jeffares D, Palomero F. Calderón F, Bai F-Y, Bähler J, etal. Selected Schizosaccharomyces pombe strains have characteristics that are beneficial for winemaking. PLoS One 2016; 11(3) e0151102
[http://dx.doi.org/10.1371/journal.pone.0151102] [PMID: 27007548]
[85]
Domizio P, Liu Y, Bisson LF, Barile D. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization. Food Microbiol 2017; 61: 136-49.
[http://dx.doi.org/10.1016/j.fm.2016.08.010] [PMID: 27697163]
[86]
Fleet GH. Wine Microbiology and Biotechnology. 1st ed. Boca Raton: CRC Press 1993.
[87]
Du Toit M, Pretorius IS. Microbial spoilage and preservation of wine: using weapons for nature’s own arsenal - a review. S Afr J Enol Vitic 2000; 21: 74-96.
[88]
Loureiro V, Malfeito-Ferreira M. Spoilage yeasts in the wine industry. Int J Food Microbiol 2003; 86(1-2): 23-50.
[http://dx.doi.org/10.1016/S0168-1605(03)00246-0] [PMID: 12892920]
[89]
Di Toro MR, Capozzi V, Beneduce L, Alexandre H, Tristezza M, Durante M, et al. Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. Lebensm Wiss Technol 2015; 60: 102-8.
[http://dx.doi.org/10.1016/j.lwt.2014.06.059]
[90]
Serpaggi V, Remize F, Recorbet G, Gaudot-Dumas E, Sequeira-Le Grand A, Alexandre H. Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol 2012; 30(2): 438-47.
[http://dx.doi.org/10.1016/j.fm.2011.12.020] [PMID: 22365358]
[91]
Capozzi V, Di Toro MR, Grieco F. Michelotti V, Salma M,Lamontanara A, et al. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach. Food Microbiol 2016; 59: 196-204.
[http://dx.doi.org/10.1016/j.fm.2016.06.007] [PMID: 27375260]
[92]
Avramova M, Cibrario A, Peltier E. Coton M, Coton E,Schacherer J, et al. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci Rep 2018; 8(1): 4136.
[http://dx.doi.org/10.1038/s41598-018-22580-7] [PMID: 29515178]
[93]
Avramova M, Vallet-Courbin A, Maupeu J, Masneuf-Pomarède I, Albertin W. Molecular diagnosis of Brettanomyces bruxellensis’ sulfur dioxide sensitivity through genotype specific method. Front Microbiol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fmicb.2018.01260] [PMID: 29942296]
[94]
Tristezza M, Vetrano C, Bleve G. Spano G, Capozzi V, Logrieco A, et al. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol 2013; 36(2): 335-42.
[http://dx.doi.org/10.1016/j.fm.2013.07.001] [PMID: 24010615]
[95]
Russo P, Capozzi V, Spano G, Corbo MR, Sinigaglia M, Bevilacqua A. Metabolites of microbial origin with an impact on health: Ochratoxin A and biogenic amines. Front Microbiol 2016; 7: 482.
[http://dx.doi.org/10.3389/fmicb.2016.00482] [PMID: 27092133]
[96]
Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 1999; 49(Pt 1): 329-37.
[http://dx.doi.org/10.1099/00207713-49-1-329] [PMID: 10028278]
[97]
Esteve-Zarzoso B, Gostíncar A, Bobet R, Uruburu F, Querol A. Selection and molecular characterization of wine yeasts isolated from the ‘El Penedès’ area (Spain). Food Microbiol 2000; 17: 553-62.
[http://dx.doi.org/10.1006/fmic.2000.0347]
[98]
Masneuf-Pomarede I, Bely M, Marullo P, Albertin W. The genetics of non-conventional wine yeasts: Current knowledge and future challenges. Front Microbiol 2016; 6: 1563.
[http://dx.doi.org/10.3389/fmicb.2015.01563] [PMID: 26793188]
[99]
Albertin W, Chasseriaud L, Comte G. Comte G, Panfili A, Delcamp A, et al.Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii. PLoS One 2014; 9(4) e94246
[http://dx.doi.org/10.1371/journal.pone.0094246] [PMID: 24718638]
[100]
Albertin W, Setati ME, Miot-Sertier C. Mostert TT, Colonna-Ceccaldi B, Coulon J, et al. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Front Microbiol 2016; 6: 1569.
[http://dx.doi.org/10.3389/fmicb.2015.01569] [PMID: 26834719]
[101]
Albertin W, Panfili A, Miot-Sertier C. Goulielmakis A, Delcamp A, Salin F et al.Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level. Food Microbiol 2014; 42: 188-95.
[http://dx.doi.org/10.1016/j.fm.2014.03.012] [PMID: 24929736]
[102]
Cimaglia F, Tristezza M, Saccomanno A, Rampino P, Perrotta C, Capozzi V, et al. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control 2018; 87: 169-79.
[http://dx.doi.org/10.1016/j.foodcont.2017.12.023]
[103]
Canonico L, Comitini F, Ciani M. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol 2018; 74: 100-6.
[http://dx.doi.org/10.1016/j.fm.2018.03.009] [PMID: 29706323]
[104]
Hranilovic A, Bely M, Masneuf-Pomarede I, Jiranek V, Albertin W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS One 2017; 12(9) e0184652
[http://dx.doi.org/10.1371/journal.pone.0184652] [PMID: 28910346]
[105]
Vidal S, Courcoux P, Francis L, Kwiatkowski M, Gawel R, Williams P, et al. Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual Prefer 2004; 15: 209-17.
[http://dx.doi.org/10.1016/S0950-3293(03)00059-4]
[106]
Gobbi M, Comitini F, Domizio P. Romani C, Lencioni L, Mannazzu I, et al.Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 2013; 33(2): 271-81.
[http://dx.doi.org/10.1016/j.fm.2012.10.004] [PMID: 23200661]
[107]
Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT. The present and future of the international wine industry. Nature 2002; 418(6898): 696-9.
[http://dx.doi.org/10.1038/nature01018] [PMID: 12167877]
[108]
Sommer P, Nielsen JC. Yeast compositions and starter cultures.WO2004072271A1 , 2004.
[109]
Stolpe E. A method to discriminate and quantify Torulaspora delbrueckii in mixture with Kluyveromyces thermotolerans and Saccharomyces cerevisiae. EP1997903A1 2008.
[110]
Sheppard J, Dunn R, Madden A. Methods for the production of fermented beverages and other fermentation products.WO2016187021A1 2016.
[111]
Bayer CropScience AG The designation of the inventor has not yet been filed Combinations of biological control agents and insecticides.EP2269455A1. 2011.
[112]
Droby S. A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same. WO2002072777A2 2002.
[113]
Saerens S, Edwards N, Soerensen KI, Badaki M, Swiegers JH. Production of a low-alcohol fruit beverage. WO2015110484A9 2015.
[114]
Barrera García JA, Cordón Toledano JD, Coronel Domínguez AJ, Fernández Zabala C, Santos Ocaña C. Cepa de Pichia kluyveri ysus aplicaciones. WO2012066176A1 2012.
[115]
Sarens S, Swiegers JH. Enhancement of beer flavor by a combination of pichia yeast and different hop varieties. EP2751250B1 2018.
[116]
Saerens S, Swiegers JH. Production of low-alcohol or alcohol-freebeer with pichia kluyveri yeast strains. EP2964742B1 2017.
[117]
Malcorps P, Daenen L. Method for preparing a fermented beverage and beverage thus produced. WO2014202564A2 2014.
[118]
Raposo Monteiro Dos Santos JM, Marques Ferreira De Sousa Moreira MJ, De Lemos Pinto Estrela Leão MC, Teixeira Cardoso Da Silva MF, Teixeira Da Silva SB, Monteiro Centeno Da Costa FM. Hybrids obtained by the fusion of Saccharomyces cerevisiae and Torulaspora delbrueckii, their use to conduct red and white wine fermentations and/or to restart stuck or sluggish fermentations,and process of obtaining such hybrids. EP2507358A2 2009.
[119]
Diaz Montaño DM, Valle Rodriguez JO. Processes for increasing the fermentative capacity of non-Saccharomyces yeasts.WO2011078642A2 2010.
[120]
Swinburn LD. Process for obtaining a sparkling alcoholic beverage where wine macerated in hops is mixed with vegetable water and/or water, and addition of wine concentrate and concentrated fruit and/or vegetable juice. WO2017191498A1 2017.
[121]
Carrau JL, Pinheiro Dillon AJ, Salvador Pasqual M, Atti Serafini L. L-malic acid degrading yeast for wine making. EP0408690B1 1989.
[122]
Bisson LF, Linderholm A, Dietzel KL. Compositions and methods for reducing H2S levels in fermented beverages. EP2132318B1 2012.
[123]
Van Vuuren HJ, Husnik JI. Functional enhancement of yeast to minimize production of ethyl carbamate via modified transporter expression. WO2009127050A1 2009.
[124]
Gestrelius SM, Kjaer JH. Method of deacidifying wine and composition therefor. US4380552A 1983.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 1
Year: 2020
Page: [27 - 39]
Pages: 13
DOI: 10.2174/2212798410666190131103713

Article Metrics

PDF: 20
HTML: 3