Synthesis, Anticancer Evaluation and Synergistic Effects with cisplatin of Novel Palladium Complexes: DNA, BSA Interactions and Molecular Docking Study

Author(s): Nenad Joksimović, Nenad Janković, Jelena Petronijević, Dejan Baskić, Suzana Popovic, Danijela Todorović, Milan Zarić, Olivera Klisurić, Milan Vraneš, Aleksandar Tot, Zorica Bugarčić*

Journal Name: Medicinal Chemistry

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In order to discover new agents for chemotherapy with improved properties compared to the existing agents and bearing in mind the fact that some Pd complexes possess better antitumor activity and exhibit less kidney toxicity compared to cisplatin, a series of novel square-planar palladium(II) complexes [Pd (L)2] (3a-f) with O,O bidentate ligands [L = ethyl 2- hydroxy-alkyl(aryl)-4-oxo-2-butenoate] were synthesized.

Methods: All complexes were characterized by spectral (UV-Vis, IR, NMR, ESI-MS) and X-ray analysis and examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Fluorescence spectroscopic method was used for investigations of the interactions between CT-DNA or bovine serum albumin (BSA) and complex 3c. Viscosity measurements and molecular docking study were performed to confirm the mode of interactions between DNA and BSA and complex 3c.

Results: Complexes that showed the best results, 3c, 3d, and 3e, were placed under further investigations. Selected complexes induced apoptosis and cell cycle arrest in HeLa and MDA-MB 231 cells. Low concentrations of 3c and 3e showed strong to moderate synergism with low concentrations of cisplatin. The interaction of 3d with cisplatin was antagonistic in all used concentrations, but low IC50 value indicates its usefulness as a single cytotoxic agent. It was also noted that the change of viscosity is more pronounced in DNA solution after addition of complex 3c.

Conclusion: Obtained results indicate that the novel palladium(II) complexes have the potential to become candidates for treatment in anticancer therapy.

Keywords: Palladium complexes, antitumor activity, biological activity, DNA binding study, BSA binding study, molecular docking.

[1]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[2]
Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol., 2002, 42(3), 317-325.
[http://dx.doi.org/10.1016/S1040-8428(01)00219-0] [PMID: 12050023]
[3]
Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs Arch. Pharm. (Weinheim, Ger.), 2007, 340, 117-126.
[4]
Hartmann, J.T.; Fels, L.M.; Knop, S.; Stolt, H.; Kanz, L.; Bokemeyer, C. A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Invest. New Drugs, 2000, 18(3), 281-289.
[http://dx.doi.org/10.1023/A:1006490226104] [PMID: 10958599]
[5]
Hartmann, J.T.; Lipp, H.P. Toxicity of platinum compounds. Expert Opin. Pharmacother., 2003, 4(6), 889-901.
[http://dx.doi.org/10.1517/14656566.4.6.889] [PMID: 12783586]
[6]
Sastry, J.; Kellie, S.J. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr. Hematol. Oncol., 2005, 22(5), 441-445.
[http://dx.doi.org/10.1080/08880010590964381] [PMID: 16020136]
[7]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel), 2010, 2(11), 2490-2518.
[http://dx.doi.org/10.3390/toxins2112490] [PMID: 22069563]
[8]
McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Platinum neuro-toxicity pharmacogenetics. Mol. Cancer Ther., 2009, 8(1), 10-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0840] [PMID: 19139108]
[9]
Fuertes, M.A.; Alonso, C.; Pérez, J.M. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev., 2003, 103(3), 645-662.
[http://dx.doi.org/10.1021/cr020010d] [PMID: 12630848]
[10]
Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Pinheiro, C.B. Visentin, Ldo.C.; Filho, J.D.; Araújo, A.J.; Costa-Lotufo, L.V.; Pessoa, C.; de Moraes, M.O. Novel platinum(II) complexes of 3-(aminomethyl)naphthoquinone Mannich bases: synthesis, crystal structure and cytotoxic activities. Dalton Trans., 2010, 39(42), 10203-10216.
[http://dx.doi.org/10.1039/c0dt00572j] [PMID: 20871881]
[11]
Xie, L.; Luo, Z.; Zhao, Z.; Chen, T. Anticancer and antiangiogenic iron (II) complexes that target thioredoxin reductase to trigger cancer cell apoptosis. J. Med. Chem., 2017, 60(1), 202-214.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00917] [PMID: 28001402]
[12]
Joksimović, N.; Baskić, D.; Popović, S.; Zarić, M.; Kosanić, M.; Ranković, B.; Stanojković, T.; Novaković, S.B.; Davidović, G.; Bugarčić, Z.; Janković, N. Synthesis, characterization, biological activity, DNA and BSA binding study: novel copper(ii) complexes with 2-hydroxy-4-aryl-4-oxo-2-butenoate. Dalton Trans., 2016, 45(38), 15067-15077.
[http://dx.doi.org/10.1039/C6DT02257J] [PMID: 27711668]
[13]
Gust, R.; Ott, I.; Posselt, D.; Sommer, K. Development of cobalt(3,4-diarylsalen) complexes as tumor therapeutics. J. Med. Chem., 2004, 47(24), 5837-5846.
[http://dx.doi.org/10.1021/jm040763n] [PMID: 15537341]
[14]
Hadjikakou, K.S.; Hadjiliadis, N. Antiproliferative and anti-tumor activity of organotin compounds. Coord. Chem. Rev., 2009, 253, 235-249.
[http://dx.doi.org/10.1016/j.ccr.2007.12.026]
[15]
Iacopetta, D.; Mariconda, A.; Saturnino, C.; Caruso, A.; Palma, G.; Ceramella, J.; Muià, N.; Perri, M.; Sinicropi, M.S.; Caroleo, M.C.; Longo, P. Novel gold and silver carbene complexes exert antitumor effects triggering the reactive oxygen species dependent intrinsic apoptotic pathway. ChemMedChem, 2017, 12(24), 2054-2065.
[http://dx.doi.org/10.1002/cmdc.201700634] [PMID: 29120085]
[16]
Lazić, D.; Arsenijević, A.; Puchta, R.; Bugarčić, Ž.D.; Rilak, A. DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium(ii) terpyridine complexes. Dalton Trans., 2016, 45(11), 4633-4646.
[http://dx.doi.org/10.1039/C5DT04132E] [PMID: 26855406]
[17]
Linares, F.; Galindo, M.A.; Galli, S.; Romero, M.A.; Navarro, J.A.; Barea, E. Tetranuclear coordination assemblies based on half-sandwich ruthenium(II) complexes: noncovalent binding to DNA and cytotoxicity. Inorg. Chem., 2009, 48(15), 7413-7420.
[http://dx.doi.org/10.1021/ic900980y] [PMID: 19586019]
[18]
Trondl, R.; Heffeter, P.; Kowol, R.C.; Jakupec, A.M.; Berger, W.; Keppler, K.B. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. (Camb.), 2014, 5, 2925-2932.
[http://dx.doi.org/10.1039/C3SC53243G]
[19]
Li, H.; Xie, C.; Lan, R.; Zha, S.; Chan, C-F.; Wong, W-Y.; Ho, K-L.; Chan, B.D.; Luo, Y.; Zhang, J-X.; Law, G-L.; Tai, W.C.S.; Bünzli, J.G.; Wong, K-L. A smart europium-ruthenium complex as anticancer prodrug: controllable drug release and real-time monitoring under different light excitations. J. Med. Chem., 2017, 60(21), 8923-8932.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01162] [PMID: 28991460]
[20]
Siu, M.F.; Lin, S.W.I.; Yan, K.; Lok, N.C.; Low, K.H.; Leung, C.Y.T.; Lam, T.L.; Che, M.C. Anticancer dirhodium (ii,ii) carboxylates as potent inhibitors of ubiquitin-proteasome system. Chem. Sci. (Camb.), 2012, 3, 1785-1793.
[http://dx.doi.org/10.1039/c2sc00620k]
[21]
Ni, W.X.; Man, W.L.; Cheung, M.T.; Sun, R.W.; Shu, Y.L.; Lam, Y.W.; Che, C.M.; Lau, T.C. Osmium(VI) complexes as a new class of potential anti-cancer agents. Chem. Commun. (Camb.), 2011, 47(7), 2140-2142.
[http://dx.doi.org/10.1039/c0cc04515b] [PMID: 21203649]
[22]
Fu, Y.; Romero, J.M.; Habtemariam, A.; Snowden, S.M.; Song, L.; Clarkson, J.G.; Qamar, B.; Pizarro, M.A.; Unwin, R.P.; Sadler, J.P. The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium (II) arene anticancer complexes. Chem. Sci. (Camb.), 2012, 3, 2485-2494.
[http://dx.doi.org/10.1039/c2sc20220d]
[23]
Abeysinghe, P.M.; Harding, M.M. Antitumour bis(cyclopenta-dienyl) metal complexes: titanocene and molybdocene dichloride and derivatives. Dalton Trans., 2007, 32(32), 3474-3482.
[http://dx.doi.org/10.1039/b707440a] [PMID: 17680034]
[24]
He, L.; Li, Y.; Tan, C.P.; Ye, R.R.; Chen, M.H.; Cao, J.J.; Ji, L.N.; Mao, Z.W. Cyclometalated iridium(iii) complexes as lysosome-targeted photodynamic anticancer and real-time tracking agents. Chem. Sci. (Camb.), 2015, 6(10), 5409-5418.
[http://dx.doi.org/10.1039/C5SC01955A] [PMID: 29861886]
[25]
Kapdi, A.R.; Fairlamb, I.J. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem. Soc. Rev., 2014, 43(13), 4751-4777.
[http://dx.doi.org/10.1039/C4CS00063C] [PMID: 24723061]
[26]
Ray, S.; Mohan, R.; Singh, J.K.; Samantaray, M.K.; Shaikh, M.M.; Panda, D.; Ghosh, P. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc., 2007, 129(48), 15042-15053.
[http://dx.doi.org/10.1021/ja075889z] [PMID: 17988129]
[27]
Gao, E.; Zhu, M.; Liu, L.; Huang, Y.; Wang, L.; Shi, C.; Zhang, W.; Sun, Y. Impact of the carbon chain length of novel palladium(II) complexes on interaction with DNA and cytotoxic activity. Inorg. Chem., 2010, 49(7), 3261-3270.
[http://dx.doi.org/10.1021/ic902176e] [PMID: 20199051]
[28]
Ramachandran, E.; Senthil Raja, D.; Rath, N.P.; Natarajan, K. Role of substitution at terminal nitrogen of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the coordination behavior and structure and biological properties of their palladium(II) complexes. Inorg. Chem., 2013, 52(3), 1504-1514.
[http://dx.doi.org/10.1021/ic302258k] [PMID: 23323516]
[29]
Ramachandran, E.; Senthil Raja, D.; Bhuvanesh, N.S.; Natarajan, K. Mixed ligand palladium(II) complexes of 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde 4N-substituted thiosemicarbazones with triphenylphosphine co-ligand: synthesis, crystal structure and biological properties. Dalton Trans., 2012, 41(43), 13308-13323.
[http://dx.doi.org/10.1039/c2dt31079a] [PMID: 22864662]
[30]
Lee, K.; Tashiro, T.; Noji, M. Platinum and palladium complexes containing ethylenediamine derivatives as carrier ligands and their antitumor activity. Chem. Pharm. Bull. (Tokyo), 1994, 42(3), 702-703.
[http://dx.doi.org/10.1248/cpb.42.702] [PMID: 8004720]
[31]
González, M.L.; Tercero, J.M.; Matilla, A.; Niclós-Gutiérrez, J.; Fernández, M.T.; López, M.C.; Alonso, C.; González, S. cis-Dichloro(α,ω-diamino carboxylate ethyl ester)palladium(II) as Palladium(II) versus Platinum(II) model anticancer drugs: Synthesis, solution equilibria of their aqua, hydroxo, and/or chloro species, and in vitro/in vivo dna-binding properties. Inorg. Chem., 1997, 36(9), 1806-1812.
[http://dx.doi.org/10.1021/ic961226z] [PMID: 11669784]
[32]
Akbar Ali, M.; Mirza, A.H.; Butcher, R.J.; Tarafder, M.T.H.; Keat, T.B.; Ali, A.M. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. J. Inorg. Biochem., 2002, 92(3-4), 141-148.
[http://dx.doi.org/10.1016/S0162-0134(02)00559-7] [PMID: 12433421]
[33]
Lee, J-Y.; Lee, J-Y.; Chang, Y-Y.; Hu, C-H.; Wang, M.N.; Lee, H.M. Palladium complexes with tridentate n-heterocyclic carbene ligands: Selective “Normal” and “Abnormal” bindings and their anticancer activities. Organometallics, 2015, 34, 4359-4368.
[http://dx.doi.org/10.1021/acs.organomet.5b00586]
[34]
Mazumder, M.E.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synthesis and cytotoxicity of three trans-palladium complexes containing planaramine ligands in human ovarian tumor models. ChemMedChem, 2012, 7(10), 1840-1846.
[http://dx.doi.org/10.1002/cmdc.201200310] [PMID: 22899663]
[35]
Chiririwa, H.; Moss, R.J.; Hendricks, D.; Meijboom, R.; Muller, A. Synthesis, characterisation and in vitro evaluation of palladium(II) iminophosphine complexes for anticancer activity. Trans. Met. Chem. (Weinh.), 2013, 38, 165-172.
[http://dx.doi.org/10.1007/s11243-012-9674-4]
[36]
Carreira, M.; Calvo-Sanjuán, R.; Sanaú, M.; Marzo, I.; Contel, M. Organometallic Palladium complexes with a water-soluble iminophosphorane ligand as potential anticancer agents. Organometallics, 2012, 31(16), 5772-5781.
[http://dx.doi.org/10.1021/om3006239] [PMID: 23066172]
[37]
Krogul, A.; Cedrowski, J.; Wiktorska, K.; Ozimiński, W.P.; Skupińska, J.; Litwinienko, G. Crystal structure, electronic properties and cytotoxic activity of palladium chloride complexes with monosubstituted pyridines. Dalton Trans., 2012, 41(2), 658-666.
[http://dx.doi.org/10.1039/C1DT11412C] [PMID: 22068915]
[38]
Maria, I. da S.P.; Graminha, A.; Pavan, R.F.; Leite, Q.F.C.; Batista, A.A.; Back, F.D.; Lang, S.E.; Ellena, J.; Lemos, S. de S.; Salistre-de-Araujog, S.H.; Deflon, M.V. Palladium(II) complexes with thiosemicarbazones. syntheses, characterization and cytotoxicity against breast cancer cells and anti-Mycobacterium tuberculosis Activity. J. Braz. Chem. Soc., 2010, 21, 1177-1186.
[39]
Abu-Surrah, A.S.; Abu Safieh, K.A.; Ahmad, I.M.; Abdalla, M.Y.; Ayoub, M.T.; Qaroush, A.K.; Abu-Mahtheieh, A.M. New palladium(II) complexes bearing pyrazole-based Schiff base ligands: synthesis, characterization and cytotoxicity. Eur. J. Med. Chem., 2010, 45(2), 471-475.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.029] [PMID: 19913953]
[40]
Ajloo, D.; Moghadam, E.M.; Ghadimi, K.; Ghadamgahi, M.; Saboury, A.A.; Divsalar, A. SheikhMohammadi, M.; Yousefi, K. Synthesis, characterization, spectroscopy, cytotoxic activity and molecular dynamic study on the interaction of three palladium complexes of phenanthroline and glycine derivatives with calf thymus DNA. Inorg. Chim. Acta, 2015, 430, 144-160.
[http://dx.doi.org/10.1016/j.ica.2015.03.006]
[41]
Trevisan, A.; Marzano, C.; Cristofori, P.; Borella Venturini, M.; Giovagnini, L.; Fregona, D. Synthesis of a palladium(II)-dithiocarbamate complex: biological assay and nephrotoxicity in rats. Arch. Toxicol., 2002, 76(5-6), 262-268.
[http://dx.doi.org/10.1007/s00204-002-0329-7] [PMID: 12107643]
[42]
Bhatt, A.; Gurukumar, K.R.; Basu, A.; Patel, M.R.; Kaushik-Basu, N.; Talele, T.T. Synthesis and SAR optimization of diketo acid pharmacophore for HCV NS5B polymerase inhibition. Eur. J. Med. Chem., 2011, 46(10), 5138-5145.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.028] [PMID: 21893371]
[43]
Wang, S.; Yan, J.; Wang, J.; Chen, J.; Zhang, T.; Zhao, Y.; Xue, M. Synthesis of some 5-phenylisoxazole-3-carboxylic acid derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2663-2670.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.013] [PMID: 20189693]
[44]
Zimmerman, S.S.; Khatri, A.; Garnier-Amblard, E.C.; Mullasseril, P.; Kurtkaya, N.L.; Gyoneva, S.; Hansen, K.B.; Traynelis, S.F.; Liotta, D.C. Design, synthesis, and structure-activity relationship of a novel series of GluN2C-selective potentiators. J. Med. Chem., 2014, 57(6), 2334-2356.
[http://dx.doi.org/10.1021/jm401695d] [PMID: 24512267]
[45]
Gill, R.M.; Cecchin, D.; Walker, G.M.; Mulla, S.R.; Battaglia, G.; Smythe, C.; Thomas, A.J. Targeting the endoplasmic reticulum with a membrane-interactive luminescent ruthenium(II) polypyridyl complex. Chem. Sci. (Camb.), 2013, 4, 4512-4519.
[http://dx.doi.org/10.1039/c3sc51725j]
[46]
Li, Y.; Cheng, M.; Hao, J.; Wang, C.; Jia, G.; Li, C. Terpyridine-Cu(ii) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme. Chem. Sci. (Camb.), 2015, 6(10), 5578-5585.
[http://dx.doi.org/10.1039/C5SC01381J] [PMID: 29861895]
[47]
Sánchez, M.I.; Penas, C.; Vázquez, M.E.; Mascareñas, J.L. Metal-catalyzed uncaging of DNA-binding agents in living cells. Chem. Sci. (Camb.), 2014, 2014(5), 1901-1907.
[http://dx.doi.org/10.1039/C3SC53317D] [PMID: 24955233]
[48]
Poynton, F.E.; Hall, J.P.; Keane, P.M.; Schwarz, C.; Sazanovich, I.V.; Towrie, M.; Gunnlaugsson, T.; Cardin, C.J.; Cardin, D.J.; Quinn, S.J.; Long, C.; Kelly, J.M. Direct observation by time-resolved infrared spectroscopy of the bright and the dark excited states of the [Ru(phen)2(dppz)]2+ light-switch compound in solution and when bound to DNA. Chem. Sci. (Camb.), 2016, 7(5), 3075-3084.
[http://dx.doi.org/10.1039/C5SC04514B] [PMID: 29997799]
[49]
Lauria, A.; Bonsignore, R.; Terenzi, A.; Spinello, A.; Giannici, F.; Longo, A.; Almerico, A.M.; Barone, G. Nickel(II), copper(II) and zinc(II) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investigation. Dalton Trans., 2014, 43(16), 6108-6119.
[http://dx.doi.org/10.1039/c3dt53066c] [PMID: 24522514]
[50]
Takahashi, K.; Fukiura, K.; Arii, H.; Chikira, M. Design of Salen-type Ni(II) complexes for recognition of DNA base sequence. Nucleic Acids Symp Ser (Oxf), 2007, 51(51), 189-190.
[http://dx.doi.org/10.1093/nass/nrm095] [PMID: 18029650]
[51]
Bork, M.A.; Gianopoulos, C.G.; Zhang, H.; Fanwick, P.E.; Choi, J.H.; McMillin, D.R. Accessibility and external versus intercalative binding to DNA as assessed by oxygen-induced quenching of the palladium(II)-containing cationic porphyrins Pd(T4) and Pd(tD4). Biochemistry, 2014, 53(4), 714-724.
[http://dx.doi.org/10.1021/bi401610t] [PMID: 24428500]
[52]
Kieltyka, R.; Fakhoury, J.; Moitessier, N.; Sleiman, H.F. Platinum phenanthroimidazole complexes as G-quadruplex DNA selective binders. Chemistry, 2008, 14(4), 1145-1154.
[http://dx.doi.org/10.1002/chem.200700783] [PMID: 18022967]
[53]
Campbell, N.H.; Karim, N.H.A.; Parkinson, G.N.; Gunaratnam, M.; Petrucci, V.; Todd, A.K.; Vilar, R.; Neidle, S. Molecular basis of structure-activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J. Med. Chem., 2012, 55(1), 209-222.
[http://dx.doi.org/10.1021/jm201140v] [PMID: 22112241]
[54]
Abd Karim, N.H.; Mendoza, O.; Shivalingam, A.; Thompson, A.J.; Ghosh, S.; Kuimova, M.K.; Vilar, R. Salphen metal complexes as tunable G-quadruplex binders and optical probes. RSC Advances, 2014, 4, 3355-3363.
[http://dx.doi.org/10.1039/C3RA44793F]
[55]
Burrows, C.J.; Rokita, S.E. Recognition of guanine structure in nucleic acids by nickel complexes. Acc. Chem. Res., 1994, 27, 295-301.
[http://dx.doi.org/10.1021/ar00046a002]
[56]
Poklar, N.; Pilch, D.S.; Lippard, S.J.; Redding, E.A.; Dunham, S.U.; Breslauer, K.J. Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7606-7611.
[http://dx.doi.org/10.1073/pnas.93.15.7606] [PMID: 8755522]
[57]
Onoa, G.B.; Moreno, V. Palladium and platinum famotidine complexes. J. Inorg. Biochem., 1998, 72(3-4), 141-153.
[http://dx.doi.org/10.1016/S0162-0134(98)10074-0] [PMID: 10065533]
[58]
Zhang, K.; Liu, W. Investigation of the electrochemical interaction behavior of DNA with 5-fluorouracil derivatives. Int. J. Electrochem. Sci., 2011, 6, 1669-1678.
[59]
Shen, H.; Shao, X.; Xu, H.; Li, J.; Pan, S. In vitro study of DNA Interaction with Trichlorobenzenes by Spectroscopic and Voltammetric Techniques. Int. J. Electrochem. Sci., 2011, 6, 532-547.
[60]
Hartwig, A. The role of DNA repair in benzene-induced carcinogenesis. Chem. Biol. Interact., 2010, 184(1-2), 269-272.
[http://dx.doi.org/10.1016/j.cbi.2009.12.029] [PMID: 20056111]
[61]
Kashanian, S.; Askari, S.; Ahmadi, F.; Omidfar, K.; Ghobadi, S.; Tarighat, F.A. In vitro study of DNA interaction with clodinafop-propargyl herbicide. DNA Cell Biol., 2008, 27(10), 581-586.
[http://dx.doi.org/10.1089/dna.2008.0740] [PMID: 18605901]
[62]
Ahmadi, F.; Bakhshandeh, F. In vitro study of damaging effects of 2,4-dichlorophenoxyacetic acid on DNA structure by spectroscopic and voltammetric techniques. DNA Cell Biol., 2009, 28(10), 527-533.
[http://dx.doi.org/10.1089/dna.2009.0892] [PMID: 19563251]
[63]
Kandagal, P.B.; Ashoka, S.; Seetharamappa, J.; Shaikh, S.M.; Jadegoud, Y.; Ijare, O.B. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J. Pharm. Biomed. Anal., 2006, 41(2), 393-399.
[http://dx.doi.org/10.1016/j.jpba.2005.11.037] [PMID: 16413740]
[64]
Sun, S.F.; Zhou, B.; Hou, H.N.; Liu, Y.; Xiang, G.Y. Studies on the interaction between Oxaprozin-E and bovine serum albumin by spectroscopic methods. Int. J. Biol. Macromol., 2006, 39(4-5), 197-200.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.03.020] [PMID: 16828154]
[65]
Carter, D.C.; Ho, J.X. Structure of serum albumin. Adv. Protein Chem., 1994, 45, 153-203.
[http://dx.doi.org/10.1016/S0065-3233(08)60640-3] [PMID: 8154369]
[66]
Olson, E.R.; Christ, D.D. Plasma protein binding of drugs. Annu. Rep. Med. Chem., 1996, 31, 327-336.
[http://dx.doi.org/10.1016/S0065-7743(08)60472-8]
[67]
Bertucci, C.; Domenici, E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr. Med. Chem., 2002, 9(15), 1463-1481.
[http://dx.doi.org/10.2174/0929867023369673] [PMID: 12173977]
[68]
Andrzejak, V.; Millet, R.; El Bakali, J.; Guelzim, A.; Gluszok, S.; Chavatte, P.; Bonte, P.J.; Vaccher, C.; Lipka, E. Synthesis of 2,3 and 4,5-dihydro-hydroxy-isoxazoles and isoxazoles under different pH conditions. Lett. Org. Chem., 2010, 7, 32-37.
[http://dx.doi.org/10.2174/157017810790533922]
[69]
dos Santos, X.S.; Cavalheiro, T.G.É., II Using of a graphite-polyurethane composite electrode modified with a schiff base as a bio-inspired sensor in the dopamine determination. J. Braz. Chem. Soc., 2014, 25, 1071-1077.
[http://dx.doi.org/10.5935/0103-5053.20140080]
[70]
Sherif, O.E.; Abd El-Fattah, H.M. Characterization of transition metal ion chelates with 8-(arylazo) chromones using thermal and spectral techniques. J. Therm. Anal. Calorim., 2003, 74, 181-200.
[http://dx.doi.org/10.1023/A:1026390105986]
[71]
Farrugia, L.J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst., 1997, 30, 565.
[http://dx.doi.org/10.1107/S0021889897003117]
[72]
Ninković, D.B.; Janjić, G.V.; Veljković, D.Ž.; Sredojević, D.N.; Zarić, S.D. What are the preferred horizontal displacements in parallel aromatic-aromatic interactions? Significant interactions at large displacements. ChemPhysChem, 2011, 12(18), 3511-3514.
[http://dx.doi.org/10.1002/cphc.201100777] [PMID: 22106051]
[73]
Malenov, D.P.; Zarić, S.D. Non-Covalent Interact. Synth. Des. New Compd; Maharramov, A.M.; Mahmudov, K.T.; Kopylovich, M.N; Pombeiro, A.J.L., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, 2016, pp. 241-260.
[74]
Malenov, D.P.; Antonijević, I.S.; Zarić, S.D. Multi-Component Cryst. Synth. Concepts, Funct;Tiekink, E.R.T.; Zukerman- Schpector, J., Eds.; De Gruyter, Berlin . , 2017, pp. 255-271.
[75]
Sredojević, D.N.; Tomić, Z.D.; Zarić, S.D. Evidence of Chelate-Chelate Stacking Interactions in Crystal Structures of Transition-Metal Complexes. Cryst. Growth Des., 2010, 10, 3901-3908.
[http://dx.doi.org/10.1021/cg100312r]
[76]
Malenov, D.P.; Janjić, G.V.; Medaković, V.B.; Hall, M.B.; Zarić, S.D. Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. Coord. Chem. Rev., 2017, 345, 318-341.
[http://dx.doi.org/10.1016/j.ccr.2016.12.020]
[77]
Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.K.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. Acta Crystallogr., 2002, B58, 389-397.
[http://dx.doi.org/10.1107/S0108768102003324]
[78]
Sherr, C.J. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res., 2000, 60(14), 3689-3695.
[PMID: 10919634]
[79]
Olmsted, J., III; Kearns, D.R., III Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 1977, 16(16), 3647-3654.
[http://dx.doi.org/10.1021/bi00635a022] [PMID: 889813]
[80]
Lakowicz, J.R.; Weber, G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 1973, 12(21), 4161-4170.
[http://dx.doi.org/10.1021/bi00745a020] [PMID: 4795686]
[81]
Strekowski, L.; Wilson, B. Noncovalent interactions with DNA: an overview. Mutat. Res., 2007, 623(1-2), 3-13.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.008] [PMID: 17445837]
[82]
Topală, T.; Bodoki, A.; Oprean, L.; Oprean, R. Bovine Serum Albumin Interactions with Metal Complexes. Clujul Med., 2014, 87(4), 215-219.
[PMID: 26528027]
[83]
Chao, H.; Mei, W.J.; Huang, Q.W.; Ji, L.N. DNA binding studies of ruthenium(II) complexes containing asymmetric tridentate ligands. J. Inorg. Biochem., 2002, 92(3-4), 165-170.
[http://dx.doi.org/10.1016/S0162-0134(02)00543-3] [PMID: 12433424]
[84]
Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B. Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry, 1992, 31(39), 9319-9324.
[http://dx.doi.org/10.1021/bi00154a001] [PMID: 1390718]
[85]
Sigma, D.S.; Mazuder, A.; Pemn, D.M. Chemical nucleases. Chem. Rev., 1993, 93, 2295-2316.
[http://dx.doi.org/10.1021/cr00022a011]
[86]
Tarushi, A.; Polatoglou, E.; Kljun, J.; Turel, I.; Psomas, G.
Kessissoglou, D.P. Interaction of Zn(II) with quinolone drugs: structure and biological evaluation. Dalton Trans., 2011, 40(37), 9461-9473.
[http://dx.doi.org/10.1039/c1dt10870k] [PMID: 21853189]
[87]
Skyrianou, K.C.; Raptopoulou, C.P.; Psycharis, V.; Kessissoglou, D.P.; Psomas, G. Structure, cyclic voltametry and DNA-binding properties of the bis(pyridine)bis(sparfloxacinato) nickel(II) complex. Polyhedron, 2009, 28, 3265-3271.
[http://dx.doi.org/10.1016/j.poly.2009.04.002]
[88]
Tolia, C.; Papadopoulos, A.N.; Raptopoulou, C.P.; Psycharis, V.; Garino, C.; Salassa, L.; Psomas, G. Copper(II) interacting with the non-steroidal antiinflammatory drug flufenamic acid: structure, antioxidant activity and binding to DNA and albumins. J. Inorg. Biochem., 2013, 123, 53-65.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.02.009] [PMID: 23528572]
[89]
Tarushi, A.; Raptopoulou, C.P.; Psycharis, V.; Kessissoglou, D.P.; Papadopoulos, A.N.; Psomas, G. Structure and biological perspectives of Cu(II)-indomethacin complexes. J. Inorg. Biochem., 2014, 140, 185-198.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.07.006] [PMID: 25128857]
[90]
Li, D.D.; Tian, J.L.; Gu, W.; Liu, X.; Yan, S.P. A novel 1,2,4-triazole-based copper(II) complex: synthesis, characterization, magnetic property and nuclease activity. J. Inorg. Biochem., 2010, 104(2), 171-179.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.10.020] [PMID: 19939459]
[91]
García-Giménez, J.L.; González-Alvarez, M.; Liu-González, M.; Macías, B.; Borrás, J.; Alzuet, G. Toward the development of metal-based synthetic nucleases: DNA binding and oxidative DNA cleavage of a mixed copper(II) complex with N-(9H-purin-6-yl)benzenesulfonamide and 1,10-phenantroline. Antitumor activity in human Caco-2 cells and Jurkat T lymphocytes. Evaluation of p53 and Bcl-2 proteins in the apoptotic mechanism. J. Inorg. Biochem., 2009, 103(6), 923-934.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.04.003] [PMID: 19428113]
[92]
Cohen, G.; Eisenberg, H. Viscosity and sedimentation study of sonicated dna-proflavine complexes. Biopolymers, 1969, 8, 45-55.
[http://dx.doi.org/10.1002/bip.1969.360080105]
[93]
Li, F.H.; Zhao, G.H.; Wu, H.X.; Lin, H.; Wu, X.X.; Zhu, S.R.; Lin, H.K. Synthesis, characterization and biological activity of lanthanum(III) complexes containing 2-methylene-1,10-phenanthroline units bridged by aliphatic diamines. J. Inorg. Biochem., 2006, 100(1), 36-43.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.09.012] [PMID: 16289294]
[94]
Ghosh, P.K.; Saha, S.; Mahapatra, A. Mechanistic studies on the Pd-Cl cleavage of dichloro-[1-alkyl-2-(naphthylazo)imidazole] palladium(II) complexes by 8-quinolinol. Polyhedron, 2007, 26, 2655-2662.
[http://dx.doi.org/10.1016/j.poly.2007.01.022]
[95]
Nyarko, E.; Hanada, N.; Habib, A.; Tabata, M. Fluorescence and phosphorescence spectra of Au(III), Pt(II) and Pd(II) porphyrins with DNA at room temperature. Inorg. Chim. Acta, 2004, 357, 739-745.
[http://dx.doi.org/10.1016/j.ica.2003.08.023]
[96]
Brown, J.R. Albumin Structure, Function and Uses; Rosenoer, V.M.; Oratz, V.M; Rotschild, M., Ed.; Pergamon: Oxford, UK, 1977, pp. 27-51.
[97]
Petronijević, J.; Janković, N.; Stanojković, T.P.; Joksimović, N.; Grozdanić, N.Đ.; Vraneš, M.; Tot, A.; Bugarčić, Z. Biological evaluation of selected 3,4-dihydro-2(1H)-quinoxalinones and 3,4-dihydro-1,4-benzoxazin-2-ones: Molecular docking study. Arch. Pharm. Chem. Life Sci, 2018, 351e1700308
[http://dx.doi.org/10.1002/ardp.201700308]
[98]
El Sayed Aly, M.R.; Abd El Razek Fodah, H.H.; Saleh, S.Y. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur. J. Med. Chem., 2014, 76, 517-530.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.021] [PMID: 24602794]
[99]
Meadows, A.K.; Liu, F.; Sou, J.; Hudson, P.B.; McMillin, R.D. Spectroscopic and photophysical studies of the binding interactions between copper phenanthroline complexes and RNA. Inorg. Chem., 1993, 32, 2919-2923.
[http://dx.doi.org/10.1021/ic00065a020]
[100]
CrysAlis CCD and CrysAlis Red. Oxford Diffraction; Abingdon, 2009.
[101]
Clark, R.C.; Reid, J.S. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr., 1995, A51, 887-897.
[http://dx.doi.org/10.1107/S0108767395007367]
[102]
Sheldrick, G.M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053273314026370] [PMID: 25537383]
[103]
Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst., 1999, 32, 837-838.
[http://dx.doi.org/10.1107/S0021889899006020]
[104]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[105]
Schrödinger Suite. Protein Preparation Wizard; Schrödinger, LLC: New York, NY, 2015.
[106]
Rostkowski, M.; Olsson, M.H.; Søndergaard, C.R.; Jensen, J.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol., 2011, 11, 6.
[http://dx.doi.org/10.1186/1472-6807-11-6] [PMID: 21269479]
[107]
Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6665-6670.
[http://dx.doi.org/10.1073/pnas.0408037102] [PMID: 15870211]
[108]
Schrödinger Suite. Glide; Schrödinger, LLC: New York, NY, 2015.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [78 - 92]
Pages: 15
DOI: 10.2174/1573406415666190128095732
Price: $65

Article Metrics

PDF: 31
HTML: 5
EPUB: 1
PRC: 1