Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Catalytic Processes For Lignin Valorization into Fuels and Chemicals (Aromatics)

Author(s): Maria Ventura, Marcelo E. Domine* and Marvin Chávez-Sifontes

Volume 8, Issue 1, 2019

Page: [20 - 40] Pages: 21

DOI: 10.2174/2211544708666190124112830

open access plus

Abstract

Valorization of lignocellulosic biomass becomes a sustainable alternative against the constant depletion and environmental problems of fossil sources necessary for the production of chemicals and fuels. In this context, a wide range of renewable raw materials can be obtained from lignocellulosic biomass in both polymeric (i.e. cellulose, starch, lignin) and monomeric (i.e. sugars, polyols, phenols) forms. Lignin and its derivatives are interesting platform chemicals for industry, although mainly due to its refractory characteristics its use has been less considered compared to other biomass fractions. To take advantage of the potentialities of lignin, it is necessary to isolate it from the cellulose/ hemicellulosic fraction, and then apply depolymerization processes; the overcoming of technical limitations being a current issue of growing interest for many research groups. In this review, significant data related to the structural characteristics of different types of commercial lignins are presented, also including extraction and isolation processes from biomass, and industrial feedstocks obtained as residues from paper industry under different treatments. The review mainly focuses on the different depolymerization processes (hydrolysis, hydrogenolysis, hydrodeoxygenation, pyrolysis) up to now developed and investigated analyzing the different hydrocarbons and aromatic derivatives obtained in each case, as well as the interesting reactions some of them may undergo. Special emphasis is done on the development of new catalysts and catalytic processes for the efficient production of fuels and chemicals from lignin. The possibilities of applications for lignin and its derivatives in new industrial processes and their integration into the biorefinery of the future are also assessed.

Keywords: Lignin valorization, lignin depolymerisation, biomass derivatives, catalytic processes, aromatics compounds, platform chemicals.

Graphical Abstract
[1]
Hara, M.; Nakajima, K.; Kamata, K. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci. Technol. Adv. Mater., 2015, 16, 1-22.
[2]
Esposito, D.; Antonietti, M. Redefining biorefinery: The search for unconventional building blocks for materials. Chem. Soc. Rev., 2015, 44, 5821-5835.
[3]
Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. PNAS, 2018, 115, 6506-6511.
[4]
Hughes, S.R.; Qureshi, N. Chapter 2 - Biomass for biorefining: Resources, Allocation, Utilization, and Policies. In Biorefineries, Qureshi, N.; Hodge, D. B.; Vertès, A. A., Eds. Elsevier: Amsterdam,; , 2014, pp. 37-58.
[5]
Wang, Y-Y.; Cai, C.M.; Ragauskas, A.J. Recent advances in lignin-based polyurethanes. Tappi J., 2017, 16, 203-207.
[6]
Hicks, J.C. Advances in C–O Bond Transformations in lignin-derived compounds for biofuels production. J. Phys. Chem. Lett., 2011, 2, 2280-2287.
[7]
Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev., 2018, 47, 8349-8402.
[8]
Guo, T.; Li, X.; Liu, X.; Guo, Y.; Wang, Y. Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5-Hydroxymethylfurfural, and Furfural. ChemSusChem, 2018, 11, 2758-2765.
[9]
Den, W.; Sharma, V.K.; Lee, M.; Nadadur, G.; Varma, R.S. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals. Front Chem., 2018, 6, 1-23.
[10]
Gargulak, J.D.; Lebo, S.E. Commercial Use of Lignin-Based Materials. In: Lignin: Historical, Biological, and Materials Perspectives; American Chemical Society, 1999; Vol. 742, pp. 304-320.
[11]
Insights, G. M. Global Lignin Market worth, Selbyville, Delaware 19975 USA. 2018.
[12]
Lu, F.; Ralph, J. Chapter 6 - Lignin. In: Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels; Sun, R-C., Ed.; Elsevier: Amsterdam, 2010; pp. 169-207.
[13]
Saha, K.; Dwibedi, P.; Ghosh, A.; Sikder, J.; Chakraborty, S.; Curcio, S. Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment. 3 Biotech 2018. 8, 374
[14]
Gellerstedt, G.; Li, J.; Eide, I.; Kleinert, M.; Barth, T. Chemical structures present in biofuel obtained from lignin. Energy Fuels, 2008, 22, 4240-4244.
[15]
Gellerstedt, G.; Henriksson, G. Lignins: Major sources, structure and properties. In: Monomers, Polymers and Composites from Renewable Resources; Naceur Belgacem, M.; Gandini, A., Eds.; Elsevier B.V.: Amsterdam, 2008; pp. 201-224.
[16]
Davin, L.; Lewis, N. Lignin primary structures as dirigents sites. Curr. Opin. Biotechnol., 2005, 16, 407-415.
[17]
Fernández-Rodríguez, J.; Erdocia, X.; Sánchez, C.; González Alriols, M.; Labidi, J. Lignin depolymerization for phenolic monomers production by sustainable processes. J. Energ. Chem., 2017, 26, 622-631.
[18]
Ahuja, D.; Kaushik, A.; Singh, M. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment. Int. J. Biol. Macromol., 2018, 107, 1294-1301.
[19]
Strassberger, Z.; Prinsen, P.; Klis, F.V.D.; Es, D.S.V.; Tanase, S.; Rothenberg, G. Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem., 2015, 17, 325-334.
[20]
Bi, Z.; Lai, B.; Zhao, Y.; Yan, L. Fast disassembly of lignocellulosic biomass to lignin and sugars by molten salt hydrate at low temperature for overall biorefinery. ACS Omega, 2018, 3, 2984-2993.
[21]
Obst, J.; Kirk, K. Isolation of lignin. In: Methods in enzymology, Willis A., W.; Scott T., K., Eds. Academic Press, Inc.: San Diego CA, ; , 1988; Vol. 161, pp. 3-12.
[22]
Han, T.; Sophonrat, N.; Evangelopoulos, P.; Persson, H.; Yang, W.; Jönsson, P. Evolution of sulfur during fast pyrolysis of sulfonated Kraft lignin. J. Anal. Appl. Pyr., 2018, 133, 162-168.
[23]
Beňo, E.; Góra, R.; Hutta, M. Characterization of Klason lignin samples isolated from beech and aspen using microbore column size-exclusion chromatography. J. Sep. Sci., 2018, 41, 3195-3203.
[24]
Bunzel, M.; Schüßler, A.; Tchetseubu Saha, G. Chemical characterization of klason lignin preparations from plant-based foods. J. Agric. Food Chem., 2011, 59, 12506-12513.
[25]
El Mansouri, N-E.; Yuan, Q.; Huang, F. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioRes., 2011, 6, 2647-2662.
[26]
Hita, I.; Deuss, P.J.; Bonura, G.; Frusteri, F.; Heeres, H.J. Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal-based catalysts. Fuel Proc. Tech., 2018, 179, 143-153.
[27]
Chakar, F.S.; Ragauskas, A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crops Prod., 2004, 20, 131-141.
[28]
Moutsoglou, A.; Lawburgh, B.; Lawburgh, J. Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin. J. Anal. Appl. Pyr., 2018, 135, 350-360.
[29]
Dou, J.; Kim, H.; Li, Y.; Padmakshan, D.; Yue, F.; Ralph, J.; Vuorinen, T. Structural characterization of lignins from willow bark and wood. J. Agric. Food Chem., 2018, 66, 7294-7300.
[30]
Guerra, A.; Filpponen, I.; Lucia, L.A.; Argyropoulos, D.S. Comparative evaluation of three lignin isolation protocols for various wood species. J. Agric. Food Chem., 2006, 54, 9696-9705.
[31]
You, T.; Wang, R.; Zhang, X.; Ramaswamy, S.; Xu, F. Reconstruction of lignin and hemicelluloses by aqueous ethanol anti-solvents to improve the ionic liquid-acid pretreatment performance of Arundo donax Linn. Biotechnol. Bioeng., 2017, 115, 82-91.
[32]
Hart, W.E.S.; Aldous, L.; Harper, J.B. Nucleophilic cleavage of lignin model compounds under acidic conditions in an ionic liquid: A mechanistic study. ChemPlusChem, 2018, 83, 348-353.
[33]
Hu, J.; Zhang, Q.; Lee, D-J. Kraft lignin biorefinery: A perspective. Bioresour. Technol., 2018, 247, 1181-1183.
[34]
Lora, J. Industrial comercial lingins: Sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources; Naceur Belgacem, M.; Gandini, A., Eds.; Elsevier B.V.: Amsterdam, 2008; pp. 225-241.
[35]
Vishtal, A.; Kraslawski, A. Challenges in industrial applications of technical lignins. BioResources, 2011, 6, 3547-3568.
[36]
Ghorbani, M.; Konnerth, J.; van Herwijnen, H.W.G.; Zinovyev, G.; Budjav, E.; Requejo Silva, A.; Liebner, F. Commercial lignosulfonates from different sulfite processes as partial phenol replacement in PF resole resins. J. Appl. Polym. Sci., 2018, 135, 45893.
[37]
Huang, S.; Mahmood, N.; Zhang, Y.; Tymchyshyn, M.; Yuan, Z.; Xu, C. Reductive depolymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts. Fuel, 2017, 209, 579-586.
[38]
Fang, H.; Li, C.; Qian, C.; Cui, P.; Yang, Y.; Liu, T. Separation process of mild acid-catalyzed lignin depolymerization product and extracted product thereof. CN Patent 106366134A, August 8 2017.
[39]
Aro, T.; Fatehi, P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem, 2017, 10, 1861-1877.
[40]
Gupta, A.; Gupta, R. Treatment and Recycling of Wastewater from Pulp and Paper Mill. In: Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future; Singh, R.L.; Singh, R.P., Eds.; Springer Singapore: Singapore, 2019; pp. 13-49.
[41]
Wang, G.; Chen, H. Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Separ. Purif. Tech., 2013, 105, 98-105.
[42]
Liu, G.; Liu, Y.; Ni, J.; Shi, H.; Qian, Y. Treatability of kraft spent liquor by microfiltration and ultrafiltration. Desalination, 2004, 160, 131-141.
[43]
Ooi, Z-Y.; Harruddin, N.; Othman, N. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process. Biotechnol. Prog., 2015, 31, 1305-1314.
[44]
Ferrer, A.; Byers, F.M.; Sulbarán-de-Ferrer, B.; Dale, B.E.; Aiello, C. Optimizing Ammonia Pressurization/Depressurization Processing Conditions to Enhance Enzymatic Susceptibility of Dwarf Elephant Grass. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-First Symposium on Biotechnology for Fuels and Chemicals Held; May 2–6, 1999, in Fort Collins, Colorado, Finkelstein, M.; Davison, B. H., Eds. Humana Press: Totowa, NJ,. , 2000; pp. 163-179.
[45]
Yoo, C.G.; Nghiem, N.P.; Hicks, K.B.; Kim, T.H. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour. Technol., 2011, 102, 10028-10034.
[46]
Serrano, L.; Spigno, G.; García, A.; Amendola, D.; Labidi, J. Properties of Soda and Organosolv Lignins from Apple Tree Pruning. J. Biobased Mater. Bioenergy, 2012, 6, 329-335.
[47]
Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol., 2016, 199, 42-48.
[48]
Wu, L.; Arakane, M.; Ike, M.; Wada, M.; Takai, T.; Gau, M.; Tokuyasu, K. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour. Technol., 2011, 102, 4793-4799.
[49]
Kim, T.H.; Kim, J.S.; Sunwoo, C.; Lee, Y.Y. Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol., 2003, 90, 39-47.
[50]
Kim, T.H.; Gupta, R.; Lee, Y.Y. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production. In: Biofuels: Methods and Protocols; Mielenz, J.R., Ed.; Humana Press: Totowa, NJ, 2009; pp. 79-91.
[51]
Rodríguez, A.; Moral, A.; Sánchez, R.; Jiménez, L. Use of diethanolamine to obain cellulosics pulps from solid fraction of hydrothermal treatment of rice straw. Afinidad, 2009, 65, 20-26.
[52]
Lu, F.; John, R. Lignin. In: Cereal Straw as a Resource for Sustainable Biochemicals and Biofuels; Elsevier B.V.: Amsterdam, 2010; pp. 169-207.
[53]
de la Torre, M.J.; Moral, A.; Hernández, M.D.; Cabeza, E.; Tijero, A. Organosolv lignin for biofuel. Ind. Crops Prod., 2013, 45, 58-63.
[54]
Vishtal, A.; Kraslawski, A. Challenges in industrial applications of technical lignins. BioRes., 2011, 6, 3547-3568.
[55]
Mohamad Ibrahim, M.N.; Sripransathi, R.B.; Shamsudeen, S.; Adam, F.; Bhawani, S. A concise review of the natural existance synthesis, properties and applications of syringaldehyde. BioRes., 2012, 7, 1-23.
[56]
García Calvo-Flores, F.; Dobado, J.A. Lignin as renewable raw material. Chem. Sust. Ener. Mat., 2010, 3, 1227-1235.
[57]
Lora, J.H.; Glasser, W.G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J. Polym. Environ., 2002, 10, 39-48.
[58]
Gandini, A.; Naceur Belgacem, M. Lignins as components of macromolecular materials. In: Monomers, Polymers and Composites from Renewable Resources; Naceur Belgacen, M.; Gandini, A., Eds.; Elsevier B.V.: Amsterdam, 2008; pp. 243-270.
[59]
Holladay, J.E.; Bozell, J.J.; White, J.F.; Johnson, D.J. Top Value-Added Chemicals from Biomass-Volumen II: Results of screening for potential candidates from biorefinery lignin; U.S. Department of Energy: United States of America, 2007.
[60]
Ma, R.; Xu, Y.; Zhang, X. Catalytic Oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem, 2015, 8(1), 24-51.
[61]
Sedai, B.; Díaz-Urrutia, C.; Baker, R.T.; Wu, R.; Silks, L.A.P.; Hanson, S.K. Comparison of copper and vanadium homogeneous catalysts for aerobic oxidation of lignin models. ACS Catal., 2011, 1(7), 794-804.
[62]
Li, J.; Henriksson, G.; Gellerstedt, G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol., 2007, 98(16), 3061-3068.
[63]
Deng, H.; Lin, L.; Sun, Y.; Pang, C.; Zhuang, J.; Ouyang, P.; Li, J.; Liu, S. Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process. Energy Fuels, 2009, 23(1), 19-24.
[64]
Deng, H.; Lin, L.; Liu, S. Catalysis of Cu-doped co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuels, 2010, 24, 4797-4802.
[65]
Gu, X.; Kanghua, C.; Ming, H.; Shi, Y.; Li, Z. La-modified SBA-15/H2O2 systems for the microwave assisted oxidation of organosolv beech wood lignin. Maderas Cienc. Tecnol., 2012, 14, 31-41.
[66]
Tavares, A.P.M.; Gamelas, J.A.F.; Gaspar, A.R.; Evtuguin, D.V.; Xavier, A.M.R.B. A novel approach for the oxidative catalysis employing polyoxometalate–laccase system: application to the oxygen bleaching of kraft pulp. Catal. Commun., 2004, 5, 485-489.
[67]
Gamelas, J.A.F.; Gaspar, A.R.; Evtuguin, D.V.; Pascoal Neto, C. Transition metal substituted polyoxotungstates for the oxygen delignification of kraft pulp. Appl. Catal. A Gen., 2005, 295, 134-141.
[68]
Hdidou, L.; Khallouk, K.; Solhy, A.; Manoun, B.; Oukarroum, A.; Barakat, A. Synthesis of CoFeO mixed oxides via an alginate gelation process as efficient heterogeneous catalysts for lignin depolymerization in water. Catal. Sci. Technol., 2018, 8, 5445-5453.
[69]
Mottweiler, J.; Puche, M.; Räuber, C.; Schmidt, T.; Concepción, P.; Corma, A.; Bolm, C. Copper- and vanadium-catalyzed oxidative cleavage of lignin using dioxygen. ChemSusChem, 2015, 8, 2106-2113.
[70]
Kruger, J.S.; Cleveland, N.S.; Zhang, S.; Katahira, R.; Black, B.A.; Chupka, G.M.; Lammens, T.; Hamilton, P.G.; Biddy, M.J.; Beckham, G.T. Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catal., 2016, 6, 1316-1328.
[71]
Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev., 2015, 115, 11559-11624.
[72]
Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev., 2010, 110, 3552-3599.
[73]
Yan, N.; Zhao, C.; Dyson, P.J.; Wang, C.; Liu, L-T.; Kou, Y. Selective degradation of wood lignin over noble-metal catalysis in a two-step process. ChemSusChem, 2008, 1, 626-629.
[74]
Yu, J.; Savage, P.E. Decomposition of formic acid under hydrothermal conditions. Ind. Eng. Chem. Res., 1998, 37, 2-10.
[75]
Macala, G.S.; Matson, T.D.; Johnson, C.L.; Lewis, R.S.; Iretskii, A.V.; Ford, P.C. Hydrogen transfer from supercritical methanol over a solid base catalyst: A model for lignin depolymerization. ChemSusChem, 2009, 2, 215-217.
[76]
Gosselink, R.J.A.; Teunissen, W.; van Dam, J.E.G.; de Jong, E.; Gellerstedt, G.; Scott, E.L.; Sanders, J.P.M. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour. Technol., 2012, 106, 173-177.
[77]
Barta, K.; Matson, T.D.; Fettig, M.L.; Scott, S.L.; Iretskii, A.V.; Ford, P.C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem., 2010, 12, 1640-1647.
[78]
Shabtai, J.S.; Zmierczak, W.W. Process for conversion of lignin to reformulated hydrocarbon gasoline. US Patent 5,959,167 A, September 28 1999.
[79]
Shabtai, J.S.; Zmierczak, W.W. Process for conversion of lignin to reformulated, partially oxygenated gasoline. US Patent 6,172,272 B1, January 1 2001.
[80]
Stone, M.L.; Anderson, E.M.; Meek, K.M.; Reed, M.; Katahira, R.; Chen, F.; Dixon, R.A.; Beckham, G.T.; Román-Leshkov, Y. Reductive Catalytic Fractionation of C-Lignin. ACS Sustain. Chem.& Eng., 2018, 6, 11211-11218.
[81]
Chen, J.Z.; Lu, F.; Si, X.Q.; Nie, X.; Chen, J.S.; Lu, R.; Xu, J. High yield production of natural phenolic alcohols from woody biomass using a nickel-based catalyst. ChemSusChem, 2016, 9, 3353-3360.
[82]
Domine, M.E.; Chávez-Sifontes, M.; Gutierrez, A.; Vilonen, K.; Strengell, T.; Jokela, P.; Eilos, I. Simple Process for Converting Lignocellulosic Materials. WO Patent 2018/015610 A1, January 25, 2018.
[83]
Domine, M.E.; Chávez-Sifontes, M.; Gutierrez, A.; Vilonen, K.; Strengell, T.; Jokela, P.; Eilos, I. Process for Converting Lignocellulosic Materials. WO Patent 2018/015608 A1, January 25, 2018.
[84]
Domine, M.E.; Chávez-Sifontes, M.; Gutierrez, A. Catalyst composition. WO Patent 2018/015609 A1, January 25 2018.
[85]
Renders, T.; Cooreman, E.; Van den Bosch, S.; Schutyser, W.; Koelewijn, S.F.; Vangeel, T.; Deneyer, A.; Van den Bossche, G.; Courtin, C.M.; Sels, B.F. Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem., 2018, 20, 4607-4619.
[86]
Tekin, K.; Hao, N.; Karagoz, S.; Ragauskas, A.J. Ethanol: A promising green solvent for the deconstruction of lignocellulose. ChemSusChem, 2018, 11, 3559-3575.
[87]
Limarta, S.O.; Ha, J-M.; Park, Y-K.; Lee, H.; Suh, D.J.; Jae, J. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J. Ind. Eng. Chem., 2018, 57, 45-54.
[88]
Kuznetsov, B.N.; Sharypov, V.I.; Chesnokov, N.V.; Beregovtsova, N.G.; Baryshnikov, S.V.; Lavrenov, A.V.; Vosmerikov, A.V.; Agabekov, V.E. Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinet. Catal., 2015, 56, 434-441.
[89]
Cao, L.; Zhang, C.; Chen, H.; Tsang, D.C.W.; Luo, G.; Zhang, S.; Chen, J. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol., 2017, 245, 1184-1193.
[90]
Chandrasekaran, S.R.; Murali, D.; Marley, K.A.; Larson, R.A.; Doll, K.M.; Moser, B.R.; Scott, J.; Sharma, B.K. Antioxidants from Slow Pyrolysis Bio-Oil of Birch Wood: Application for Biodiesel and Biobased Lubricants. ACS Sustain. Chem.& Eng., 2016, 4, 1414-1421.
[91]
Kang, S.; Li, X.; Fan, J.; Chang, J. Hydrothermal conversion of lignin: A review. Renew. Sustain. Energy Rev., 2013, 27, 546-558.
[92]
Joffres, B.; Lorentz, C.; Vidalie, M.; Laurenti, D.; Quoineaud, A.A.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C. Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Appl. Catal. B: Environ., 2014, 145, 167-176.
[93]
Zhang, B.; Huang, H-J.; Ramaswamy, S. Reaction Kinetics of the Hydrothermal Treatment of Lignin. Appl. Biochem. Biotechnol., 2008, 147, 119-131.
[94]
Tymchyshyn, M.; Xu, C. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresour. Technol., 2010, 101, 2483-2490.
[95]
Schuler, J.; Hornung, U.; Kruse, A.; Dahmen, N.; Sauer, J. Hydrothermal Liquefaction of Lignin. J. Biomater. Nanobiotechnol., 2017, 8(1), 13.
[96]
Yoshida, K.; Kusaki, J.; Ehara, K.; Saka, S. Characterization of Low Molecular Weight Organic Acids from Beech Wood Treated in Supercritical Water. In: Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals; Davison, B. H.; Evans, B. R.; Finkelstein, M.; McMillan, J. D., Eds. Humana Press: Totowa, NJ. , 2005; pp. 795-806.
[97]
Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515, 249.
[98]
Shuai, L.; Amiri, M.T.; Questell-Santiago, Y.M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J.S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354, 329-333.
[99]
Cao, L.; Zhang, C.; Chen, H.; Tsang, D.C.W.; Luo, G.; Zhang, S.; Chen, J. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol., 2017, 245, 1184-1193.
[100]
Drage, T.C.; Vane, C.H.; Abbott, G.D. The closed system pyrolysis of β-O-4 lignin substructure model compounds. Org. Geochem., 2002, 33, 1523-1531.
[101]
Tudorache, M.; Opris, C.; Cojocaru, B.; Apostol, N.G.; Tirsoaga, A.; Coman, S.M.; Parvulescu, V.I.; Duraki, B.; Krumeich, F.; van Bokhoven, J.A. Highly efficient, easily recoverable, and recyclable Re–SiO2–Fe3O4 catalyst for the fragmentation of lignin. ACS Sustain. Chem.& Eng., 2018, 6, 9606-9618.
[102]
Ma, Z.; Ghosh, A.; Asthana, N.; van Bokhoven, J. Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques. ChemCatChem, 2018, 10, 4431-4437.
[103]
Thring, R.W.; Katikaneni, S.P.R.; Bakhshi, N.N. The production of gasoline range hydrocarbons from Alcell lignin using HZSM-5 catalyst. Fuel Process. Technol., 2000, 62, 17-30.
[104]
Amen-Chen, C.; Pakdel, H.; Roy, C. Production of monomeric phenols by thermochemical conversion of biomass: A review. Bioresour. Technol., 2001, 79, 277-299.
[105]
Collard, F-X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev., 2014, 38, 594-608.
[106]
Bu, Q.; Lei, H.; Zacher, A.H.; Wang, L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; Ruan, R. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour. Technol., 2012, 124, 470-477.
[107]
Liguori, L.; Barth, T. Palladium-Nafion SAC 13 catalyses depolymerisation of lignin to phenols in formic acid and water. J. Anal. Appl. Pyr., 2011, 92, 477-484.
[108]
Hepditch, M.M.; Thring, R. Degradation of solvolysis lignin using Lewis acid catalysts. Can. J. Chem. Eng., 2000, 78, 226-231.
[109]
Binder, J.B.; Gray, M.J.; White, J.F.; Conrad Zhang, Z.; Holladay, J.E. Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy, 2009, 33, 1122-1130.
[110]
Prado, R.; Erdocia, X.; Labidi, J. Lignin extraction and purification with ionic liquids. J. Chem. Technol. Biotechnol., 2013, 88, 1248-1257.
[111]
Dier, T.K.F.; Rauber, D.; Durneata, D.; Hempelmann, R.; Volmer, D.A. Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci. Rep., 2017, 7, 5041.
[112]
Wang, H.; Tucker, M.; Ji, Y. Recent development in chemical depolymerization of lignin: A review. J. Appl. Chem., 2013, 2013, 1-9.
[113]
Mora-Pale, M.; Meli, L.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng., 2011, 108, 1229-1245.
[114]
Lavoie, J-M.; Baré, W.; Bilodeau, M. Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour. Technol., 2011, 102, 4917-4920.
[115]
Dabral, S.; Engel, J.; Mottweiler, J.; Spoehrle, S.S.M.; Lahive, C.W.; Bolm, C. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chem., 2018, 20, 170-182.
[116]
Roberts, V.M.; Stein, V.; Reiner, T.; Lemonidou, A.; Li, X.; Lercher, J.A. Towards quantitative catalytic lignin depolymerization. Chemistry Eur. J., 2011, 17, 5939-5948.
[117]
Toledano, A.; Serrano, L.; Labidi, J. Organosolv lignin depolymerization with different base catalysis. J. Chem. Technol. Biotechnol., 2012, 87, 1593-1599.
[118]
Nenkova, S.; Vasileva, T.; Stanulov, K. Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass. Chem. Nat. Compd., 2008, 44, 182-185.
[119]
Roberts, V.M.; Stein, V.; Reiner, T.; Lemonidou, A.; Li, X.; Lercher, J.A. Towards quantitative catalytic lignin depolymerization. Chemistry Eur. J., 2011, 17, 5939-5948.
[120]
Beauchet, R.; Monteil-Rivera, F.; Lavoie, J.M. Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour. Technol., 2012, 121, 328-334.
[121]
Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep., 2011, 28, 1883-1896.
[122]
Higuhi, T. Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase and laccase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2004, 80, 204-214.
[123]
Bugg, T.; Ahmad, M.M.; Hardiman, E.; Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol., 2011, 22, 394-400.
[124]
Bugg, T.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep., 2011, 28, 1883-1896.
[125]
Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev., 2017, 41, 941-962.
[126]
Goodwin, D.C.; Aust, S.D.; Grover, T.A. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry, 1995, 34, 5060-5065.
[127]
Hatakka, A. Biodegradation of lignin. In: Biopolymers-Lignin, Humic Substances and Coal; Hofrichter, M.; Steinbüchel, A., Eds.; Wiley-VCH, 2004; Vol. 1, pp. 129-145.
[128]
Pollegioni, L.; Tonin, F.; Rosini, E. Lignin-degrading enzymes. The FEBS J., 2015, 282, 1190-1213.
[129]
Zhang, X.; Tang, W.; Zhang, Q.; Wang, T.; Ma, L. Hydrocarbons production from lignin-derived phenolic compounds over Ni/SiO2 catalyst. Energ. Proc., 2017, 105, 518-523.
[130]
Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev., 2016, 116, 2275-2306.
[131]
Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel-Crafts alkylation - From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem., 2010, 6, 6-6.
[132]
Adam, W.; Casades, I.; Fornés, V.; García, H.; Weichold, O. UV−vis and IR spectral characterization of persistent carbenium ions, generated upon incorporation of cinnamyl alcohols in the acid zeolites HZSM-5 and HMor. J. Org. Chem., 2000, 65, 3947-3951.
[133]
Sad, M.E.; Padró, C.L.; Apesteguía, C.R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal. Today, 2008, 133-135, 720-728.
[134]
Yoshikawa, T.; Umezawa, T.; Nakasaka, Y.; Masuda, T. Conversion of alkylphenol to phenol via transalkylation using zeolite catalysts. Catal. Today, 2018.
[http://dx.doi.org/10.1016/j.cattod.2018.08.009]
[135]
Liao, Y.; d’Halluin, M.; Makshina, E.; Verboekend, D.; Sels, B.F. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: Impact of acid properties and pore constraint. Appl. Catal. B: Environ.,, 2018, 234, 117-129.
[136]
Vishwanathan, V.; Balakrishna, G.; Rajesh, B.; Jayasri, V.; Sikhwivhilu, L.M.; Coville, N.J. Alkylation of catechol with methanol to give guaiacol over sulphate-modified zirconia solid acid catalysts: The influence of structural modification of zirconia on catalytic performance. Catal. Commun., 2008, 9, 2422-2427.
[137]
Fache, M.; Boutevin, B.; Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem.& Eng., 2016, 4(1), 35-46.
[138]
Franco, A.; De, S.; Balu, A.M.; Romero, A.A.; Luque, R. Selective oxidation of isoeugenol to vanillin over mechanochemically synthesized aluminosilicate supported transition metal catalysts. Chem. Select, 2017, 2, 9546-9551.
[139]
Nie, X.; Liu, X.; Gao, L.; Liu, M.; Song, C.; Guo, X. SO3H-Functionalized ionic liquid catalyzed alkylation of catechol with tert-butyl alcohol. Ind. Eng. Chem. Res., 2010, 49, 8157-8163.
[140]
Njiojob Ngnouomeuchi, C.; Bulino, C.; Bozell, J.J.; Long, B.K. In Synthesis of enantiomerically pure lignin dimers for catalytic degradation using organometallic catalysts, American Chemical Society: , 2014. pp ORGN-95.
[141]
Zhao, F.E.A. Method for preparing Vanillin. WO Patent 2003/064363 A1, October 29 2014.
[142]
Jacquot, R.; Corma, A.; Domine, M. Method of preparing an aromatic aldehyde. FR Patent 2835251, August 1 2003.
[143]
Oregui-Bengoechea, M.; Gandarias, I.; Arias, P.L.; Barth, T. Solvent and catalyst effect in the formic acid aided lignin-to-liquids. Bioresour. Technol., 2018, 270, 529-536.
[144]
Pérez, Y.; del Hierro, I.; Fajardo, M. Synthesis of titanium alkoxide complexes with alkyl lactate ligands. Asymmetric epoxidation of cinnamyl alcohol. J. Organomet. Chem., 2012, 717, 172-179.
[145]
Pérez, Y.; Morante-Zarcero, S.; del Hierro, I.; Sierra, I.; Fajardo, M.; Otero, A. Asymmetric epoxidation of cinnamyl alcohol with optically active titanium complexes. Chirality, 2006, 18, 44-48.
[146]
Zhang, X.; Han, B.; Hua, Y-N.; Huang, M-Y.; Jiang, Y-Y. Asymmetric epoxidation of cinnamyl alcohol catalyzed by silica-supported casein–Co complex. Polym. Adv. Technol., 2002, 13, 216-219.
[147]
Ballesteros, R.; Fajardo, M.; Sierra, I.; del Hierro, I. Synthesis of titanium–triazine based MCM-41 hybrid materials as catalyst for the asymmetric epoxidation of cinammyl alcohol. J. Mol. Catal.A. Chem., 2009, 310, 83-92.

© 2024 Bentham Science Publishers | Privacy Policy