Obesity Therapy: How and Why?

Author(s): Sara Paccosi, Barbara Cresci, Laura Pala, Carlo Maria Rotella, Astrid Parenti*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 2 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Obesity represents the second preventable mortality cause worldwide, and is very often associated with type 2 Diabetes Mellitus (T2DM). The first line treatment is lifestyle modification to weight-loss, but for those who fail to achieve the goal or have difficulty in maintaining achieved results, pharmacological treatment is needed. Few drugs are available today, because of their side effects.

Objective: We aim to review actual pharmacological management of obese patients, highlighting differences between Food and Drug Administration - and European Medicine Agency-approved molecules, and pointing out self-medications readily obtainable and widely distributed.

Methods: Papers on obesity, weight loss, pharmacotherapy, self- medication and diet-aid products were selected using Medline. Research articles, systematic reviews, clinical trials and meta-analyses were screened.

Results: Anti-obesity drugs with central mechanisms, such as phentermine and lorcaserin, are available in USA, but not in Europe. Phentermine/topiramate and naltrexone/bupropion combinations are now available, even though the former is still under investigation from EMA. Orlistat, with peripheral mechanisms, represents the only drug approved for weight reduction in adolescents. Liraglutide has been approved at higher dose for obesity. Anti-obesity drugs, readily obtainable from the internet, include crude-drug products and supplements for which there is often a lack of compliance to national regulatory standards.

Conclusions: Mechanisms of weight loss drugs include the reduction of energy intake or the increase in energy expenditure and sense of satiety as well as the decrease of hunger or the reduction in calories absorption. Few drugs are approved, and differences exist between USA and Europe. Moreover, herbal medicines and supplements often sold on the internet and widely used by obese patients, present a risk of adverse effects.

Keywords: Obesity, type-2 diabetes, pharmacology, action-mechanism, self-medication, dietary supplements.

[1]
Massimo, C. Eating Disorders and Obesity in: Clinical Management of Overweight and Obesity. Recommendations of the Italian. Society of Obesity (SIO); Sbraccia, P. Nisoli, E.; Vettor, R. (Eds.); Springer International Publishing, 2016, pp. 103-123.
[http://dx.doi.org/10.1007/978-3-319-24532-4]
[2]
Bray, G.A. Why do we need drugs to treat the patient with obesity? Obesity (Silver Spring), 2013, 21(5), 893-899.
[http://dx.doi.org/10.1002/oby.20394] [PMID: 23520198]
[3]
Gadde, K.M.; Pritham Raj, Y. Pharmacotherapy of obesity: clinical trials to clinical practice. Curr. Diab. Rep., 2017, 17(5), 34.
[http://dx.doi.org/10.1007/s11892-017-0859-2] [PMID: 28378293]
[4]
Flier, J.S. Obesity wars: molecular progress confronts an expanding epidemic. Cell, 2004, 116(2), 337-350.
[http://dx.doi.org/10.1016/S0092-8674(03)01081-X] [PMID: 14744442]
[5]
Kim, J.D.; Leyva, S.; Diano, S. Hormonal regulation of the hypothalamic melanocortin system. Front. Physiol., 2014, 5, 480.
[http://dx.doi.org/10.3389/fphys.2014.00480] [PMID: 25538630]
[6]
Gao, X.B.; Hermes, G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front. Syst. Neurosci., 2015, 9, 142.
[http://dx.doi.org/10.3389/fnsys.2015.00142] [PMID: 26539086]
[7]
Norton, M.; Murphy, K.G. Targeting gastrointestinal nutrient sensing mechanisms to treat obesity. Curr. Opin. Pharmacol., 2017, 37, 16-23.
[http://dx.doi.org/10.1016/j.coph.2017.07.005] [PMID: 28802874]
[8]
Heisler, L.K.; Lam, D.D. An appetite for life: brain regulation of hunger and satiety. Curr. Opin. Pharmacol., 2017, 37, 100-106.
[http://dx.doi.org/10.1016/j.coph.2017.09.002] [PMID: 29107871]
[9]
Burger, K.S.; Berner, L.A. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiol. Behav., 2014, 136, 121-127.
[http://dx.doi.org/10.1016/j.physbeh.2014.04.025] [PMID: 24769220]
[10]
Adan, R.A. Mechanisms underlying current and future anti-obesity drugs. Trends Neurosci., 2013, 36(2), 133-140.
[http://dx.doi.org/10.1016/j.tins.2012.12.001] [PMID: 23312373]
[11]
Leibowitz, S.F.; Alexander, J.T. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol. Psychiatry, 1998, 44(9), 851-864.
[http://dx.doi.org/10.1016/S0006-3223(98)00186-3] [PMID: 9807640]
[12]
Berridge, K.C. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol. Behav., 2009, 97(5), 537-550.
[http://dx.doi.org/10.1016/j.physbeh.2009.02.044] [PMID: 19336238]
[13]
Chen, Y. Regulation of food intake and the development of anti-obesity drugs. Drug Discov. Ther., 2016, 10(2), 62-73.
[http://dx.doi.org/10.5582/ddt.2016.01014] [PMID: 27063550]
[14]
Aronne, L.J.; Wadden, T.A.; Peterson, C.; Winslow, D.; Odeh, S.; Gadde, K.M. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring), 2013, 21(11), 2163-2171.
[http://dx.doi.org/10.1002/oby.20584] [PMID: 24136928]
[15]
Munro, J.F.; MacCuish, A.C.; Wilson, E.M.; Duncan, L.J. Comparison of continuous and intermittent anorectic therapy in obesity. BMJ, 1968, 1(5588), 352-354.
[http://dx.doi.org/10.1136/bmj.1.5588.352] [PMID: 15508204]
[16]
Verrotti, A.; Scaparrotta, A.; Agostinelli, S.; Di Pillo, S.; Chiarelli, F.; Grosso, S. Topiramate-induced weight loss: a review. Epilepsy Res., 2011, 95(3), 189-199.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.05.014] [PMID: 21684121]
[17]
Kiortsis, D.N. A review of the metabolic effects of controlled-release Phentermine/Topiramate. Hormones (Athens), 2013, 12(4), 507-516.
[http://dx.doi.org/10.14310/horm.2002.1438] [PMID: 24457398]
[18]
Fleming, J.W.; McClendon, K.S.; Riche, D.M. New obesity agents: lorcaserin and phentermine/topiramate. Ann. Pharmacother., 2013, 47(7-8), 1007-1016.
[http://dx.doi.org/10.1345/aph.1R779] [PMID: 23800750]
[19]
Hess, R.; Cross, L.B. The safety and efficacy of lorcaserin in the management of obesity. Postgrad. Med., 2013, 125(6), 62-72.
[http://dx.doi.org/10.3810/pgm.2013.11.2713] [PMID: 24200762]
[20]
Greenway, F.L.; Fujioka, K.; Plodkowski, R.A.; Mudaliar, S.; Guttadauria, M.; Erickson, J.; Kim, D.D.; Dunayevich, E. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2010, 376(9741), 595-605.
[http://dx.doi.org/10.1016/S0140-6736(10)60888-4] [PMID: 20673995]
[21]
Apovian, C.M.; Aronne, L.; Rubino, D.; Still, C.; Wyatt, H.; Burns, C.; Kim, D.; Dunayevich, E. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring), 2013, 21(5), 935-943.
[http://dx.doi.org/10.1002/oby.20309] [PMID: 23408728]
[22]
Wadden, T.A.; Foreyt, J.P.; Foster, G.D.; Hill, J.O.; Klein, S.; O’Neil, P.M.; Perri, M.G.; Pi-Sunyer, F.X.; Rock, C.L.; Erickson, J.S.; Maier, H.N.; Kim, D.D.; Dunayevich, E. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity (Silver Spring), 2011, 19(1), 110-120.
[http://dx.doi.org/10.1038/oby.2010.147] [PMID: 20559296]
[23]
Hollander, P.; Gupta, A.K.; Plodkowski, R.; Greenway, F.; Bays, H.; Burns, C.; Klassen, P.; Fujioka, K. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care, 2013, 36(12), 4022-4029.
[http://dx.doi.org/10.2337/dc13-0234] [PMID: 24144653]
[24]
Halseth, A.; Shan, K.; Walsh, B.; Gilder, K.; Fujioka, K. Method-of-use study of naltrexone sustained release (SR)/bupropion SR on body weight in individuals with obesity. Obesity (Silver Spring), 2017, 25(2), 338-345.
[http://dx.doi.org/10.1002/oby.21726] [PMID: 28026920]
[25]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[26]
Rotella, C.M.; Pala, L.; Mannucci, E. Glucagon-like peptide 1 (GLP-1) and metabolic diseases. J. Endocrinol. Invest., 2005, 28(8), 746-758.
[http://dx.doi.org/10.1007/BF03347560] [PMID: 16277173]
[27]
Pala, L.; Mannucci, E.; Pezzatini, A.; Ciani, S.; Sardi, J.; Raimondi, L.; Ognibene, A.; Cappadona, A.; Vannelli, B.G.; Rotella, C.M. Dipeptidyl peptidase-IV expression and activity in human glomerular endothelial cells. Biochem. Biophys. Res. Commun., 2003, 310(1), 28-31.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.111] [PMID: 14511643]
[28]
Troke, R.C.; Tan, T.M.; Bloom, S.R. The future role of gut hormones in the treatment of obesity. Ther. Adv. Chronic Dis., 2014, 5(1), 4-14.
[http://dx.doi.org/10.1177/2040622313506730] [PMID: 24381724]
[29]
Nyborg, N.C.; Mølck, A.M.; Madsen, L.W.; Knudsen, L.B. The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes, 2012, 61(5), 1243-1249.
[http://dx.doi.org/10.2337/db11-0936] [PMID: 22338093]
[30]
Knudsen, L.B.; Nielsen, P.F.; Huusfeldt, P.O.; Johansen, N.L.; Madsen, K.; Pedersen, F.Z.; Thøgersen, H.; Wilken, M.; Agersø, H. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem., 2000, 43(9), 1664-1669.
[http://dx.doi.org/10.1021/jm9909645] [PMID: 10794683]
[31]
Ostawal, A.; Mocevic, E.; Kragh, N.; Xu, W. Clinical effectiveness of liraglutide in type 2 diabetes treatment in the real-world setting: a systematic literature review. Diabetes Ther., 2016, 7(3), 411-438.
[http://dx.doi.org/10.1007/s13300-016-0180-0] [PMID: 27350545]
[32]
Astrup, A.; Rössner, S.; Van Gaal, L.; Rissanen, A.; Niskanen, L.; Al Hakim, M.; Madsen, J.; Rasmussen, M.F.; Lean, M.E. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet, 2009, 374(9701), 1606-1616.
[http://dx.doi.org/10.1016/S0140-6736(09)61375-1] [PMID: 19853906]
[33]
Lowe, M.E. Pancreatic triglyceride lipase and colipase: insights into dietary fat digestion. Gastroenterology, 1994, 107(5), 1524-1536.
[http://dx.doi.org/10.1016/0016-5085(94)90559-2] [PMID: 7926517]
[34]
Iqbal, J.; Hussain, M.M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab., 2009, 296(6), E1183-E1194.
[http://dx.doi.org/10.1152/ajpendo.90899.2008] [PMID: 19158321]
[35]
Mattson, F.H.; Volpenhein, R.A. THE DIGESTION AND ABSORPTION OF TRIGLYCERIDES. J. Biol. Chem., 1964, 239, 2772-2777.
[PMID: 14216426]
[36]
Mu, H.; Høy, C.E. The digestion of dietary triacylglycerols. Prog. Lipid Res., 2004, 43(2), 105-133.
[http://dx.doi.org/10.1016/S0163-7827(03)00050-X] [PMID: 14654090]
[37]
Masson, C.J.; Plat, J.; Mensink, R.P.; Namiot, A.; Kisielewski, W.; Namiot, Z.; Füllekrug, J.; Ehehalt, R.; Glatz, J.F.; Pelsers, M.M. Fatty acid- and cholesterol transporter protein expression along the human intestinal tract. PLoS One, 2010, 5(4)e10380
[http://dx.doi.org/10.1371/journal.pone.0010380] [PMID: 20454462]
[38]
Luiken, J.J.; Koonen, D.P.; Coumans, W.A.; Pelsers, M.M.; Binas, B.; Bonen, A.; Glatz, J.F. Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice. Lipids, 2003, 38(4), 491-496.
[http://dx.doi.org/10.1007/s11745-003-1089-6] [PMID: 12848299]
[39]
Borgstrom, B. Mode of action of tetrahydrolipstatin: a derivative of the naturally occurring lipase inhibitor lipstatin. Biochim. Biophys. Acta, 1988, 962(3), 308-316.
[http://dx.doi.org/10.1016/0005-2760(88)90260-3] [PMID: 3167082]
[40]
Weibel, E.K.; Hadvary, P.; Hochuli, E.; Kupfer, E.; Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1987, 40(8), 1081-1085.
[http://dx.doi.org/10.7164/antibiotics.40.1081] [PMID: 3680018]
[41]
Hogan, S.; Fleury, A.; Hadvary, P.; Lengsfeld, H.; Meier, M.K.; Triscari, J.; Sullivan, A.C. Studies on the antiobesity activity of tetrahydrolipstatin, a potent and selective inhibitor of pancreatic lipase. Int. J. Obes., 1987, 11(Suppl. 3), 35-42.
[PMID: 3440690]
[42]
Barbier, P.; Schneider, F. Syntheses of Tetrahydrolipstatin and Absolute Configuration of Tetrahydrolipstatin and Lipstatin. Helv. Chim. Acta, 1987, 70(1), 196-202.
[http://dx.doi.org/10.1002/hlca.19870700124]
[43]
Zhi, J.; Melia, A.T.; Eggers, H.; Joly, R.; Patel, I.H. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J. Clin. Pharmacol., 1995, 35(11), 1103-1108.
[http://dx.doi.org/10.1002/j.1552-4604.1995.tb04034.x] [PMID: 8626884]
[44]
Zhi, J.; Melia, A.T.; Guerciolini, R.; Chung, J.; Kinberg, J.; Hauptman, J.B.; Patel, I.H. Retrospective population-based analysis of the dose-response (fecal fat excretion) relationship of orlistat in normal and obese volunteers. Clin. Pharmacol. Ther., 1994, 56(1), 82-85.
[http://dx.doi.org/10.1038/clpt.1994.104] [PMID: 8033498]
[45]
Sjöström, L.; Rissanen, A.; Andersen, T.; Boldrin, M.; Golay, A.; Koppeschaar, H.P.; Krempf, M. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet, 1998, 352(9123), 167-172.
[http://dx.doi.org/10.1016/S0140-6736(97)11509-4] [PMID: 9683204]
[46]
Kelley, D.E.; Jneidi, M. Orlistat in the treatment of Type 2 diabetes mellitus. Expert Opin. Pharmacother., 2002, 3(5), 599-605.
[http://dx.doi.org/10.1517/14656566.3.5.599] [PMID: 11996637]
[47]
Miles, J.M.; Leiter, L.; Hollander, P.; Wadden, T.; Anderson, J.W.; Doyle, M.; Foreyt, J.; Aronne, L.; Klein, S. Effect of orlistat in overweight and obese patients with type 2 diabetes treated with metformin. Diabetes Care, 2002, 25(7), 1123-1128.
[http://dx.doi.org/10.2337/diacare.25.7.1123] [PMID: 12087008]
[48]
Padwal, R.; Li, S.K.; Lau, D.C. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int. J. Obes. Relat. Metab. Disord., 2003, 27(12), 1437-1446.
[http://dx.doi.org/10.1038/sj.ijo.0802475] [PMID: 12975638]
[49]
Sahebkar, A.; Simental-Mendía, L.E.; Reiner, Ž.; Kovanen, P.T.; Simental-Mendía, M.; Bianconi, V.; Pirro, M. Effect of orlistat on plasma lipids and body weight: A systematic review and meta-analysis of 33 randomized controlled trials. Pharmacol. Res., 2017, 122, 53-65.
[http://dx.doi.org/10.1016/j.phrs.2017.05.022] [PMID: 28559211]
[50]
Khera, R.; Pandey, A.; Chandar, A.K.; Murad, M.H.; Prokop, L.J.; Neeland, I.J.; Berry, J.D.; Camilleri, M.; Singh, S. Effects of weight-loss medications on cardiometabolic risk profiles: a systematic review and network meta-analysis. Gastroenterology, 2018, 154(5), 1309-1319, e7.
[http://dx.doi.org/10.1053/j.gastro.2017.12.024] [PMID: 29305933]
[51]
Mannucci, E.; Dicembrini, I.; Rotella, F.; Rotella, C.M. Orlistat and sibutramine beyond weight loss. Nutr. Metab. Cardiovasc. Dis., 2008, 18(5), 342-348.
[http://dx.doi.org/10.1016/j.numecd.2007.03.010] [PMID: 17928208]
[52]
Song, J.; Ruan, X.; Gu, M.; Wang, L.; Wang, H.; Mueck, A.O. Effect of orlistat or metformin in overweight and obese polycystic ovary syndrome patients with insulin resistance. Gynecol. Endocrinol., 2018, 34(5), 413-417.
[http://dx.doi.org/10.1080/09513590.2017.1407752] [PMID: 29172796]
[53]
Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA, 2014, 311(8), 806-814.
[http://dx.doi.org/10.1001/jama.2014.732] [PMID: 24570244]
[54]
Wijnhoven, T.M.; van Raaij, J.M.; Spinelli, A.; Starc, G.; Hassapidou, M.; Spiroski, I.; Rutter, H.; Martos, É.; Rito, A.I.; Hovengen, R.; Pérez-Farinós, N.; Petrauskiene, A.; Eldin, N.; Braeckevelt, L.; Pudule, I.; Kunešová, M.; Breda, J. WHO European Childhood Obesity Surveillance Initiative: body mass index and level of overweight among 6-9-year-old children from school year 2007/2008 to school year 2009/2010. BMC Public Health, 2014, 14, 806.
[http://dx.doi.org/10.1186/1471-2458-14-806] [PMID: 25099430]
[55]
Lazzeri, G.; Giacchi, M.V.; Spinelli, A.; Pammolli, A.; Dalmasso, P.; Nardone, P.; Lamberti, A.; Cavallo, F. Overweight among students aged 11-15 years and its relationship with breakfast, area of residence and parents’ education: results from the Italian HBSC 2010 cross-sectional study. Nutr. J., 2014, 13, 69.
[http://dx.doi.org/10.1186/1475-2891-13-69] [PMID: 24997676]
[56]
Rajjo, T.; Mohammed, K.; Alsawas, M.; Ahmed, A.T.; Farah, W.; Asi, N.; Almasri, J.; Prokop, L.J.; Murad, M.H. Treatment of pediatric obesity: an umbrella systematic review. J. Clin. Endocrinol. Metab., 2017, 102(3), 763-775.
[http://dx.doi.org/10.1210/jc.2016-2574] [PMID: 28359101]
[57]
Gupta, A.K.; Nasothimiou, E.G.; Chang, C.L.; Sever, P.S.; Dahlöf, B.; Poulter, N.R. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J. Hypertens., 2011, 29(10), 2004-2013.
[http://dx.doi.org/10.1097/HJH.0b013e32834a8a42] [PMID: 21881528]
[58]
Derosa, G.; Cicero, A.F.; D’Angelo, A.; Fogari, E.; Maffioli, P. Effects of 1-year orlistat treatment compared to placebo on insulin resistance parameters in patients with type 2 diabetes. J. Clin. Pharm. Ther., 2012, 37(2), 187-195.
[http://dx.doi.org/10.1111/j.1365-2710.2011.01280.x] [PMID: 21812797]
[59]
Aldekhail, N.M.; Logue, J.; McLoone, P.; Morrison, D.S. Effect of orlistat on glycaemic control in overweight and obese patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Obes. Rev., 2015, 16(12), 1071-1080.
[http://dx.doi.org/10.1111/obr.12318] [PMID: 26345590]
[60]
Jacob, S.; Rabbia, M.; Meier, M.K.; Hauptman, J. Orlistat 120 mg improves glycaemic control in type 2 diabetic patients with or without concurrent weight loss. Diabetes Obes. Metab., 2009, 11(4), 361-371.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00970.x] [PMID: 19207292]
[61]
Cheung, B.M.; Cheung, T.T.; Samaranayake, N.R. Safety of antiobesity drugs. Ther. Adv. Drug Saf., 2013, 4(4), 171-181.
[http://dx.doi.org/10.1177/2042098613489721] [PMID: 25114779]
[62]
Solomon, L.R.; Nixon, A.C.; Ogden, L.; Nair, B. Orlistat-induced oxalate nephropathy: an under-recognised cause of chronic kidney disease. BMJ Case Rep, 2017, 2017, pii: bcr-2016-218623.
[http://dx.doi.org/10.1136/bcr-2016-218623] [PMID: 29133578]
[63]
Esteghamati, A.; Mazaheri, T.; Vahidi Rad, M.; Noshad, S. Complementary and alternative medicine for the treatment of obesity: a critical review. Int. J. Endocrinol. Metab., 2015, 13(2)e19678
[http://dx.doi.org/10.5812/ijem.19678] [PMID: 25892995]
[64]
Blank, S.E.; Johnson, E.C.; Weeks, D.K.; Wysham, C.H. Circulating dendritic cell number and intracellular TNF-α production in women with type 2 diabetes. Acta Diabetol., 2012, 49(Suppl. 1), S25-S32.
[http://dx.doi.org/10.1007/s00592-010-0190-8] [PMID: 20449757]
[65]
Khan, M.H.; Tanimoto, T.; Nakanishi, Y.; Yoshida, N.; Tsuboi, H.; Kimura, K. Public health concerns for anti-obesity medicines imported for personal use through the internet: a cross-sectional study. BMJ Open, 2012, 2(3)e000854
[http://dx.doi.org/10.1136/bmjopen-2012-000854] [PMID: 22581794]
[66]
Ronis, M.J.J.; Pedersen, K.B.; Watt, J. Adverse effects of nutraceuticals and dietary supplements. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 583-601.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052844] [PMID: 28992429]
[67]
Fan, Y.; Adam, T.J.; McEwan, R.; Pakhomov, S.V.; Melton, G.B.; Zhang, R. Detecting signals of interactions between warfarin and dietary supplements in electronic health records. Stud. Health Technol. Inform., 2017, 245, 370-374.
[PMID: 29295118]
[68]
Sharpe, P.A.; Granner, M.L.; Conway, J.M.; Ainsworth, B.E.; Dobre, M. Availability of weight-loss supplements: Results of an audit of retail outlets in a southeastern city. J. Am. Diet. Assoc., 2006, 106(12), 2045-2051.
[http://dx.doi.org/10.1016/j.jada.2006.09.014] [PMID: 17126636]
[69]
Chan, T.Y. Potential risks associated with the use of herbal anti-obesity products. Drug Saf., 2009, 32(6), 453-456.
[http://dx.doi.org/10.2165/00002018-200932060-00002] [PMID: 19459713]
[70]
Cohen, P.A.; Travis, J.C.; Keizers, P.H.J.; Deuster, P.; Venhuis, B.J. Four experimental stimulants found in sports and weight loss supplements: 2-amino-6-methylheptane (octodrine), 1,4-dimethylamylamine (1,4-DMAA), 1,3-dimethylamylamine (1,3-DMAA) and 1,3-dimethylbutylamine (1,3-DMBA). Clin. Toxicol. (Phila.), 2018, 56(6), 421-426.
[http://dx.doi.org/10.1080/15563650.2017.1398328] [PMID: 29115866]
[71]
Dos Santos, V.B.; Daniel, D.; Singh, M.; do Lago, C.L. Amphetamine and derivatives in natural weight loss pills and dietary supplements by capillary electrophoresis-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1038, 19-25.
[http://dx.doi.org/10.1016/j.jchromb.2016.10.019] [PMID: 27776329]
[72]
Yoshida, N.; Numano, M.; Nagasaka, Y.; Ueda, K.; Tsuboi, H.; Tanimoto, T.; Kimura, K. Study on health hazards through medicines purchased on the Internet: a cross-sectional investigation of the quality of anti-obesity medicines containing crude drugs as active ingredients. BMC Complement. Altern. Med., 2015, 15(1), 430.
[http://dx.doi.org/10.1186/s12906-015-0955-2] [PMID: 26637485]
[73]
Hasani-Ranjbar, S.; Nayebi, N.; Larijani, B.; Abdollahi, M. A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J. Gastroenterol., 2009, 15(25), 3073-3085.
[http://dx.doi.org/10.3748/wjg.15.3073] [PMID: 19575486]
[74]
Bakhyia, N.; Dusemund, B.; Richter, K.; Lindtner, O.; Hirsch-Ernst, K.I.; Schäfer, B.; Lampen, A. [Risk assessment of synephrine in dietary supplements] Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2017, 60(3), 323-331.
[http://dx.doi.org/10.1007/s00103-016-2506-5] [PMID: 28058460]
[75]
Haller, C.; Kearney, T.; Bent, S.; Ko, R.; Benowitz, N.; Olson, K. Dietary supplement adverse events: report of a one-year poison center surveillance project. J. Med. Toxicol., 2008, 4(2), 84-92.
[http://dx.doi.org/10.1007/BF03160960] [PMID: 18570167]
[76]
Hernandez, A. 3,5-diiodo-L-thyronine (t2) in dietary supplements: what are the physiological effects? Endocrinology, 2015, 156(1), 5-7.
[http://dx.doi.org/10.1210/en.2014-1933] [PMID: 25526549]
[77]
Kang, G.Y.; Parks, J.R.; Fileta, B.; Chang, A.; Abdel-Rahim, M.M.; Burch, H.B.; Bernet, V.J. Thyroxine and triiodothyronine content in commercially available thyroid health supplements. Thyroid, 2013, 23(10), 1233-1237.
[http://dx.doi.org/10.1089/thy.2013.0101] [PMID: 23758055]
[78]
Pye, K.G.; Kelsey, S.M.; House, I.M.; Newland, A.C. Severe dyserythropoiesis and autoimmune thrombocytopenia associated with ingestion of kelp supplements. Lancet, 1992, 339(8808), 1540.
[http://dx.doi.org/10.1016/0140-6736(92)91305-R] [PMID: 1351210]
[79]
Eliason, B.C. Transient hyperthyroidism in a patient taking dietary supplements containing kelp. J. Am. Board Fam. Pract., 1998, 11(6), 478-480.
[http://dx.doi.org/10.3122/jabfm.11.6.478] [PMID: 9876004]
[80]
Bürgi, H. Iodine excess. Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(1), 107-115.
[http://dx.doi.org/10.1016/j.beem.2009.08.010] [PMID: 20172475]
[81]
Astell, K.J.; Mathai, M.L.; Su, X.Q. Plant extracts with appetite suppressing properties for body weight control: a systematic review of double blind randomized controlled clinical trials. Complement. Ther. Med., 2013, 21(4), 407-416.
[http://dx.doi.org/10.1016/j.ctim.2013.05.007] [PMID: 23876572]
[82]
Saunders, K.H.; Umashanker, D.; Igel, L.I.; Kumar, R.B.; Aronne, L. J. Obesity pharmacotherapy. Med. Clin. North Am., 2018, 102(1), 135-148.
[http://dx.doi.org/10.1016/j.mcna.2017.08.010] [PMID: 29156182]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 2
Year: 2020
Published on: 24 January, 2019
Page: [174 - 186]
Pages: 13
DOI: 10.2174/0929867326666190124121725
Price: $65

Article Metrics

PDF: 104
HTML: 14