Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Study of the Chemical and Physical Properties of the Fiber-Matrix Interface of Biocomposite Material Based on a Copolymer Matrix Polylactic Acid (PLA)

Author(s): Mokhtaria Ould Kada, Allel Mokaddem*, Bendouma Doumi*, Mohamed Berber, Lahouari Temimi and Ahmed Boutaous

Volume 12, Issue 1, 2019

Page: [70 - 78] Pages: 9

DOI: 10.2174/2405520412666190123153957

Price: $65

Abstract

Background: In this paper, we have studied the improvement of the physical and chemical properties of the fiber-matrix interface of a Biocomposite based on the copolymer polylactic acid (PLA).

Methodology: We have developed an analytical model using a genetic approach to locate the interface damage under the effect of mechanical stress, temperature and humidity. Our simulation is based on Weibull's probabilistic approach and the law of water diffusion in polymer matrix, the diffusion is generated by Fick's law.

Results: Our results show that the interface of Biocomposite (Starch-PLA) is the most resistant to the different constraints applied and that the physical and chemical properties of this material are much more improved compared to other materials studied by the same genetic model.

Conclusion: Our calculations coincide perfectly with the conclusions of Antoine et al. who determined that natural fibers improve the physical properties of composite materials.

Keywords: Copolymer polylactic acid (PLA), starch, damage, fiber, matrix, biocomposites.

Graphical Abstract
[1]
Trotignon JP, Verdu J, Dobraczynski A. Piperau. Précis de matières plastiques, structures, proprieties, et mise en oeuvre. Afnor/Nathan, ISNB: 2-09-176572-4, 1998. pp. 132.
[2]
Déplanche Y. Mémo formulaire. Casteilla, ISBN 2- 7135-1190-9, 1991. pp. 187.
[3]
Trotignon JP, Verdu J, Dobraczynski A, Piperau M. Précis de matières plastiques, structures, proprieties, et mise en oeuvre. Afnor/Nathan, ISNB: 2-09- 176572-4, 1998. pp. 232.
[4]
Déplanche Y. Mémo formulaire, Casteilla, ISBN 2- 7135-1190-9, 1991. pp. 237.
[5]
Trotignon JP, Verdu J, Dobraczynski A, Piperaud M. précis de matières plastiques, Afnor/Nathan, ISBN 2- 12-425021-2, 1993, pp. 121.
[6]
Kumar KP, Krishna MG, Rao JB, Bhargava N. Fabrication and characterization of 2024 aluminium - High entropy alloy composites. J Alloys Compd 2015; 640: 421-7.
[7]
Trotignon JP, Verdu J, Dobraczynski A, Piperaud M. précis de matières plastiques, Afnor/Nathan, ISBN 2- 12-425021-2, 1993. pp. 47.
[8]
Corbet C. Mémotech-matières plastiques, Paris, Casteilla, ISBN 2-7135-1470-3, 1995. pp. 8.
[9]
Oliva JP. L'isolation écologique — Conception, matériaux, mise en oeuvre, Mens, Terre vivante, ISBN 978-2-904082-90-0, 2008. pp. 47-92.
[10]
Fanchon JL. Guide des sciences et technologies industrielles, Afnor, Nathan, ISBN 2-09-178761-2, 2001. pp. 416.
[11]
Chevalier A. Guide du dessinateur industriel, Hachette, ISBN 2-01-16-7583-9, 1998, pp. 214.
[13]
Xue LG, Tabil L, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J Polym Environ 2007; 15(1): 25-33.
[http://dx.doi.org/10.1007/s10924-006-0042-3]
[14]
Bledzki AK, Gassan J. Composite reinforced with cellulose based fibers. Prog Polym Sci 1999; 24: 221-74.
[15]
El Hadji Babacar Ly. Nouveaux matériaux composites thermoformables à base de fibres de cellulose. Matériaux. Institut National Polytechnique de Grenoble - INPG, Français, Éditeur inconnu, 2008.
[16]
Saheb DN, Jog JP. Natural fiber polymer composites: A review. Adv Polym Technol 1991; 18(4): 351-63.
[17]
Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 2000; 1: 276-7.
[18]
Collinet P, Belot F, Debodinance P, Ha DE, Lucot JP, Cosson M. Transvaginal mesh technique for pelvic organ prolapse repair: Mesh exposure management and risk factors. Int Urogynecol J Pelvic Floor Dysfunct 2006; 17(4): 315-20.
[19]
Baley C, Grohens Y, Pillin I. State of the art regarding biodegradable composites. Revue des Composites et des. Matériaux Avances 2004; 14(2): 135-66.
[20]
Ohanty AK, Misra M, Hinrichsen G. Biofibers, biodegradable polymers and biocomposites an overview. Macromol Mater and Eng 2000; 276-277: 1-24.
[21]
Tadjedit S, Mokaddem A, Temimi L, Doumi B, Boutaous A, Beldjoudi N. Comparative study by a genetic algorithm on the mechanical properties of PLA and epoxy bio-composite materials reinforced with natural fiber. Mechan Mechan Engineer 2016; 20(3): 331-45.
[22]
Caillol S. Synthese et caracterisation de nouveaux copolymeres potentiellement autoassociatifs, Material chemistry, Universite Sciences et Technologies - Bordeaux I, in French, 2002.
[23]
Maghchiche A. Characterisation of esparto grass fibers reinforced biodegradable polymer composites. Biosci Biotechnol Res Asia 2013; 10(2): 665-73.
[24]
Pras O. Utilisation de cellulose pour l’élaboration de matériaux photoluminescents ou conducteurs. Université de Grenoble, in French 2011.
[25]
Wertz JL. Les biocompositess et composites polym’ere-chanvre en particulier Unité de Chimie biologique industrielle. Université de Liège - Gembloux Agro BioTech 2014.
[26]
Mokaddem A, Alami M, Doumi B, Boutaous A. Prediction by a genetic algorithm of the fiber matrix interface damage for composite material. Part1: Study of shear damage to two composites T300/914 and Peek/APC2. Strength Mater 2014; 46(4): 543-7.
[27]
Bessadok A, Roudesli S, Marais S, Follain N, Lebrun L. Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Compos, Part A 2009; 40(2): 184-95.
[28]
Nadji H, Diouf PN, Benaboura A, Bedard Y, Riedl B, Stevanovic T. Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour Technol 2009; 100(14): 3585-92.
[29]
Bouiri B, Amrani M. Production of dissolving grade pulp from Alfa. BioResources 2009; 5(1): 291-302.
[30]
Brahim SB, Cheikh RB. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 2007; 67: 140-7.
[31]
Weibull W. Theory of the strength of materials. Royal Swed Acad Eng Sci Proc 1939; 151: 1-45.
[32]
Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952; 12: 72-9.
[33]
Lebrun GA. Comportement thermomécanique et durée de vie de composites à matrice céramique: Théorie et expérience. Université de Bordeaux Thèse de Doctorat n° 1606, 1996.
[34]
Apicella A, Egiziano L, Nicolais L, Tucci V. Environmental degradation of electrical and thermal properties of organic insulating materials. J Mater Sci 1988; 23: 729-35.
[35]
Lahouari HT, Mokaddem A, Belkaid N, Boutaous A, Bouamrane R. Study of the effect of water intake by the matrix on the optimization of the fiber matrix interface damage for a composite material by genetic algorithms. Strength of Mater 2013; 45(6): 739-47.
[36]
Alami M, Mokaddem A, Doumi B, Beldjoudi N, Boutaous A. Investigation by a genetic algorithm of the effect of moisture diffusion on the fiber matrix interface damage of graphite/epoxy nanocomposite. Recent Pat Mater Sci 2015; 8(999): 253-9.
[37]
Attmane A, Mokaddem A, Doumi B, Boutaleb M, Temimi L, Boutaous A. Study and localization by the nonlinear acoustic technique of the damage to the fiber-matrix interface of a Bio-composite. Mechan Mechan Engineer 2017; 21(3): 453-65.
[38]
Digou AL, Davies P, Baley C. Study of interfacial bonding of Flax fibre/Poly-L-lactide JNC 16. Toulouse, France. AMAC, pp10, 2009.
[39]
Vasconcelos P, Lino FJ, Neto RJ, Teixeira A. Composites hybrides renforcés aux fibres de verre et de carbone pour moulage à l’époxy, projet POCTI/ EME/41199/2001. Development of an Indirect Rapid Tooling Process Based in Polymeric Matrix Composites, approuvé par la Fundação para a Ciência e Tecnologia (FCT) et POCTI, 2001.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy