Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets

Author(s): Dongsheng Che, Seidu Adams, Bao Zhao, Guixin Qin, Hailong Jiang*

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 7 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet’s growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet’s growth and survival from conception to postweaning.

Keywords: L-arginine, nitric oxide, metabolism, oxidative stress, weaning, piglets.

[1]
Patel, V.B.; Preedy, V.R.; Rajendram, R. L-arginine in Clinical Nutrition; Springer International Publishing, 2017.
[2]
Hou, Y.; Yao, K.; Yin, V.; Wu, G. Endogenous synthesis of amino acids limits growth, lactation, and reproduction in animals. Adv. Nutr., 2016, 7(2), 331-342.
[3]
Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Rhoads, J.M.; Satterfield, M.C.; Smith, S.B.; Spencer, T.E.; Yin, Y.L. Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 2009, 37, 153-168.
[4]
Balaña-Fouce, R.; Calvo-Álvarez, E.; Álvarez-Velilla, R.; Prada, C.F.; Pérez-Pertejo, Y.; Reguera, R.M. Role of trypanosomatid’s arginase in polyamine biosynthesis and pathogenesis. Mol. Biochem. Parasitol., 2012, 181(2), 85-93.
[5]
Wu, G.; Bazer, F.W.; Satterfield, M.C.; Li, X.L.; Wang, X.Q.; Johnson, G.A.; Burghardt, R.C.; Dai, Z.L.; Wang, J.J.; Wu, Z.L. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids, 2013, 45, 241-256.
[6]
Wu, Z.; Hou, Y.; Hu, S.; Bazer, F.W.; Meininger, C.J.; McNeal, C.J.; Wu, G. Catabolism and safety of supplemental L-arginine in animals. Amino Acids, 2016, 48(7), 1541-1552.
[7]
Wu, G. Amino acids: Biochemistry and Nutrition; Boca Raton: CRC Press.. , 2013.
[8]
Collins, J.K.; Wu, G.; Perkins-Veazie, P.; Spears, K.; Claypool, P.L.; Baker, R.A.; Clevidence, B.A. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition, 2007, 23, 261-266.
[9]
Colson, V.; Orgeur, P.; Foury, A.; Mormède, P. Consequences of weaning piglets at 21 and 28 days on growth, behaviour and hormonal responses. Appl. Anim. Behav. Sci., 2006, 98(1-2), 70-88.
[10]
Zhang, H.; Xu, Y.; Zhang, Z.; You, J.; Yang, Y.; Li, X. Protective immunity of a Multivalent Vaccine Candidate against piglet diarrhea caused by enterotoxigenic Escherichia coli (ETEC) in a pig model. Vaccine, 2018, 36(5), 723-728.
[11]
Hay, M.; Orgeur, P.; Le’vy, F.; Le Dividich, J.; Concordet, D.; Nowak, R.; Schaal, B.; Morme’de, P. Neuroendocrine consequences of very early weaning in swine. Physiol. Behav., 2001, 72, 263-269.
[12]
Dong, G.Z.; Pluske, J.R. The low feed intake in early-weaned pigs: Problems and possible solutions. Asian-Australas. J. Anim. Sci., 2007, 20, 440-452.
[13]
Kim, S.W.; McPherson, R.L.; Wu, G. Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr., 2004, 134(3), 625-630.
[14]
Dinesh, O.C.; Dodge, M.E.; Baldwin, M.P.; Bertolo, R.F.; Brunton, J.A. Enteral arginine partially ameliorates parenteral nutrition–induced small intestinal atrophy and stimulates hepatic protein synthesis in neonatal piglets. J. Parenter. Enter. Nutr., 2014, 38(8), 973-981.
[15]
Xiong, X.; Yang, H.S.; Wang, X.C.; Hu, Q.; Liu, C.X.; Wu, X.; Deng, D.; Hou, Y.Q.; Nyachoti, C.M.; Xiao, D.F.; Yin, Y.L. Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets. J. Anim. Sci., 2015, 93(3), 1089-1097.
[16]
Rhoads, J.M.; Chen, W.; Gookin, J.; Wu, G.Y.; Fu, Q.; Blikslager, A.T.; Rippe, R.A.; Argenzio, R.A.; Cance, W.G.; Weaver, E.M.; Romer, L.H. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut, 2004, 53(4), 514-522.
[17]
Mateo, R.D.; Wu, G.; Bazer, F.W.; Park, J.C.; Shinzato, I.; Kim, S.W. Dietary l- arginine supplementation enhances the reproductive performance of gilts. J. Nutr., 2007, 137, 652-656.
[18]
Wu, G.; Knabe, D.A.; Kim, S.W. Arginine: Nutrition in neonatal pigs. J. Nutr., 2004, 134, 2783-2790.
[19]
Li, J.; Xia, H.; Yao, W.; Wang, T.; Li, J.; Piao, X.; Thacker, P.; Wu, G.; Wang, F. Effects of arginine supplementation during early gestation (day 1 to 30) on litter size and plasma metabolites in gilts and sows. J. Anim. Sci., 2015, 93(11), 5291-5303.
[20]
Li, X.L.; Bazer, F.W.; Johnson, G.A.; Burghardt, R.C.; Frank, J.W.; Dai, Z.L.; Wang, J.J.; Wu, Z.L.; Shinzato, I.; Wu, G. Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids, 2014, 46, 375-384.
[21]
Li, X.L.; Bazer, F.W.; Johnson, G.A.; Burghardt, R.C.; Erikson, D.W.; Frank, J.W.; Spencer, T.E.; Shinzato, I.; Wu, W.G. Dietary supplementation with 0.8% l-arginine between days 0 and 25 of gestation reduces litter size in gilts. J. Nutr., 2010, 140, 1111-1116.
[22]
Hu, S.; Li, X.; Rezaei, R.; Meininger, C.J.; McNeal, C.J.; Wu, G. Safety of long-term dietary supplementation with L-arginine in pigs. Amino Acids, 2015, 47(5), 925-936.
[23]
Morris, S.M. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr., 2002, 22, 87-105.
[24]
Wu, G.; Meininger, C.J. Arginine nutrition and cardiovascular function. J. Nutr., 2000, 130, 2626-2629.
[25]
Fike, C.D.; Dikalova, A.; Kaplowitz, M.R.; Cunningham, G.; Summar, M.; Aschner, J.L. Rescue treatment with l-citrulline inhibits hypoxia-induced pulmonary hypertension in newborn pigs. Am. J. Respir. Cell Mol. Biol., 2015, 53(2), 255-264.
[26]
Ma, X.; Lin, Y.; Jiang, Z.; Zheng, C.; Zhou, G.; Yu, D.; Cao, T.; Wang, J.; Chen, F. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids, 2010, 38(1), 95-102.
[27]
NRC In: Nutrient requirements of swine, 11th Rev. ed.; Washington, DC: Natl. Acad. Press,. , 2012.
[28]
Gary, L.C. Nutritional Requirements of Pigs., Department of Animal and Food Sciences, University of Kentucky: MSD Manual Veterinary Manual.. 2018.
[29]
Hoving, L.L.; Soede, N.M.; Van der Peet-Schwering, C.M.C.; Graat, E.A.M.; Feitsma, H.; Kemp, B. An increased feed intake during early pregnancy improves sow body weight recovery and increases litter size in young sows. J. Anim. Sci., 2011, 89(11), 3542-3550.
[30]
Van Heugten, E. Feeding recommendations for gestating sows. North Carolina State University; Anim. Sci. Facts, 2000, pp. 1-7.
[31]
Xu, S.Y.; Wu, D.; Guo, H.Y.; Zheng, A.R.; Zhang, G. The level of feed intake affects embryo survival and gene expression during early pregnancy in gilts. Reprod. Domest. Anim., 2010, 45(4), 685-693.
[32]
Campos, P.H.R.F.; Silva, B.A.N.; Donzele, J.L.; Oliveira, R.F.M.; Knol, E.F. Effects of sow nutrition during gestation on within-litter birth weight variation: A review. Animal, 2012, 6(5), 797-806.
[33]
Farmer, C.; Hurley, W.L. Mammary development. In: The gestating and lactating sow; Wageningen Academic Publishers, 2015; pp. 193-216.
[34]
Kim, S.W.; Mateo, R.D.; Yin, Y.L.; Wu, G. Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Australas. J. Anim. Sci., 2007, 20(2), 295.
[35]
Ji, F.; Wu, G.; Blanton, J.R.; Kim, S.W. Weight and compositional changes in pregnant gilts and its implication to nutrition. J. Anim. Sci., 2005, 83, 366-375.
[36]
Kim, S.W.; Wu, G.; Baker, D.H. Amino acid nutrition of breeding sows during gestation and lactation. Pig News Info. CABI, 2005, 26, 89-99.
[37]
Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Li, X.L.; Satterfield, M.C.; Spencer, T.E. Impacts of amino acid nutrition on pregnancy outcome in pigs: Mechanisms and implications for swine production. J. Anim. Sci., 2010, 88, 195-204.
[38]
Wu, X.; Yin, Y.L.; Liu, Y.Q.; Liu, X.D.; Liu, Z.Q.; Li, T.J.; Huang, R.L.; Ruan, Z.; Deng, Z.Y. Effect of dietary arginine and N-carbamoylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows. Anim. Reprod. Sci., 2012, 132, 187-192.
[39]
Burton, G.J.; Charnock-Jones, D.S.; Jauniaux, E. Regulation of vascular growth and function in the human placenta. Reproduction, 2009, 138(6), 895-902.
[40]
Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Spencer, T.E.; Wu, G. Interferons and progesterone for establishment and maintenance of pregnancy: Interactions among novel cell signaling pathways. Reprod. Biol., 2008, 8, 179-211.
[41]
Kim, S.W.; Weaver, A.C.; Shen, Y.B.; Zhao, Y. Improving efficiency of sow productivity: Nutrition and health. J. Anim. Sci. Biotechnol., 2013, 4(1), 26.
[42]
Kong, X.; Tan, B.; Yin, Y.; Gao, H.; Li, X.; Jaeger, L.A.; Bazer, F.W.; Wu, G. l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J. Nutr. Biochem., 2012, 23, 1178-1183.
[43]
Gao, K.G.; Jiang, Z.Y.; Lin, Y.C.; Zheng, C.T.; Zhou, G.L.; Chen, F.; Yang, L.; Wu, G. Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids, 2012, 42, 2207-2214.
[44]
Kumar, K.; Verma, N. L-arginase: A medically important enzyme. Res. J. Pharm. Techn., 2013, 6(12), 1430.
[45]
Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu. Rev. Anim. Biosci., 2014, 2(1), 387-417.
[46]
Durante, W.; Johnson, F.K.; Johnson, R.A. Arginase: A critical regulator of nitric oxide synthesis and vascular function. Clin. Exp. Pharmacol. Physiol., 2007, 34(9), 906-911.
[47]
Dai, Z.; Wu, Z.; Yang, Y.; Wang, J.; Satterfield, M.C.; Meininger, C.J.; Bazer, F.W.; Wu, G. Nitric oxide and energy metabolism in mammals. Biofactors, 2013, 39(4), 383-391.
[48]
Muns, R.; Nuntapaitoon, M.; Tummaruk, P. Non-infectious causes of pre-weaning mortality in piglets. Livest. Sci., 2016, 184, 46-57.
[49]
Nuntapaitoon, M.; Tummaruk, P. Piglets pre-weaning mortality rate in a commercial swine herd in Thailand in relation to season, number of litter mates, sow’s parity number and piglet’s birth weight. In: Proceedings of the 51st Kasetsart University Annual Conference; , 2013; p. Kasetsart University: Bangkok, Thailand. O213.
[50]
Bazer, F.W.; Spencer, T.E.; Johnson, G.A.; Burghardt, R.C.; Wu, G. Comparative aspects of implantation. Reproduction, 2009, 138, 195-209.
[51]
Ford, S.P.; Vonnahme, K.A.; Wilson, M.E. Uterine capacity in the pig reflects a combination of uterine environment and conceptus genotype effects. J. Anim. Sci., 2002, 80, 66-73.
[52]
Dixit, V.D.; Parvizi, N. Nitric oxide and the control of reproduction. Anim. Reprod. Sci., 2001, 65, 1-16.
[53]
Wu, G.; Imhoff-Kunsch, B.; Girard, A.W. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr. Perinat. Epidemiol., 2012, 26, 4-26.
[54]
Krause, B.J.; Hanson, M.A.; Casanello, P. Role of nitric oxide in placental vascular development and function. Placenta, 2011, 32(11), 797-805.
[55]
De Falco, S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med., 2012, 44(1), 1.
[56]
Bérard, J.; Bee, G. Effects of dietary L-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal, 2010, 4(10), 1680-1687.
[57]
Belkacemi, L.; Nelson, D.M.; Desai, M.; Ross, M.G. Maternal undernutrition influences placental-fetal development. Biol. Reprod., 2010, 83(3), 325-331.
[58]
Wu, G.; Bazer, F.W.; Hu, J.; Johnson, G.A.; Spencer, T.E. Polyamine synthesis from proline in the developing porcine placenta. Biol. Reprod., 2005, 72, 842-850.
[59]
Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci., 2006, 84, 2316-2337.
[60]
Greene, J.M.; Dunaway, C.W.; Bowers, S.D.; Rude, B.J.; Feugang, J.M.; Ryan, P.L. Dietary l-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit–3. J. Nutr., 2012, 142(3), 456-460.
[61]
Cleal, J.K.; Lofthouse, E.M.; Sengers, B.G.; Lewis, R.M. A systems perspective on placental amino acid transport. J. Physiol., 2018, 596(23), 5511-5522.
[62]
Huppertz, B.; Peeters, L.L. Vascular biology in implantation and placentation. Angiogenesis, 2005, 8(2), 157-167.
[63]
Arroyo, J.A.; Winn, V.D. Vasculogenesis and angiogenesis in the IUGR placenta. In: Seminars in perinatology; , 2008; pp. WB Saunders.. 172-177.
[64]
Burton, G.J.; Yung, H.W.; Cindrova-Davies, T.; Charnock-Jones, D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta, 2009, 30, 43-48.
[65]
Reynolds, L.P.; Caton, J.S.; Redmer, D.A.; Grazul-Bilska, A.T.; Vonnahme, K.A.; Borowicz, P.B.; Luther, J.S.; Wallace, J.M.; Wu, G.; Spencer, T.E. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J. Physiol., 2006, 572, 51-58.
[66]
Wu, G.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr., 2004, 134, 2169-2172.
[67]
Demir, R.; Kayisli, U.A.; Cayli, S.; Huppertz, B. Sequential steps during vasculogenesis and angiogenesis in the very early human placenta. Placenta, 2006, 27(6-7), 535-539.
[68]
Gaccioli, F.; Lager, S.; Powell, T.L.; Jansson, T. Placental transport in response to altered maternal nutrition. J. Dev. Orig. Health Dis., 2013, 4(2), 101-115.
[69]
Palii, S.S.; Kays, C.E.; Deval, C.; Bruhat, A.; Fafournoux, P. sKilberg, M.S. Specificity of amino acid regulated gene expression: Analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids, 2009, 1, 79-88.
[70]
Rhoads, J.M.; Wu, G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids, 2009, 37, 111-122.
[71]
Li, P.; Knabe, D.A.; Kim, S.W.; Lynch, C.J.; Hutson, S.M.; Wu, G. Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J. Nutr., 2009, 139, 1502-1509.
[72]
Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Bazer, F.W. Select nutrients in the ovine uterine lumen: III. Expression of cationic amino acid transporters in ovine uterus and peri-implantation conceptuses. Biol. Reprod., 2009, 80, 602-609.
[73]
Bender, D.A. Amino acid metabolism; John Wiley & Sons, 2012.
[74]
Całka, J. The role of nitric oxide in the hypothalamic control of LHRH and oxytocin release, sexual behavior and aging of the LHRH and oxytocin neurons. Folia Histochem. Cytobiol., 2006, 44(1), 3-12.
[75]
Wu, G.; Meininger, C.J. Nitric oxide and vascular insulin resistance. Biofactors, 2009, 35, 21-27.
[76]
Bazer, F.W.; Burkhardt, R.C.; Johnson, G.A.; Spencer, T.E.; Wu, G. Mechanisms for the establishment and maintenance of pregnancy: Synergies from scientific collaborations. Biol. Reprod., 2018, 99(1), 225-241.
[77]
Wang, X.Q.; Frank, J.W.; Little, D.R.; Dunlap, K.A.; Satterfiled, M.C.; Burghardt, R.C.; Hansen, T.R.; Wu, G.; Bazer, F.W. Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. FASEB J., 2014, 28, 2852-2863.
[78]
Abdulhussein, A.A.; Wallace, H.M. Polyamines and membrane transporters. Amino Acids, 2014, 46(3), 655-660.
[79]
Van Winkle, L.J.; Campione, A.L.; Gorman, J.M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J. Biol. Chem., 1988, 263, 3150-3163.
[80]
Hawkins, R.A.; Viña, J.R.; Mokashi, A.; Peterson, D.R.; O’Kane, R.; Simpson, I.A.; Dejoseph, M.R.; Rasgado-Flores, H. Synergism between the two membranes of the blood-brain barrier: Glucose and amino acid transport. Am. J. Neurosci. Res., 2013, 1(1), 1-25.
[81]
Hurley, W.L.; Theil, P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients, 2011, 3(4), 442-474.
[82]
Arendt, L.M.; Kuperwasser, C. Form and function: How estrogen and progesterone regulate the mammary epithelial hierarchy. J. Mammary Gland Biol. Neoplasia, 2015, 20, 9-25.
[83]
Mateo, R.D.; Wu, G.; Moon, H.K.; Carroll, J.A.; Kim, S.W. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J. Anim. Sci., 2008, 86(4), 827-835.
[84]
Rezaei, R.; Wang, W.; Wu, Z.; Dai, Z.; Wang, J.; Wu, G. Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J. Anim. Sci. Biotechnol., 2013, 4(1), 7.
[85]
Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr., 2007, 98, 237-252.
[86]
Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin., 2013, 60(1), 49-74.
[87]
Cui, Z.H.U.; Guo, C.Y.; Gao, K.G.; Li, W.A.N.G.; Zhuang, C.H.E.N.; Jiang, Z.Y. Dietary arginine supplementation in multiparous sows during lactation improves the weight gain of suckling piglets. J. Integr. Agric., 2017, 16(3), 648-655.
[88]
Frank, J.; Escobar, W.J.; Nguyen, H.V.; Jobgen, S.C.; Jobgen, W.S.; Davis, T.A.; Wu, G. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J. Nutr., 2007, 137, 315-319.
[89]
Dallanora, D.; Walter, M.P.; Marcon, J.; Saremba, C.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Top-dressing 1% arginine supplementation in the lactation diet of sows does not affect the litter performance and milk composition. Cienc. Rural, 2016, 46(8), 1460-1465.
[90]
Lima, D.D. Dietas Suplementadas com arginina para Fêmeas suínas Hiperprolíferas no Período Final da Gestação e na Lactação, in Programa de Pósgraduação em Ciências Veterinárias , 2010. Universidade Federal de Lavras, MG: Universidade Federal de Lavras, MG.
[91]
Adams, S.; Che, D.; Qin, G.; Farouk, M.H.; Hailong, J.; Rui, H. Novel biosynthesis, metabolism and physiological functions of L-homoarginine. Curr. Protein Pept. Sci., 2019, 20(2), 184-193.
[92]
Lacasse, P.; Prosser, C.G. Mammary blood flow does not limit milk yield in lactating goats. J. Dairy Sci., 2003, 86, 2094-2097.
[93]
Al-Bayati, M.A.; Ahmad, M.A.; Khamas, W. The potential effect of L-arginine on mice placenta. Adv. Pharmacoepidemiol. Drug Saf., 2014, 3(2), 1-9.
[94]
Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal, 2014, 8(7), 1021-1030.
[95]
O’Quinn, P.R.; Knabe, D.A.; Wu, G. Arginine catabolism in lactating porcine mammary tissue. J. Anim. Sci., 2002, 80(2), 467-474.
[96]
Ma, X.; Han, M.; Li, D.F.; Hu, S.; Gilbreath, K.R.; Bazer, F.W.; Wu, G. l-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids, 2017, 49, 957-964.
[97]
Rezaei, R.; Wu, Z.; Hou, Y.; Bazer, F.W.; Wu, G. Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J. Anim. Sci. Biotechnol., 2016, 7(1), 20.
[98]
Zhu, Y.; Li, T.; Huang, S.; Wang, W.; Dai, Z.; Feng, C.; Wu, G.; Wang, J. Maternal L-glutamine supplementation during late gestation alleviates intrauterine growth restriction-induced intestinal dysfunction in piglets. Amino Acids, 2018, 50(9), 1289-1299.
[99]
Dekaney, C.M.; Wu, G.; Jaeger, L.A. Gene expression and activity of enzymes in the arginine biosynthetic pathway in porcine fetal small intestine. Pediatr. Res., 2003, 53(2), 274.
[100]
Dai, Y.H.; Liu, B.R.; Chiang, H.J.; Lee, H.J. Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. Gene, 2011, 489(2), 89-97.
[101]
Wu, G.; Bazer, F.W.; Davis, T.A.; Jaeger, L.A.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Meininger, C.J.; Spencer, T.E.; Yin, Y.L. Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci., 2007, 112(1-2), 8-22.
[102]
Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; Spencer, T.E. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids, 2011, 40(4), 1053-1063.
[103]
Morris, Jr, S.M. Recent advances in arginine metabolism: roles and regulation of the arginases. Br. J. Pharmacol., 2009, 157(6), 922-930.
[104]
Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr., 2010, 1(1), 31-37.
[105]
Bergen, W.G. Small-intestinal or colonic microbiota as a potential amino acid source in animals. Amino Acids, 2015, 47(2), 251-258.
[106]
Wu, G.; Bazer, F.W.; Datta, S.; Johnson, G.A.; Li, P.; Satterfield, M.C.; Spencer, T.E. Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids, 2008, 35(4), 691-702.
[107]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J., 2011, 33(7), 829-837.
[108]
Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Bazer, F.W. Select nutrients in the ovine uterine lumen: V. Nitric oxide synthase, GTP cyclohydrolase and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol. Reprod., 2009, 81, 67-76.
[109]
Wu, G.; Meininger, C.J. Regulation of nitric oxide synthesis by dietary factors. Annu. Rev. Nutr., 2002, 22(1), 61-86.
[110]
Huerta, L.; Rancan, L.; Simón, C.; Isea, J.; Vidaurre, E.; Vara, E.; Garutti, I.; González-Aragoneses, F. Ischaemic preconditioning prevents the liver inflammatory response to lung ischaemia/reperfusion in a swine lung autotransplant model. Eur. J. Cardiothorac. Surg., 2012, 43(6), 1194-1201.
[111]
Kong, X.F.; Yin, Y.L.; He, Q.H.; Yin, F.G.; Liu, H.J.; Li, T.J.; Huang, R.L.; Geng, M.M.; Ruan, Z.; Deng, Z.Y.; Xie, M.Y.; Wu, G. Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids, 2009, 37(4), 573-582.
[112]
Lenaerts, K.; Renes, J.; Bouwman, F.G.; Noben, J.P.; Robben, J.; Smit, E.; Mariman, E.C. Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response. Proteomics, 2007, 7(4), 565-577.
[113]
Wu, X.; Xie, C.; Yin, Y.; Li, F.; Li, T.; Huang, R.; Ruan, Z.; Deng, Z. Effect of L-arginine on HSP70 expression in liver in weanling piglets. BMC Vet. Res., 2013, 9(1), 63.
[114]
Wu, X.; Zhang, Y.; Yin, Y.; Ruan, Z.; Yu, H.; Wu, Z.; Wu, G. Roles of heat-shock protein 70 in protecting against intestinal mucosal damage. Front. Biosci., 2013, 18, 356-365.
[115]
Pie, S.; Lalles, J.P.; Blazy, F.; Laffitte, J.; Seve, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr., 2004, 134(3), 641-647.
[116]
Petersen, H.H.; Nielsen, J.P.; Heegard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res., 2004, 35(2), 163-187.
[117]
Sauerwein, H.; Schmitz, S.; Hiss, S. The acute phase protein haptoglobin and its relation to oxidative status in piglets undergoing weaning-induced stress. Redox Rep., 2005, 10(6), 295-302.
[118]
He, Q.; Tang, H.; Ren, P.; Kong, X.; Wu, G.; Yin, Y.; Wang, Y. Dietary supplementation with L-arginine partially counteracts serum metabolomes induced by weaning stress in piglets. J. Proteome Res., 2011, 10, 5214-5221.
[119]
Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.; Luo, Y.; Luo, J.; Huang, Z.; Tian, G.; Zeng, Q.; Che, L.; Chen, D. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat. Br. J. Nutr., 2017, 117(11), 1495-1502.
[120]
Yang, H.; Xiong, X.; Wang, X.; Li, T.; Yin, Y. Effects of weaning on intestinal crypt epithelial cells in piglets. Sci. Rep., 2016, 6, 36939.
[121]
Yin, J.; Duan, J.; Cui, Z.; Ren, W.; Li, T.; Yin, Y. Hydrogen peroxide-induced oxidative stress activates NF-κB and Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Advances, 2015, 5(20), 15479-15486.
[122]
Tang, Y.; Li, J.; Li, F.; Hu, C.A.A.; Liao, P.; Tan, K.; Tan, B.; Xiong, X.; Liu, G.; Li, T.; Yin, Y. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic. Biol. Med., 2015, 89, 944-951.
[123]
Yin, J.; Wu, M.; Li, Y.; Ren, W.; Xiao, H.; Chen, S.; Li, C.; Tan, B.; Ni, H.; Xiong, X.; Zhang, Y. Toxicity assessment of hydrogen peroxide on Toll-like receptor system, apoptosis, and mitochondrial respiration in piglets and IPEC-J2 cells. Oncotarget, 2017, 8(2), 3124-3131.
[124]
Macáková, K.; Mladěnka, P.; Filipský, T.; Říha, M.; Jahodář, L.; Trejtnar, F.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem., 2012, 135(4), 2584-2592.
[125]
Zheng, P.; Yu, B.; He, J.; Tian, G.; Luo, Y.; Mao, X.; Zhang, K.; Che, L.; Chen, D. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. Br. J. Nutr., 2012, 109, 2253-2260.
[126]
Kusters, B.; Peppelman, M.; Timmers, H.; Lenders, J.; Hermus, A. Response to: Morphological distinction of cortisol-producing and aldosterone-producing adrenal cortical adenomas: Not only possible but a critical clinical responsibility. Histopathology, 2012, 60(6), 1016-1017.
[127]
Breuillard, C.; Cynober, L.; Moinard, C. Citrulline and nitrogen homeostasis: An overview. Amino Acids, 2015, 47(4), 685-691.
[128]
Christoph, V.S.; Oliver, S.; Karsten, H.; Olivier, A.; Lars-Oliver, K.; Helmut, S.; Kolb-Bachofen, V. Critical role of L-arginine in endothelial cell survival during oxidative stress. Circulation, 2003, 107, 2607-2614.
[129]
Lin, C.C.; Tsai, W.C.; Chen, J.Y.; Li, Y.H.; Lin, L.J.; Chen, J.H. Supplements of L-arginine attenuate the effects of high-fat meal on endothelial function and oxidative stress. Int. J. Cardiol., 2007, 127(3), 337-341.
[130]
Lass, A.; Suessenbacher, A.; Wolkart, G.; Mayer, B.; Brunner, F. Functional and analytical evidence for scavenging of oxygen radicals by L-arginine. Mol. Pharmacol., 2002, 61(5), 1081-1088.
[131]
Bergeron, N.; Robert, C.; Guay, F. Antioxidant status and inflammatory response in weanling piglets fed diets supplemented with arginine and zinc. Can. J. Anim. Sci., 2014, 94(1), 87-97.
[132]
Moeser, A.J.; Klok, C.V.; Ryan, K.A.; Wooten, J.G.; Little, D.; Cook, V.L.; Blikslager, A.T. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), 173-181.
[133]
Moeser, A.J.; Ryan, K.A.; Nighot, P.K.; Blikslager, A.T. Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(2), 413-421.
[134]
Smith, F.; Clark, J.E.; Overman, B.L.; Tozel, C.C.; Huang, J.H.; Rivier, J.E.; Blikslager, A.T.; Moeser, A.J. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(3), 352-363.
[135]
Lalles, J.P.; Bosi, P.; Smidt, H.; Stokes, C.R. Weaning - A challenge to gut physiologists. Livest. Sci., 2007, 108(1-3), 82-93.
[136]
Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post‐weaning diarrhoea without using in‐feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. (Berl.), 2013, 97(2), 207-237.
[137]
Tan, B.; Li, X.G.; Kong, X.; Huang, R.; Ruan, Z.; Yao, K.; Deng, Z.; Xie, M.; Shinzato, I.; Yin, Y.; Wu, G. Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids, 2009, 37(2), 323-331.
[138]
Yao, K.; Yin, Y.L.; Chu, W.; Liu, Z.; Deng, D.; Li, T.; Huang, R.; Zhang, J.; Tan, B.; Wang, W.; Wu, G. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J. Nutr., 2008, 138(5), 867-872.
[139]
Zhan, Z.; Ou, D.; Piao, X.; Kim, S.W.; Liu, Y.; Wang, J. Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs. J. Nutr., 2008, 138(7), 1304-1309.
[140]
Yao, K.; Guan, S.; Li, T.; Huang, R.; Wu, G.; Ruan, Z.; Yin, Y. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br. J. Nutr., 2011, 105(5), 703-709.
[141]
He, Q.; Kong, X.; Wu, G.; Ren, P.; Tang, H.; Hao, F.; Huang, R.; Li, T.; Tan, B.; Li, P.; Tang, Z.; Yin, Y.; Wu, Y. Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids, 2009, 37(1), 199-208.
[142]
Pan, M.; Choudry, H.A.; Epler, M.J.; Meng, Q.; Karinch, A.; Lin, C.; Souba, W. Arginine transport in catabolic disease states. J. Nutr., 2004, 134(10), 2826-2829.
[143]
Closs, E.I.; Simon, A.; Vekony, N.; Rotmann, A. Plasma membrane transporters for arginine. J. Nutr., 2004, 134(10), 2752-2759.
[144]
Rhoads, J.M.; Cori, B.A.; Harrell, R.; Niu, X.; Gatlin, L.; Phillips, O.; Blikslager, A.; Moeser, A.; Odle, J. Intestinal ribosomal p70S6K signaling is increased in piglet rotavirus enteritis. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(3), 913-922.
[145]
Ban, H.; Shigemitsu, K.; Yamatsuji, T.; Haisa, M.; Nakajo, T.; Takaoka, M.; Nobuhisa, T.; Gunduz, M.; Tanaka, N.; Naomoto, Y. Arginine and leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int. J. Mol. Med., 2004, 13(4), 537-543.
[146]
El-Hattab, A.W.; Emrick, L.T.; Craigen, W.J.; Scaglia, F. Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol. Genet. Metab., 2012, 107(3), 247-252.
[147]
Morris, S.M. Regulation of arginine availability and its impact on NO synthesis. In: Nitric Oxide: Biology and Pathobiology; ed. Ignarro, L.; San Diego CA: Academic Press.,. , 2000; pp. 187-197.
[148]
Lorin, J.; Zeller, M.; Guilland, J.C.; Cottin, Y.; Vergely, C.; Rochette, L. Arginine and nitric oxide synthase: regulatory mechanisms and cardiovascular aspects. Mol. Nutr. Food Res., 2014, 58(1), 101-116.
[149]
Rehfeldt, C.; Nissen, P.M.; Kuhn, G.; Vestergaard, M.; Ender, K.; Oksbjerg, N. Effects of maternal nutrition and porcine growth hormone (pGH) treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle development, and postnatal growth. Domest. Anim. Endocrinol., 2004, 27, 267-285.
[150]
Sordella, R.; Jiang, W.; Chen, G.C.; Curto, M.; Settleman, L. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell, 2003, 113, 147-158.
[151]
Kablar, B.; Krastel, K.; Tajbakhsh, S.; Rudnicki, M.A. Myf5 and MyoD activation define independent myogenic compartments during embryonic development. Dev. Biol., 2003, 258, 307-318.
[152]
Wilkes, E.A. Nutritional, pharmacological and hormonal manipulation of muscle metabolism, (Doctoral dissertation). 2010.
[153]
Yan, X.; Zhu, M.J.; Dodson, M.V.; Du, M. Developmental programming of fetal skeletal muscle and adipose tissue development. Int. J. Genomics, 2013, 1, 29.
[154]
Nissen, P.M.; Danielsen, V.O.; Jorgensen, P.F.; Oksbjerg, N. Increased maternal nutrition of sows has no beneficial effects on muscle fiber number or postnatal growth and has no impact on the meat quality of the offspring. J. Anim. Sci., 2003, 81, 3018-3027.
[155]
Wu, G.; Jaeger, L.A.; Bazer, F.W.; Rhoads, J.M. Arginine deficiency in premature infants: biochemical mechanisms and nutritional implications. J. Nutr. Biochem., 2004, 15, 442-451.
[156]
Tomlinson, C.; Ball, R.O.; Pencharz, P.B. L-arginine synthesis from enteral proline. In: L-Arginine in Clinical Nutrition; 111-116.Humana Press: Cham, 2017; pp.
[157]
Puiman, P.J.; Stoll, B.; van Goudoever, J.B.; Burrin, D.G. Enteral arginine does not increase superior mesenteric arterial blood flow but induces mucosal growth in neonatal pigs-3. J. Nutr., 2010, 141(1), 63-70.
[158]
Meijer, A.J.; Dubbelhuis, P.F. Amino acid signaling and the integration of metabolism. Biochem. Biophys. Res. Commun., 2004, 313, 397-403.
[159]
Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, 17, 571-578.
[160]
Berard, J.; Kreuzer, M.; Bee, G. Effect of dietary arginine supplementation to sows on litter size, fetal weight and myogenesis at day 75 of gestation. J. Anim. Sci., 2009, 87(3), 30.
[161]
Jobgen, W.; Meininger, C.J.; Jobgen, S.C.; Li, P.; Lee, M.J.; Smith, S.B.; Spencer, T.E.; Fried, S.K.; Wu, G. Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J. Nutr., 2009, 139, 230-237.
[162]
Nall, J.L.; Wu, G.; Kim, K.H.; Choi, C.W.; Smith, S.B. Dietary supplementation of L-arginine and conjugated linoleic acid reduces retroperitoneal fat mass and increases lean body mass in rats. J. Nutr., 2009, 139, 1279-1285.
[163]
Flynn, N.E.; Bird, J.G.; Guthrie, A.S. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids, 2009, 37, 123-129.
[164]
Montanez, R.; Rodriguez-Caso, C.; Sanchez-Jimenez, F.; Medina, M.A. In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids, 2008, 34, 223-229.
[165]
Fu, W.J.; Haynes, T.E.; Kohli, R.; Hu, J.; Shi, W.; Spencer, T.E.; Carroll, R.J.; Meininger, C.J.; Wu, G. Dietary larginine supplementation reduces fat mass in Zucker diabetic fatty rats. J. Nutr., 2005, 135, 714-721.
[166]
Tan, B.; Yin, Y.; Liu, Z.; Li, X.; Xu, H.; Kong, X.; Huang, R.; Tang, W.; Shinzato, I.; Smith, S.B.; Wu, G. Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids, 2009, 37, 169-175.
[167]
Jobgen, W.; Fu, W.J.; Gao, H.; Li, P.; Meininger, C.J.; Smith, S.B.; Spencer, T.E.; Wu, G. High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids, 2009, 37, 187-198.
[168]
Liao, X.H.; Majithia, A.; Huang, X.L.; Kimmel, A.R. Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids, 2008, 35, 761-770.
[169]
Cullen, M.E.; Yuen, A.H.Y.; Felkin, L.E.; Smolenski, R.T.; Hall, J.L.; Grindle, S.; Miller, L.W.; Birks, E.J.; Yacoub, M.H.; Barton, P.J.R. Myocardial expression of the arginine: glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: Potential implications for local creatine synthesis. Circulation, 2006, 114(1), 16-20.
[170]
Brosnan, J.T.; Da Silva, R.P.; Brosnan, M.E. The metabolic burden of creatine synthesis. Amino Acids, 2011, 40(5), 1325-1331.
[171]
Rodionov, R.N.; Oppici, E.; Martens-Lobenhoffer, J.; Jarzebska, N.; Brilloff, S.; Burdin, D.; Demyanov, A.; Kolouschek, A.; Leiper, J.; Maas, R.; Weiss, N.; Bode-Böger, M.S.; Cellini, B. A novel pathway for metabolism of the cardiovascular risk factor homoarginine by alanine: glyoxylate aminotransferase 2. Sci. Rep., 2016, 6, 35277.
[172]
Montanez, R.; Sanchez-Jimenez, F.; Aldana-Montes, J.F.; Medina, M.A. Polyamines: Metaboolism to systems biology and beyond. Amino Acids, 2007, 33, 283-289.
[173]
Nikolic, J.; Stojanovic, I.; Pavlovic, R.; Sokolovic, D.; Bjelakovic, G.; Beninati, S. The role of L-arginine in toxic liver failure: Interrelation of arginase, polyamine catabolic enzymes and nitric oxide synthase. Amino Acids, 2007, 32, 127-131.
[174]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Guoyao, W.; Ma, X. The mechanism of L-arginine modulates signal proteins involved in glucose and lipid metabolic imbalance. Curr. Protein Pept. Sci., 2016, 18, 1-10.
[175]
Garbossa, C.A.P.; Júnior, F.C.; Silveira, H.; Faria, P.B.; Schinckel, A.P.; Abreu, M.L.T.; Cantarelli, V.S. Effects of ractopamine and arginine dietary supplementation for sows on growth performance and carcass quality of their progenies. J. Anim. Sci., 2015, 93(6), 2872-2884.
[176]
Ramaekers, P.; Kemp, B.; van der Lende, T. Progenos in sow’s increases number of piglets born. J. Anim. Sci., 2006, 84(1), 394.
[177]
Campbell, R. Pork CRC—NZ Seminar Series: Arginine and Reproduction 2009.
[178]
Gondret, F.; Perruchot, M.H.; Tacher, S.; Bérard, J.; Bee, G. Differential gene expressions in subcutaneous adipose tissue pointed to a delayed adipocytic differentiation in small pig fetuses compared to their heavier sibling. Differentiation, 2011, 81(4), 253-260.
[179]
Li, Z.; Yue, Z.; Ao, Z.; Zhao, C.; Shi, J.; Zhao, C.; Zeng, F.; Cai, G.; Zheng, E.; Yang, J.; Gu, T. Maternal dietary supplementation of arginine increases the ratio of total cloned piglets born to total transferred cloned embryos by improving the pregnancy rate of recipient sows. Anim. Reprod. Sci., 2018, 196, 211-218.
[180]
Getty, C.M.; Almeida, F.N.; Baratta, A.A.; Dilger, R.N. Plasma metabolomics indicates metabolic perturbations in low birth weight piglets supplemented with arginine. J. Anim. Sci., 2015, 93(12), 5754-5763.
[181]
Wu, X.; Ruan, Z.; Gao, Y.; Yin, Y.; Zhou, X.; Wang, L.; Geng, M.; Hou, Y.; Wu, G. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet. Amino Acids, 2010, 39(3), 831-839.
[182]
Hernandez, A.; Hansen, C.F.; Mullan, B.P.; Pluske, J.R. L-arginine supplementation of milk liquid or dry diets fed to pigs after weaning has a positive effect on production in the first three weeks after weaning at 21 days of age. Anim. Feed Sci. Technol., 2009, 154(1-2), 102-111.
[183]
Madsen, J.G.; Mueller, S.; Kreuzer, M.; Bigler, M.B.; Silacci, P.; Bee, G. Milk replacers supplemented with either L-arginine or L-carnitine potentially improve muscle maturation of early reared low birth weight piglets from hyperprolific sows. Animal, 2018, 12(1), 43-53.
[184]
Wang, Y.; Zhang, L.; Zhou, G.; Liao, Z.; Ahmad, H.; Liu, W.; Wang, T. Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. Br. J. Nutr., 2012, 108(8), 1371-1381.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2019
Published on: 24 January, 2019
Page: [736 - 749]
Pages: 14
DOI: 10.2174/1389203720666190125104959
Price: $65

Article Metrics

PDF: 31
HTML: 8
EPUB: 1
PRC: 1