Exosome-like Nanoparticles: A New Type of Nanocarrier

Author(s): Mário Fernandes, Ivo Lopes, José Teixeira, Cláudia Botelho, Andreia C. Gomes*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 23 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer


Nanoparticles are one of the most commonly used systems for imaging or therapeutic drug delivery. Exosomes are nanovesicular carriers that transport cargo for intercellular communication. These nanovesicles are linked to the pathology of some major diseases, in some cases with a central role in their progression. The use of these carriers to transport therapeutic drugs is a recent and promising approach to treat diseases such as cancer and Alzheimer disease. The physiological production of these structures is limited impairing its collection and subsequent purification. These drawbacks inspired the search for mimetic alternatives. The collection of exosome-like nanoparticles from plants can be a good alternative, since they are easier to extract and do not have the drawbacks of those produced in animal cells. Both natural and synthetic exosome-like nanoparticles, produced from serial extrusion of cells or by bottom up synthesis, are currently some of the most promising, biocompatible, high efficiency systems for drug delivery.

Keywords: Nanoparticles, exosomes, exosome-like nanoparticles, nanomedicine, drug delivery, extracellular vesicles, exosome mimetics.

Satyanarayana, T.S. Rai, R. Nanotechnology: the future. J. Interdiscip. Dent., 2011, 1(2), 93-100.
Wang, Q.; Zhuang, X.; Mu, J.; Deng, Z.B.; Jiang, H.; Xiang, X.; Wang, B.; Yan, J.; Miller, D.; Zhang, H.G. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun., 1867, 2013(4), 1867.https://dx.doi.org/10.1038%2Fncomms2886
[PMID: 23695661]
Bhatia, S. Natural polymer drug delivery systems: nanoparticles, plants, and algae. 2016.
Khademi, S.; Sarkar, S.; Shakeri-Zadeh, A.; Attaran, N.; Kharrazi, S.; Ay, M.R.; Ghadiri, H. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mater. Sci. Eng. C, 2018, 89(89), 182-193.
[http://dx.doi.org/10.1016/j.msec.2018.03.015] [PMID: 29752088]
Cao, Y.; Mo, G.; Feng, J.; He, X.; Tang, L.; Yu, C.; Deng, B. Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Anal. Chim. Acta, 2018, 1028, 22-31.
[http://dx.doi.org/10.1016/j.aca.2018.04.039] [PMID: 29884350]
Fazly Bazzaz, B.S.; Khameneh, B.; Namazi, N.; Iranshahi, M.; Davoodi, D.; Golmohammadzadeh, S. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett. Appl. Microbiol., 2018, 66(6), 506-513.
[http://dx.doi.org/10.1111/lam.12886] [PMID: 29569372]
Woo, K.; Hong, J.; Choi, S.; Lee, H.W.; Ahn, J.P.; Kim, C.S.; Lee, S.W. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater., 2004, 16(14), 2814-2818.
Yu, J.; Wang, E.G.; Bai, X.D. Electron field emission from carbon nanoparticles Prepared by microwave-plasma chemical-vapor deposition. Appl. Phys. Lett., 2001, 78(15), 2226-2228.
Friedman, A.D.; Claypool, S.E.; Liu, R. The smart targeting of nanoparticles. Curr. Pharm. Des., 2013, 19(35), 6315-6329.
[http://dx.doi.org/10.2174/13816128113199990375] [PMID: 23470005]
Sci, I.J.T.; Singh, S.; Pandey, V.K.; Prakash Tewari, R.; Agarwal, V. Nanoparticle based drug delivery system: advantages and applications. Indian J. Sci. Technol., 2011, 4(3), 25-29.
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R.; Corrie, S.R. Nanoparticle-based medicines: a review of fda-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
Bang, C.; Thum, T. Exosomes: new players in cell-cell communication. Int. J. Biochem. Cell Biol., 2012, 44(11), 2060-2064.
[http://dx.doi.org/10.1016/j.biocel.2012.08.007] [PMID: 22903023]
Pérez-Bermúdez, P.; Blesa, J.; Soriano, J.M.; Marcilla, A. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. Eur. J. Pharm. Sci., 2017, 98, 40-50.
[http://dx.doi.org/10.1016/j.ejps.2016.09.022] [PMID: 27664331]
Tang, S.C.N.; Lo, I.M.C. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res., 2013, 47(8), 2613-2632.
[http://dx.doi.org/10.1016/j.watres.2013.02.039] [PMID: 23515106]
Besner, S.; Kabashin, A.V.; Winnik, F.M.; Meunier, M. Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions. Appl. Phys., A Mater. Sci. Process., 2008, 93(4), 955-959.
Chopra, M.; Jain, R.; Dewangan, A.K.; Varkey, S.; Mazumder, S. Design of curcumin loaded polymeric nanoparticles-optimization, formulation and characterization. J. Nanosci. Nanotechnol., 2016, 16(9), 9432-9442.
Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Lindman, S.; Minogue, A.M.; Thulin, E.; Walsh, D.M.; Dawson, K.A.; Linse, S. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc., 2008, 130(46), 15437-15443.
[http://dx.doi.org/10.1021/ja8041806] [PMID: 18954050]
Kim, H.; Niu, L.; Larson, P.; Kucaba, T.A.; Murphy, K.A.; James, B.R.; Ferguson, D.M.; Griffith, T.S.; Panyam, J. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials, 2018, 164, 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.034] [PMID: 29482062]
Rychahou, P.; Bae, Y.; Reichel, D.; Zaytseva, Y.Y.; Lee, E.Y.; Napier, D.; Weiss, H.L.; Roller, N.; Frohman, H.; Le, A.T.; Mark Evers, B. Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J. Control. Release, 2018, 275, 85-91.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.008] [PMID: 29421609]
Mao, K.L.; Fan, Z.L.; Yuan, J.D.; Chen, P.P.; Yang, J.J.; Xu, J.; ZhuGe, D.L.; Jin, B.H.; Zhu, Q.Y.; Shen, B.X.; Sohawon, Y.; Zhao, Y.Z.; Xu, H.L. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf. B Biointerfaces, 2017, 160, 704-714.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.029] [PMID: 29035818]
dos Santos, L.P.; Caon, T.; Battisti, M.A.; da Silva, C.H.B.; Simões, C.M.O.; Reginatto, F.H.; de Campos, A.M. Antioxidant polymeric nanoparticles containing standardized extract of Ilex paraguariensis A. St.-Hil. for topical use. Ind. Crops Prod., 2017, 108(1), 738-747.
Marslin, G.; Filipe, B.; Cardoso, C.; Franklin, G.; Alberto, J.; Martins, R.; Jorge, C.; Silva, R.; Ferreira, A.; Gomes, C. Curcumin encapsulated into increases cellular uptake and neuroprotective effect in glioma curcumin encapsulated into methoxy poly (ethylene glycol) poly (ε-caprolactone) nanoparticles increases cellular uptake and Neuroprotective effect in glioma cells. Planta Med., 2016, 83(5), 434-444.
[http://dx.doi.org/10.1055/s-0042-112030] [PMID: 27626946]
Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[http://dx.doi.org/10.1002/jps.24557] [PMID: 26147711]
Guo, X.; Zhuang, Q.; Ji, T.; Zhang, Y.; Li, C.; Wang, Y.; Li, H.; Jia, H.; Liu, Y.; Du, L. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydr. Polym., 2018, 195(1), 311-320.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.087] [PMID: 29804982]
Zhang, X.; He, F.; Xiang, K.; Zhang, J.; Xu, M.; Long, P.; Su, H.; Gan, Z.; Yu, Q. CD44-targeted facile enzymatic activatable chitosan nanoparticles for efficient antitumor therapy and reversal of multidrug resistance. Biomacromolecules, 2018, 19(3), 883-895.
[http://dx.doi.org/10.1021/acs.biomac.7b01676] [PMID: 29401378]
Deng, R.; Shen, N.; Yang, Y.; Yu, H.; Xu, S.; Yang, Y.W.; Liu, S.; Meguellati, K.; Yan, F. Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 80-90.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.013] [PMID: 29554483]
Kim, M.J.; Rehman, S.U.; Amin, F.U.; Kim, M.O. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3β signaling pathway. Nanomedicine (Lond.), 2017, 13(8), 2533-2544.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
Limón, D.; Fábrega, M.J.; Calpena, A.C.; Badía, J.; Baldomà, L.; Pérez-García, L. Multifunctional serine protease inhibitor-coated water-soluble gold nanoparticles as a novel targeted approach for the treatment of inflammatory skin diseases. Bioconjug. Chem., 2018, 29(4), 1060-1072.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00717] [PMID: 29406699]
Silva, C.O.; Petersen, S.B.; Reis, C.P.; Rijo, P.; Molpeceres, J.; Fernandes, A.S.; Gonçalves, O.; Gomes, A.C.; Correia, I.; Vorum, H.; Neves-Petersen, M.T. EGF functionalized polymer-coated gold nanoparticles promote egf photostability and egfr internalization for photothermal therapy. NFĸB, 2016, 11(10)e0165419
[http://dx.doi.org/10.1371/journal.pone.0165419] [PMID: 27788212]
Podsiadlo, P.; Sinani, V.A.; Bahng, J.H.; Kam, N.W.; Lee, J.; Kotov, N.A.; Kotov, N.A. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir, 2008, 24(2), 568-574.
[http://dx.doi.org/10.1021/la702782k] [PMID: 18052300]
Chien, Y.Y.; Jan, M.D.; Adak, A.K.; Tzeng, H.C.; Lin, Y.P.; Chen, Y.J.; Wang, K.T.; Chen, C.T.; Chen, C.C.; Lin, C.C. Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. ChemBioChem, 2008, 9(7), 1100-1109.
[http://dx.doi.org/10.1002/cbic.200700590] [PMID: 18398881]
Goyal, S.; Gupta, N.; Kumar, A.; Chatterjee, S.; Nimesh, S. Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET Nanobiotechnol., 2018, 12(4), 526-533.
[http://dx.doi.org/10.1049/iet-nbt.2017.0089] [PMID: 29768242]
Kanagamani, K.; Muthukrishnan, P.; Ilayaraja, M.; Shankar, K.; Kathiresan, A. Synthesis, characterisation and dft studies of stigmasterol mediated silver nanoparticles and their anticancer activity. J. Inorg. Organomet. Polym. Mater., 2017, 28(3), 702-710.
Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10392-10406.
[http://dx.doi.org/10.1007/s11356-017-9581-5] [PMID: 28699009]
Khafaga, A.F.; Abu-Ahmed, H.M.; El-Khamary, A.N.; Elmehasseb, I.M.; Shaheen, H.M. Enhancement of equid distal limb wounds healing by topical application of silver nanoparticles. J. Equine Vet. Sci., 2018, 61, 76-87.
Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol. (Berl.), 2018, 207(1), 39-53.
[http://dx.doi.org/10.1007/s00430-017-0525-y] [PMID: 29081001]
Kim, J.W.; Kim, L.U.; Kim, C.K. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules, 2007, 8(1), 215-222.
[http://dx.doi.org/10.1021/bm060560b] [PMID: 17206810]
Nday, C.M.; Halevas, E.; Jackson, G.E.; Salifoglou, A. Quercetin encapsulation in modified silica nanoparticles: potential use against Cu(II)-induced oxidative stress in neurodegeneration. J. Inorg. Biochem., 2015, 145, 51-64.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.01.001] [PMID: 25634813]
Geng, J.; Li, M.; Wu, L.; Chen, C.; Qu, X. Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Adv. Healthc. Mater., 2012, 1(3), 332-336.
[http://dx.doi.org/10.1002/adhm.201200067] [PMID: 23184750]
Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.174] [PMID: 29698680]
Fedorenko, S.V.; Grechkina, S.L.; Mukhametshina, A.R.; Solovieva, A.O.; Pozmogova, T.N.; Miroshnichenko, S.M.; Alekseev, A.Y.; Shestopalov, M.A.; Kholin, K.V.; Nizameev, I.R.; Mustafina, A.R. Silica nanoparticles with Tb(III)-centered luminescence decorated by Ag0 as efficient cellular contrast agent with anticancer effect. J. Inorg. Biochem., 2018, 182, 170-176.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.02.002] [PMID: 29486416]
Sun, J.H.; Zhang, W.; Zhang, D.Y.; Shen, J.; Tan, C.P.; Ji, L.N.; Mao, Z.W. Multifunctional mesoporous silica nanoparticles as efficient transporters of doxorubicin and chlorin e6 for chemo-photodynamic combinatorial cancer therapy. J. Biomater. Appl., 2018, 32(9), 1253-1264.
[http://dx.doi.org/10.1177/0885328218758925] [PMID: 29448866]
Li, B.; Zhang, X.X.; Huang, H.Y.; Chen, L.Q.; Cui, J.H.; Liu, Y.; Jin, H.; Lee, B.J.; Cao, Q.R. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel. Int. J. Pharm., 2018, 543(1-2), 8-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.017] [PMID: 29535039]
Ji, S.; Lee, M.; Kim, D. Detection of early stage prostate cancer by using a simple carbon nanotube@paper biosensor. Biosens. Bioelectron., 2018, 102(102), 345-350.
[http://dx.doi.org/10.1016/j.bios.2017.11.035] [PMID: 29172142]
Rameshthangam, P.; Chitra, J.P. Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract. J. Mater. Sci. Technol., 2018, 34(3), 508-522.
Jaffar, L.U.J.M. Antibacterial and anticancer properties of NiO nanoparticles by co-precipitation method. J. Adv. Aplied Sci. Res., 2016, 1(4), 24-35.
Sadhuka, T.; Scott Wiedmann, T.; Panyam, J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. J. Biomater., 2015, 34(21), 5163-5171.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.061] [PMID: 23591395]
Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter, 2006, 18(38), S2893-S2902.
Kim, K.S.; Kim, J.; Lee, J.Y.; Matsuda, S.; Hideshima, S.; Mori, Y.; Osaka, T.; Na, K. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Nanoscale, 2016, 8(22), 11625-11634.
[http://dx.doi.org/10.1039/C6NR02273A] [PMID: 27217004]
Jhaveri, A.; Deshpande, P.; Pattni, B.; Torchilin, V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J. Control. Release, 2018, 277, 89-101.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.006] [PMID: 29522834]
Qu, M.; Lin, Q.; He, S.; Wang, L.; Fu, Y.; Zhang, Z.; Zhang, L. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J. Control. Release, 2018, 277, 173-182.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.019] [PMID: 29588159]
Campardelli, R.; Trucillo, P.; Reverchon, E. Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J. CO2 Util., 2018, 25, 235-241.
Zhang, Y.; Yue, D.; Cheng, L.; Huang, A.; Tong, N.; Cheng, P. Vitamin A-coupled liposomes carrying TLR4-silencing shRNA induce apoptosis of pancreatic stellate cells and resolution of pancreatic fibrosis. J. Mol. Med. (Berl.), 2018, 96(5), 445-458.
[http://dx.doi.org/10.1007/s00109-018-1629-6] [PMID: 29589070]
Yin, X.; Feng, S.; Chi, Y.; Liu, J.; Sun, K.; Guo, C.; Wu, Z. Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma. Drug Deliv., 2018, 25(1), 900-908.
[http://dx.doi.org/10.1080/10717544.2018.1458920] [PMID: 29644882]
Lopes, I.; C N Oliveira, A.; P Sárria, M.; P Neves Silva, J.; Gonçalves, O.; Gomes, A.C.; Real Oliveira, M.E. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J. Liposome Res., 2016, 26(3), 199-210.
[http://dx.doi.org/10.3109/08982104.2015.1076463] [PMID: 26340109]
Nogueira, E.; Lager, F.; Le Roux, D.; Nogueira, P.; Freitas, J.; Charvet, C.; Renault, G.; Loureiro, A.; Almeida, C.R.; Ohradanova-Repic, A.; Machacek, C.; Bernardes, G.J.; Moreira, A.; Stockinger, H.; Burnet, M.; Carmo, A.M.; Gomes, A.C.; Preto, A.; Bismuth, G.; Cavaco-Paulo, A. Enhancing methotrexate tolerance with folate tagged liposomes in arthritic mice. J. Biomed. Nanotechnol., 2015, 11(12), 2243-2252.
[http://dx.doi.org/10.1166/jbn.2015.2170] [PMID: 26510317]
Nogueira, E.; Freitas, J.; Loureiro, A.; Nogueira, P.; Gomes, A.C.; Preto, A.; Carmo, A.M.; Moreira, A.; Cavaco-Paulo, A. Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids Surf. B Biointerfaces, 2017, 155, 459-465.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.023] [PMID: 28472749]
Carneiro, C.; Correia, A.; Collins, T.; Vilanova, M.; Pais, C.; Gomes, A.C.; Real Oliveira, M.E.; Sampaio, P. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: a novel adjuvant and delivery system. Eur. J. Pharm. Biopharm., 2015, 89, 190-200.
[http://dx.doi.org/10.1016/j.ejpb.2014.11.028] [PMID: 25499956]
Cristina, A.; Oliveira, N.; Martens, T.F.; Raemdonck, K.; Adati, R.D.; Feitosa, E.; Gomes, A.C.; Braeckmans, K.; Elisabete, M.; Dias, C. Dioctadecyldimethylammonium:monoolein nanocarriers for efficient in vitro gene silencing. Appl. Mater. Interfaces, 2014, 6(9), 6977-6989.
[http://dx.doi.org/10.1021/am500793y] [PMID: 24712543]
Silva, J.P.N.; Oliveira, A.C.N.; Lúcio, M.; Gomes, A.C.; Coutinho, P.J.G.; Oliveira, M.E.C.D.R. Tunable pDNA/DODAB:MO lipoplexes: the effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency. Colloids Surf. B Biointerfaces, 2014, 121, 371-379.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.019] [PMID: 25023903]
Gomes-da-Silva, L.C.; Santos, A.O.; Bimbo, L.M.; Moura, V.; Ramalho, J.S.; Pedroso de Lima, M.C.; Simões, S.; Moreira, J.N. Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. Int. J. Pharm., 2012, 434(1-2), 9-19.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.018] [PMID: 22617794]
Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch. Biochem. Biophys., 2018, 648, 12-19.
[http://dx.doi.org/10.1016/j.abb.2018.04.012] [PMID: 29679536]
Pandya, N.T.; Jani, P.; Vanza, J.; Tandel, H. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf. B Biointerfaces, 2018, 165, 37-44.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.011] [PMID: 29453084]
Daneshmand, S.; Jaafari, M.R.; Movaffagh, J.; Malaekeh-Nikouei, B.; Iranshahi, M.; Seyedian Moghaddam, A.; Tayarani Najaran, Z.; Golmohammadzadeh, S. Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: In vivo and in vitro evaluations. Colloids Surf. B Biointerfaces, 2018, 164, 332-339.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.054] [PMID: 29413613]
Zhou, M.; Hou, J.; Zhong, Z.; Hao, N.; Lin, Y.; Li, C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv., 2018, 25(1), 716-722.
[http://dx.doi.org/10.1080/10717544.2018.1447050] [PMID: 29516758]
Emamzadeh, M.; Desmaële, D.; Couvreur, P.; Pasparakis, G. Dual controlled delivery of squalenoyl-gemcitabine and paclitaxel using thermo-responsive polymeric micelles for pancreatic cancer. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(15), 2230-2239.
[http://dx.doi.org/10.1039/C7TB02899G] [PMID: 32254563]
Kandekar, S.G.; Del Río-Sancho, S.; Lapteva, M.; Kalia, Y.N. Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale, 2018, 10(3), 1099-1110.
[http://dx.doi.org/10.1039/C7NR07706H] [PMID: 29271454]
Laredj-Bourezg, F.; Bolzinger, M-A.; Pelletier, J.; Chevalier, Y. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery. Int. J. Pharm., 2017, 531(1), 134-142.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.065] [PMID: 28802793]
Kannan, S.; Dai, H.; Navath, R.S.; Balakrishnan, B.; Jyoti, A.; Janisse, J.; Romero, R.; Kannan, R.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci. Transl. Med., 4(130)130ra46
[http://dx.doi.org/10.1126/scitranslmed.3003162] [PMID: 22517883]
Ma, J.; Kala, S.; Yung, S.; Chan, T.M.; Cao, Y.; Jiang, Y.; Liu, X.; Giorgio, S.; Peng, L.; Wong, A.S.T. Blocking stemness and metastatic properties of ovarian cancer cells by targeting p70S6K with dendrimer nanovector-based siRNA delivery. Mol. Ther., 2018, 26(1), 70-83.
[http://dx.doi.org/10.1016/j.ymthe.2017.11.006] [PMID: 29241971]
Dabrzalska, M.; Janaszewska, A.; Zablocka, M.; Mignani, S.; Majoral, J.P.; Klajnert-Maculewicz, B. Cationic phosphorus dendrimer enhances photodynamic activity of rose bengal against basal cell carcinoma cell lines. Mol. Pharm., 2017, 14(5), 1821-1830.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00108] [PMID: 28350966]
Cerqueira, S.R.; Oliveira, J.M.; Silva, N.A.; Leite-Almeida, H.; Ribeiro-Samy, S.; Almeida, A.; Mano, J.F.; Sousa, N.; Salgado, A.J.; Reis, R.L. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small, 2013, 9(5), 738-749.
[http://dx.doi.org/10.1002/smll.201201888] [PMID: 23161735]
Oliveira, J.M.; Sousa, R.A.; Kotobuki, N.; Tadokoro, M.; Hirose, M.; Mano, J.F.; Reis, R.L.; Ohgushi, H. The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials, 2009, 30(5), 804-813.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.024] [PMID: 19036432]
Luppi, B.; Bigucci, F.; Corace, G.; Delucca, A.; Cerchiara, T.; Sorrenti, M.; Catenacci, L.; Di Pietra, A.M.; Zecchi, V. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur. J. Pharm. Sci., 2011, 44(4), 559-565.
[http://dx.doi.org/10.1016/j.ejps.2011.10.002] [PMID: 22009109]
Luis de Redín, I.; Boiero, C.; Martínez-Ohárriz, M.C.; Agüeros, M.; Ramos, R.; Peñuelas, I.; Allemandi, D.; Llabot, J.M.; Irache, J.M. Human serum albumin nanoparticles for ocular delivery of bevacizumab. Int. J. Pharm., 2018, 541(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.003] [PMID: 29481946]
Kayani, Z.; Firuzi, O.; Bordbar, A.K. Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells.Int. J. Biol. Macromol., 2018, 107(Pt B), 1835-1843.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.041] [PMID: 29030194]
Rollett, A.; Reiter, T.; Nogueira, P.; Cardinale, M.; Loureiro, A.; Gomes, A.; Cavaco-Paulo, A.; Moreira, A.; Carmo, A.M.; Guebitz, G.M. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int. J. Pharm., 2012, 427(2), 460-466.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.028] [PMID: 22374516]
Guo, Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon N. Y., 2013, 52, 583-589.
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2017, 1-24.
Zaman, M.; Ahmad, E.; Qadeer, A.; Rabbani, G.; Khan, R.H. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomedicine, 2014, 9(1), 899-912.
[http://dx.doi.org/10.2147/IJN.S54171] [PMID: 24611007]
Lestini, E.; Andrei, C.; Zerulla, D. Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach. PLoS One, 2018, 13(4)e0195859
[http://dx.doi.org/10.1371/journal.pone.0195859] [PMID: 29664920]
Sezer, A.D.; Akbuğa, J.; Baş, A.L. In vitro evaluation of enrofloxacin-loaded MLV liposomes. Drug Deliv., 2007, 14(1), 47-53.
[http://dx.doi.org/10.1080/10717540600640146] [PMID: 17107930]
Yu, H.D.; Regulacio, M.D.; Ye, E.; Han, M.Y. Chemical routes to top-down nanofabrication. Chem. Soc. Rev., 2013, 42(14), 6006-6018.
[http://dx.doi.org/10.1039/c3cs60113g] [PMID: 23653019]
Chan, H.K.; Kwok, P.C.L. Production methods for nanodrug particles using the bottom-up approach. Adv. Drug Deliv. Rev., 2011, 63(6), 406-416.
[http://dx.doi.org/10.1016/j.addr.2011.03.011] [PMID: 21457742]
Chung, S.W.; Ginger, D.S.; Morales, M.W.; Zhang, Z.; Chandrasekhar, V.; Ratner, M.A.; Mirkin, C.A. Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small, 2005, 1(1), 64-69.
[http://dx.doi.org/10.1002/smll.200400005] [PMID: 17193349]
Pan, Y.; Yang, C. Effect of incident deposition angle on optical properties and surface roughness of TiO2 thin films. Adv. Opt. Manuf. Technol., 2016, 9683, 1-6.
Zhou, Y.; Yu, S.H.; Cui, X.P.; Wang, G.Y.; Chen, Z.Y. Formation of silver nanowires by a novel solid-liquid phase arc discharge method. Chem. Mater., 1999, 11(3), 545-546.
Hong, X.; Li, S.; Tang, X.; Sun, Z.; Li, F. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries. J. Alloys Compd., 2018, 749, 586-593.
Zou, J.; Kim, F. Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat. Commun., 2014, 5, 5254.
[http://dx.doi.org/10.1038/ncomms6254] [PMID: 25319602]
Kuykendall, T.; Pauzauskie, P.; Lee, S.; Zhang, Y.; Goldberger, J.; Yang, P. Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett., 2003, 3(8), 1063-1066.
Nezakati, T.; Cousins, B.G.; Seifalian, A.M. Toxicology of chemically modified graphene-based materials for medical application. Arch. Toxicol., 2014, 88(11), 1987-2012.
[http://dx.doi.org/10.1007/s00204-014-1361-0] [PMID: 25234085]
Otake, K.; Shimomura, T.; Goto, T.; Imura, T.; Furuya, T.; Yoda, S.; Takebayashi, Y.; Sakai, H.; Abe, M. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir, 2006, 22(6), 2543-2550.
[http://dx.doi.org/10.1021/la051654u] [PMID: 16519453]
Cheng, H.W.; Wang, H.W.; Wong, T.Y.; Yeh, H.W.; Chen, Y.C.; Liu, D.Z.; Liang, P.H. Synthesis of S-linked NeuAc-α(2-6)-di-LacNAc bearing liposomes for H1N1 influenza virus inhibition assays. Bioorg. Med. Chem., 2018, 26(9), 2262-2270.
[http://dx.doi.org/10.1016/j.bmc.2018.02.012] [PMID: 29472127]
Toniazzo, T.; Peres, M.S.; Paula, A.; Pinho, S.C. Food bioscience encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci., 2017, 19, 17-25.
Nithya, N.; Bhoopathi, G.; Magesh, G.; Nesa, C.D. Neodymium doped TiO2 nanoparticles by sol-gel method for antibacterial and photocatalytic activity. Mater. Sci. Semicond. Process., 2018, 80, 70-82.
Rhee, Y.S.; Mansour, H.M. Nanopharmaceuticals, I: nanocarrier systems in drug delivery. Int. J. Nanotechnol., 2011, 8(1/2), 84-114.
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
Zhang, B.; Misak, H.; Dhanasekaran, P.S.; Kalla, D.; Asmatulu, R. Environmental impacts of nanotechnology and its products. Am. Soc. Eng. Educ., 1845, 1, 1-9.
Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and environmental risks of nanomaterials: challenges and future needs. J. Environ. Sci. Health C. Environ. Carcing. Ecotoxicol. Rev., 2009, 27(1), 1-35.
[http://dx.doi.org/10.1080/10590500802708267] [PMID: 19204862]
Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 174, 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
Frydrychowicz, M.; Kolecka-Bednarczyk, A.; Madejczyk, M.; Yasar, S.; Dworacki, G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol., 2015, 81(1), 2-10.
[http://dx.doi.org/10.1111/sji.12247] [PMID: 25359529]
Han, Y.; Jia, L.; Zheng, Y.; Li, W. Salivary exosomes: emerging roles in systemic disease. Int. J. Biol. Sci., 2018, 14(6), 633-643.
[http://dx.doi.org/10.7150/ijbs.25018] [PMID: 29904278]
Zlotogorski-Hurvitz, A.; Dayan, D.; Chaushu, G.; Korvala, J.; Salo, T.; Sormunen, R.; Vered, M. Human saliva-derived exosomes: comparing methods of isolation. J. Histochem. Cytochem., 2015, 63(3), 181-189.
[http://dx.doi.org/10.1369/0022155414564219] [PMID: 25473095]
Usman, W.M.; Pham, T.C.; Kwok, Y.Y.; Vu, L.T.; Ma, V.; Peng, B.; Chan, Y.S.; Wei, L.; Chin, S.M.; Azad, A.; He, A.B.; Leung, A.Y.H.; Yang, M.; Shyh-Chang, N.; Cho, W.C.; Shi, J.; Le, M.T.N. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun., 2018, 9(1), 2359.
[http://dx.doi.org/10.1038/s41467-018-04791-8] [PMID: 29907766]
Wang, J.; Liu, Y.; Sun, W.; Zhang, Q.; Gu, T.; Li, G. Plasma exosomes as novel biomarker for the early diagnosis of gastric cancer. Cancer Biomark., 2018, 21(4), 805-812.
[http://dx.doi.org/10.3233/CBM-170738] [PMID: 29400660]
Vicencio, J.M.; Yellon, D.M.; Sivaraman, V.; Das, D.; Boi-Doku, C.; Arjun, S.; Zheng, Y.; Riquelme, J.A.; Kearney, J.; Sharma, V.; Multhoff, G.; Hall, A.R.; Davidson, S.M. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J. Am. Coll. Cardiol., 2015, 65(15), 1525-1536.
[http://dx.doi.org/10.1016/j.jacc.2015.02.026] [PMID: 25881934]
Li, B.; Deng, W.; Ciren, D.; Yuan, R.; Qin, W.; Li, X. Exosomes : a novel biomarker for bladder cancer. Biomed. J. Sci. Tec. Res., 2018, 5(4), 7-10.
Rodríguez, M.; Bajo-Santos, C.; Hessvik, N.P.; Lorenz, S.; Fromm, B.; Berge, V.; Sandvig, K.; Linē, A.; Llorente, A. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer, 2017, 16(1), 156.
[http://dx.doi.org/10.1186/s12943-017-0726-4] [PMID: 28982366]
Skotland, T.; Sandvig, K.; Llorente, A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res., 2017, 66, 30-41.
[http://dx.doi.org/10.1016/j.plipres.2017.03.001] [PMID: 28342835]
Li, W.; Li, C.; Zhou, T.; Liu, X.; Liu, X.; Li, X.; Chen, D. Role of exosomal proteins in cancer diagnosis. Mol. Cancer, 2017, 16(1), 145.
[http://dx.doi.org/10.1186/s12943-017-0706-8] [PMID: 28851367]
Blanchard, N.; Lankar, D.; Faure, F.; Regnault, A.; Dumont, C.; Raposo, G.; Hivroz, C. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol., 2002, 168(7), 3235-3241.
[http://dx.doi.org/10.4049/jimmunol.168.7.3235] [PMID: 11907077]
Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T.; Angevin, E.; Amigorena, S.; Zitvogel, L. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med., 2001, 7(3), 297-303.
[http://dx.doi.org/10.1038/85438] [PMID: 11231627]
Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, 2(8), 569-579.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
Tamkovich, S.N.; Tutanov, O.S.; Laktionov, P.P. Exosomes: generation, structure, transport, biological activity, and diagnostic application. Biochem. Suppl. Ser. A: Membr. Cell Biol., 2016, 10(3), 163-173.
Wiklander, O.P.B.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mäger, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; Heldring, N.; Alvarez-Erviti, L.; Smith, C.I.; Le Blanc, K.; Macchiarini, P.; Jungebluth, P.; Wood, M.J.; Andaloussi, S.E. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles, 2015, 4, 26316.
[http://dx.doi.org/10.3402/jev.v4.26316] [PMID: 25899407]
McKelvey, K.J.; Powell, K.L.; Ashton, A.W.; Morris, J.M.; McCracken, S.A. Exosomes: Mechanisms of Uptake. J Circ Biomark, 2015, 4(7), 7.
[http://dx.doi.org/10.5772/61186] [PMID: 28936243]
Clayton, A.; Turkes, A.; Dewitt, S.; Steadman, R.; Mason, M.D.; Hallett, M.B. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J., 2004, 18(9), 977-979.
[http://dx.doi.org/10.1096/fj.03-1094fje] [PMID: 15059973]
Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun., 2011, 2(282), 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
H Rashed, M.; Bayraktar, E.; K Helal, G.; Abd-Ellah, M.F.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: from garbage bins to promising therapeutic targets. Int. J. Mol. Sci., 2017, 18(3), 1-25.
[http://dx.doi.org/10.3390/ijms18030538] [PMID: 28257101]
de la Torre Gomez, C.; Goreham, R.V.; Bech Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”-a review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front. Genet., 2018, 9, 92.
[http://dx.doi.org/10.3389/fgene.2018.00092] [PMID: 29636770]
Takahashi, A.; Okada, R.; Nagao, K.; Kawamata, Y.; Hanyu, A.; Yoshimoto, S.; Takasugi, M.; Watanabe, S.; Kanemaki, M.T.; Obuse, C.; Hara, E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun., 2017, 8, 15287.
[http://dx.doi.org/10.1038/ncomms15287] [PMID: 28508895]
Fleshner, M.; Crane, C.R. Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol., 2017, 38(10), 768-776.
[http://dx.doi.org/10.1016/j.it.2017.08.002] [PMID: 28838855]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
Sahoo, S.; Klychko, E.; Thorne, T.; Misener, S.; Schultz, K.M.; Millay, M.; Ito, A.; Liu, T.; Kamide, C.; Agrawal, H.; Perlman, H.; Qin, G.; Kishore, R.; Losordo, D.W. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ. Res., 2011, 109(7), 724-728.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.253286] [PMID: 21835908]
Zhang, G.; Yang, P. A novel cell-cell communication mechanism in the nervous system: exosomes. J. Neurosci. Res., 2018, 96(1), 45-52.
[http://dx.doi.org/10.1002/jnr.24113] [PMID: 28718905]
Kuo, W.P.; Tigges, C.J.; Toxavidis, V.; Ghiran, I. Red blood cells: a source of extracellular vesicles. Methods Mol. Biol., 2017, 1660, 15-22.
[http://dx.doi.org/10.1007/978-1-4939-7253-1_2] [PMID: 28828644]
Danesh, A.; Inglis, H.C.; Jackman, R.P.; Wu, S.; Deng, X.; Muench, M.O.; Heitman, J.W.; Norris, P.J. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood, 2014, 123(5), 687-696.
[http://dx.doi.org/10.1182/blood-2013-10-530469] [PMID: 24335232]
Tkach, M.; Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell, 2016, 164(6), 1226-1232.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
Guo, W.; Gao, Y.; Li, N.; Shao, F.; Wang, C.; Wang, P.; Yang, Z.; Li, R.; He, J. Exosomes: New players in cancer (Review). Oncol. Rep., 2017, 38(2), 665-675.
[http://dx.doi.org/10.3892/or.2017.5714] [PMID: 28627679]
Morishita, M.; Takahashi, Y.; Nishikawa, M.; Sano, K.; Kato, K.; Yamashita, T.; Imai, T.; Saji, H.; Takakura, Y. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J. Pharm. Sci., 2015, 104(2), 705-713.
[http://dx.doi.org/10.1002/jps.24251] [PMID: 25393546]
Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2013, 18(6), 883-891.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
Charoenviriyakul, C.; Takahashi, Y.; Morishita, M.; Matsumoto, A.; Nishikawa, M.; Takakura, Y. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur. J. Pharm. Sci., 2017, 96, 316-322.
[http://dx.doi.org/10.1016/j.ejps.2016.10.009] [PMID: 27720897]
Yamashita, T.; Takahashi, Y.; Nishikawa, M.; Takakura, Y. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur. J. Pharm. Biopharm., 2016, 98, 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.017] [PMID: 26545617]
Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
Vandergriff, A.; Huang, K.; Shen, D.; Hu, S.; Hensley, M.T.; Caranasos, T.G.; Qian, L.; Cheng, K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 2018, 8(7), 1869-1878.
[http://dx.doi.org/10.7150/thno.20524] [PMID: 29556361]
Kalani, A.; Tyagi, A.; Tyagi, N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol. Neurobiol., 2014, 49(1), 590-600.
[http://dx.doi.org/10.1007/s12035-013-8544-1] [PMID: 23999871]
Wang, J.; Sun, X.; Zhao, J.; Yang, Y.; Cai, X.; Xu, J.; Cao, P. Exosomes: a novel strategy for treatment and prevention of diseases. Front. Pharmacol., 2017, 8, 300.
[http://dx.doi.org/10.3389/fphar.2017.00300] [PMID: 28659795]
Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in exosome isolation techniques. Theranostics, 2017, 7(3), 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
Katsuda, T.; Oki, K.; Ochiya, K.T. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer’s disease therapeutics. Methods Mol. Biol., 2015, 1212, 171-181.
[http://dx.doi.org/10.1007/7651_2014_98] [PMID: 25085563]
Lamichhane, T.N.; Raiker, R.S.; Jay, S.M. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol. Pharm., 2015, 12(10), 3650-3657.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00364] [PMID: 26376343]
Vashisht, M.; Rani, P.; Onteru, S.K.; Singh, D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl. Biochem. Biotechnol., 2017, 183(3), 993-1007.
[http://dx.doi.org/10.1007/s12010-017-2478-4] [PMID: 28466459]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond.), 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
Sinha, S. Exosome Diagnostic and Therapeutic Market by Application (Diagnostic and Therapeutic), Product (Instrument, Reagent and Software) and End-User (Cancer Institute, Hospital, Diagnostic Center, and Others) - Global Opportunity Analysis and Industry Forecasts. Diagnostics and Biotech, 2016, 1, 115. Available at:. https://www.alliedmarketresearch.com/exosome-diagnostic-and-therapeutic-market
O’Driscoll, L.; Stoorvogel, W.; Théry, C.; Buzas, E.; Nazarenko, I.; Siljander, P.; Yáñez-Mó, M.; Fais, S.; Giebel, B.; Yliperttula, M. European network on microvesicles and exosomes in health and disease (ME-HaD). Eur. J. Pharm. Sci., 2017, 98, 1-3.
[http://dx.doi.org/10.1016/j.ejps.2017.01.003] [PMID: 28115061]
Zhao, Z.; Yu, S.; Li, M.; Gui, X.; Li, P. Isolation of exosome-like nanoparticles and analysis of micrornas derived from coconut water based on small RNA high-throughput sequencing. J. Agric. Food Chem., 2018, 66(11), 2749-2757.
[http://dx.doi.org/10.1021/acs.jafc.7b05614] [PMID: 29478310]
Lunavat, T.R.; Jang, S.C.; Nilsson, L.; Park, H.T.; Repiska, G.; Lässer, C.; Nilsson, J.A.; Gho, Y.S.; Lötvall, J. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer. Biomaterials, 2016, 102, 231-238.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.024] [PMID: 27344366]
Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L.; Roth, M.; Welti, R.; Mobley, J.; Jun, Y.; Miller, D.; Zhang, H.G. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther., 2013, 21(7), 1345-1357.
[http://dx.doi.org/10.1038/mt.2013.64] [PMID: 23752315]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
Bryniarski, K.; Ptak, W.; Jayakumar, A.; Püllmann, K. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell miRNA-150 to effector T cells in contact sensitivity. J. Allergy Clin. Immunol., 2013, 132(1), 170-181.
[http://dx.doi.org/10.1016/j.jaci.2013.04.048] [PMID: 23727037]
Wu, J.Y.; Ji, A.L.; Wang, Z.X.; Qiang, G.H.; Qu, Z.; Wu, J.H.; Jiang, C.P. Exosome-Mimetic Nanovesicles from Hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo. Sci. Rep., 2018, 8(1), 2471.
[http://dx.doi.org/10.1038/s41598-018-20505-y] [PMID: 29410409]
Zhang, M.; Viennois, E.; Xu, C.; Merlin, D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers, 2016, 4(2)e1134415
[http://dx.doi.org/10.1080/21688370.2015.1134415] [PMID: 27358751]
Wang, B.; Zhuang, X.; Deng, Z.B.; Jiang, H.; Mu, J.; Wang, Q.; Xiang, X.; Guo, H.; Zhang, L.; Dryden, G.; Yan, J.; Miller, D.; Zhang, H.G. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol. Ther., 2014, 22(3), 522-534.
[http://dx.doi.org/10.1038/mt.2013.190] [PMID: 23939022]
Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; Zhang, H.G. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res., 2014, 58(7), 1561-1573.
[http://dx.doi.org/10.1002/mnfr.201300729] [PMID: 24842810]
Raimondo, S.; Naselli, F.; Fontana, S.; Monteleone, F.; Lo Dico, A.; Saieva, L.; Zito, G.; Flugy, A.; Manno, M.; Di Bella, M.A.; De Leo, G.; Alessandro, R. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget, 2015, 6(23), 19514-19527.
[http://dx.doi.org/10.18632/oncotarget.4004] [PMID: 26098775]
Zhang, M.; Xiao, B.; Wang, H.; Han, M.K.; Zhang, Z.; Viennois, E.; Xu, C.; Merlin, D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol. Ther., 2016, 24(10), 1783-1796.
[http://dx.doi.org/10.1038/mt.2016.159] [PMID: 27491931]
Zhuang, X.; Teng, Y.; Samykutty, A.; Mu, J.; Deng, Z.; Zhang, L.; Cao, P.; Rong, Y.; Yan, J.; Miller, D.; Zhang, H.G. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol. Ther., 2016, 24(1), 96-105.
[http://dx.doi.org/10.1038/mt.2015.188] [PMID: 26444082]
Chen, F.; Ma, M.; Wang, J.; Wang, F.; Chern, S.X.; Zhao, E.R.; Jhunjhunwala, A.; Darmadi, S.; Chen, H.; Jokerst, J.V. Exosome-like silica nanoparticles: a novel ultrasound contrast agent for stem cell imaging. Nanoscale, 2017, 9(1), 402-411.
[http://dx.doi.org/10.1039/C6NR08177K] [PMID: 27924340]
Lin, Y.; Wu, J.; Gu, W.; Huang, Y.; Tong, Z.; Huang, L.; Tan, J. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. (Weinh.), 2018, 5(4)1700611
[http://dx.doi.org/10.1002/advs.201700611] [PMID: 29721412]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [3888 - 3905]
Pages: 18
DOI: 10.2174/0929867326666190129142604
Price: $65

Article Metrics

PDF: 46
PRC: 1