Chemical Variability of Atractylis gummifera Essential Oils at Three Developmental Stages and Investigation of Their Antioxidant, Antifungal and Insecticidal Activities

Author(s): Kenza Mejdoub, Imane R. Mami, Rania Belabbes, Mohammed El A. Dib*, Nassim DJabou, Boufeldja Tabti, Nassira G. Benyelles, Jean Costa, Alain Muselli

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Atractylis gummifera is a cosmopolitan species that is particularly abundant in the Mediterranean regions. It has been used to treat many diseases, including intestinal parasites, ulcers, snakebite poisoning, hydrops and drowsiness. As part of our research program on natural compounds with biological activities, the objective of this study was to determine for the first time the chemical composition and biological activities of essential oils of Atractylis gummifera during beginning of the vegetative cycle (March), beginning of the flowering stage (April) and full bloom (May/June).

Methods: The essential oils were obtained by means of hydrodistillation and its components were analyzed using gas chromatography and mass spectrometry (GC/MS). The antioxidant properties were evaluated using two different methods i) Radical scavenging activity (DPPH) and ii) β-carotene bleaching assay. Whereas, the antifungal activity of the essential oils was investigated against five plant fungi. The fumigation toxicity of essential oils was evaluated against adults of Bactrocera oleae better known as the olive fly.

Results: The essential oil produced from the plant taken at the beginning of the vegetative cycle (March) had a high level of non-terpenic aliphatic compounds. On the other hand, the essential oil obtained during the period from the beginning of the flowering stage (April) showed that its proportion of non-terpene compounds decreased and that of sesquiterpene compounds increased. Finally, the essential oils obtained during the period from full bloom (May/June) consisted mainly of acetylene compounds such as carlina oxide and 13-methoxy carlina oxide. The results showed that essential oils from plants at full bloom presented interesting antioxidant and antifungal properties, while essential oil produced from plants at the beginning of the vegetative cycle (Mars) and at the beginning of the flowering stage (April) had better insecticidal activity.

Conclusion: The data presented here constitutes new findings in the field of the chemical characterization and biological potential of A. gummifera.

Keywords: Atractylis gummifera, essential oil, biological activities, vegetative stages, gas chromatography, mass spectrometry.

[1]
Shakeri, A.; Sharifi, M.J.; Bazzaz, B.S.F.; Emami, A.; Soheili, V.; Sahebkar, A.; Asili, J. Bioautography detection of antimicrobial compounds from the essential oil of Salvia Pachystachys. Curr. Bioact. Compd., 2018, 14, 80-85.
[http://dx.doi.org/10.2174/1573407212666161014132503]
[2]
Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med. Vet. Entomol., 2011, 25(3), 302-310.
[http://dx.doi.org/10.1111/j.1365-2915.2011.00945.x] [PMID: 21338379]
[3]
Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT(1). Int. J. Toxicol., 2002, 21(Suppl. 2), 19-94.
[http://dx.doi.org/10.1080/10915810290096513] [PMID: 12396675]
[4]
Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manage., 2008, 256, 2166-2174.
[http://dx.doi.org/10.1016/j.foreco.2008.08.008]
[5]
Andrade, M.A.; Braga, M.A.; Cesar, P.H.S.; Trento, M.V.C.; Espósito, M.A.; Silva, L.F.; Marcussi, S. Anticancer properties of essential oils: An overview. Curr. Cancer Drug Targets, 2018, 18(10), 957-966.
[http://dx.doi.org/10.2174/1568009618666180102105843] [PMID: 29295695]
[6]
Zardo, D.M.; Alvarez, L.V.H.; Los, F.B.G.; Ito, V.C.; Travalini, A.P.; Cardoso, T.; Wojeicchoski, J.P.; Alberti, A.; Zielinski, A.A.F.; Esmerino, L.A.; Nogueira, A. In vitro assessment of the antibacterial and antioxidant properties of essential oils. Curr. Bioact. Compd., 2018, 14, 1-8.
[7]
Amorati, R.; Menichetti, S.; Mileo, E.; Pedulli, G.F.; Viglianisi, C. Hydrogen-atom transfer reactions from ortho-alkoxy-substituted phenols: An experimental approach. Chemistry, 2009, 15(17), 4402-4410.
[http://dx.doi.org/10.1002/chem.200802454] [PMID: 19288484]
[8]
Quezel, P.; Santa, S. Nouvelle flore d’Algérie et des régions désertiques méridionales. CNRS, 1963, Vol. II, 999-1002.
[9]
Catanzano, G.; Delons, S.; Benyahia, T.D. [2 cases of poisoning due to “gum thistle” (Atractylis gummifera L.). Clinical development and anatomo-pathologic lesions]. Maroc Med., 1969, 49(529), 651-655.
[PMID: 5371762]
[10]
Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers., 2017, 14(5) e1600482
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[11]
Jennings, W.; Shibamoto, T. Qualitative analysis of flavour and fragrance volatiles by glass-capillary gas chromatographyJovanovich. H.B Academic Press: New-York, 1980.
[12]
König, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and Related Constituents of Essential oils; Institute of Organic Chemistry: Hamburg, 2001.
[13]
National Institute of Standards and Technology.. 2008.www.webbook.nist.gov/chemistry [Accessed 20 August 2008].
[14]
Mc Lafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectra Data, first ed; Wiley-Interscience: New-York, 1988.
[15]
Mc Lafferty, F.W.; Stauffer, D.B. Wiley Registry of Mass Spectral Data 6th; Mass Spectrometry Library Search System Bench:, Palisade: Newfield. 1994.
[16]
National Institute of Standards and Technology. PC Version 1.7 of the NIST/EPA/NIH Mass Spectral Library In: Perkin-Elmer Corp; Norwalk, CT: USA, 1999.
[17]
Djabou, N.; Lorenzi, V.; Guinoiseau, E.; Andreani, S.; Giuliani, M.C.; Desjobert, J.M.; Bolla, J.M.; Costa, J.; Berti, L.; Luciani, A.; Muselli, A. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control, 2013, 30(1), 354-363.
[http://dx.doi.org/10.1016/j.foodcont.2012.06.025]
[18]
Sahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control, 2004, 15, 549-557.
[http://dx.doi.org/10.1016/j.foodcont.2003.08.009]
[19]
Hatami, T.; Emami, S.A.; Miraghaee, S.S.; Mojarrab, M. Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. Iran. J. Pharm. Res., 2014, 13(2), 551-559.
[PMID: 25237350]
[20]
Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed; The American Phytopatological Society: St. Paul, Minnesota, 2006.
[21]
De Hoog, G.S.; Guarro, J. Atlas of Clinical Fungi; CBS: Barcelona, 1995.
[22]
Tian, J.; Ban, X.; Zeng, H.; He, J.; Huang, B.; Wang, Y. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. Int. J. Food Microbiol., 2011, 145(2-3), 464-470.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.023] [PMID: 21320730]
[23]
Singh, P.; Srivastava, B.; Kumar, A.; Kumar, R.; Dubey, N.K.; Gupta, R. Assessment of Pelargonium graveolens oil as plant-based antimicrobial and aflatoxin suppressor in food preservation. J. Sci. Food Agric., 2008, 88, 2421-2425.
[http://dx.doi.org/10.1002/jsfa.3342]
[24]
Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae). Ecotoxicol. Environ. Saf., 2014, 100, 1-6.
[http://dx.doi.org/10.1016/j.ecoenv.2013.11.013] [PMID: 24433784]
[25]
Abbott, W.S. A Method for computing the effectiveness of an insecticide. J. Econ. Entomol., 1925, 18, 265-267.
[http://dx.doi.org/10.1093/jee/18.2.265a]
[26]
Stojanović-Radić, Z.; Čomić, L.; Radulović, N.; Blagojević, P.; Mihajilov-Krstev, T.; Rajković, J. Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharm. Biol., 2012, 50(8), 933-940.
[http://dx.doi.org/10.3109/13880209.2011.649214] [PMID: 22480199]
[27]
Djordjevic, S.; Petrovic, S.; Ristic, M.; Djokovic, D. Composition of Carlina acanthifolia root essential oil. Chem. Nat. Compd., 2005, 44(4), 410-412.
[http://dx.doi.org/10.1007/s10600-005-0163-2]
[28]
Dordević, S.; Petrović, S.; Dobrić, S.; Milenković, M.; Vucićević, D.; Zizić, S.; Kukić, J.; Kukic, J. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. J. Ethnopharmacol., 2007, 109(3), 458-463.
[http://dx.doi.org/10.1016/j.jep.2006.08.021] [PMID: 17011148]
[29]
Calmes, M.; Crespin, F.; Maillard, C.; Ollivier, E.; Balansard, G. Highperformance liquid chromatographic determination of atractyloside and carboxyatractyloside from Atractylis gummifera L. J. Chromatogr. B Biomed. Sci. Appl., 1994, 663, 119-122.
[30]
Herrmann, F.; Hamoud, R.; Sporer, F.; Tahrani, A.; Wink, M. Carlina oxide--a natural polyacetylene from Carlina acaulis (Asteraceae) with potent antitrypanosomal and antimicrobial properties. Planta Med., 2011, 77(17), 1905-1911.
[http://dx.doi.org/10.1055/s-0031-1279984] [PMID: 21678234]
[31]
Cordeiro, Rde.A.; Nogueira, G.C.; Brilhante, R.S.N.; Teixeira, C.E.C; Mourão, C.I.; Castelo-Branco, Dde.S.; Paiva, Mde.A.; Ribeiro, J.F.; Monteiro, A.J.; Sidrim, J.J.C.; Rocha, M.F.G. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet. Microbiol., 2012, 159(3-4), 375-380.
[http://dx.doi.org/10.1016/j.vetmic.2012.04.008] [PMID: 22580194]
[32]
Cordeiro, R.A.; Teixeira, C.E.; Brilhante, R.S.; Castelo-Branco, D.S.; Paiva, M.A.; Giffoni Leite, J.J.; Lima, D.T.; Monteiro, A.J.; Sidrim, J.J.; Rocha, M.F. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. Med. Mycol., 2013, 51(1), 53-59.
[http://dx.doi.org/10.3109/13693786.2012.692489] [PMID: 22712455]
[33]
Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the Sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 2015, 20(7), 11808-11829.
[http://dx.doi.org/10.3390/molecules200711808] [PMID: 26132906]
[34]
Kumar, A.; Shukla, R.; Singh, P.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus vulgaris L. Essential oil as a safe botanical preservative against post-harvest fungal infestation of food commodities. Innov. Food Sci. Emerg. Technol., 2008, 9, 575-580.
[http://dx.doi.org/10.1016/j.ifset.2007.12.005]
[35]
Tang, X.; Chen, S.; Wang, L. Isolation and Insecticidal activity of farnesol from Stellera chamaejasme. Asian J. Chem., 2011, 23(3), 1233-1235.
[36]
Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J.Z.; Xie, X.Q.; Altmann, K.H.; Karsak, M.; Zimmer, A. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9099-9104.
[http://dx.doi.org/10.1073/pnas.0803601105] [PMID: 18574142]
[37]
Ghelardini, C.; Galeotti, N.; Di Cesare Mannelli, L.; Mazzanti, G.; Bartolini, A. Local anaesthetic activity of β-caryophyllene. Farmaco, 2001, 56(5-7), 387-389.
[http://dx.doi.org/10.1016/S0014-827X(01)01092-8] [PMID: 11482764]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 19 June, 2020
Page: [489 - 497]
Pages: 9
DOI: 10.2174/1573407215666190126152112
Price: $65

Article Metrics

PDF: 13
HTML: 1