Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer

Author(s): María Cámara-Quílez, Aida Barreiro-Alonso, Esther Rodríguez-Bemonte, María Quindós-Varela, M. Esperanza Cerdán, Mónica Lamas-Maceiras*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 20 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several “omic” approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.

Keywords: Prostate cancer, ovarian cancer, differential expression, HMGB proteins, drug targets, omic approaches.

[1]
Barreiro-Alonso, A.; Lamas-Maceiras, M.; Rodríguez-Belmonte, E.; Vizoso-Vázquez, Á.; Quindós, M.; Cerdán, M.E. High mobility group B Proteins, their partners, and other redox sensors in ovarian and prostate cancer. Oxid. Med. Cell. Longev., 2016, 20165845061
[http://dx.doi.org/10.1155/2016/5845061] [PMID: 26682011]
[2]
Cohen, J.; Negroni, R.; Gaggiolo, M. Apropos of a case of meningeal cryptococcosis cured with amphoterin B. Rev. Asoc. Med. Argent., 1964, 78, 547-552.
[PMID: 14231484]
[3]
Ugrinova, I.; Pasheva, E. HMGB1 Protein: A therapeutic target inside and outside the cell. Adv. Protein Chem. Struct. Biol., 2017, 107, 37-76.
[http://dx.doi.org/10.1016/bs.apcsb.2016.10.001] [PMID: 28215228]
[4]
Das, D.; Peterson, R.C.; Scovell, W.M. High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivity. Mol. Endocrinol., 2004, 18(11), 2616-2632.
[http://dx.doi.org/10.1210/me.2004-0125] [PMID: 15256536]
[5]
Joshi, S.R.; Ghattamaneni, R.B.; Scovell, W.M. Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol. Endocrinol., 2011, 25(6), 980-994.
[http://dx.doi.org/10.1210/me.2010-0302] [PMID: 21527498]
[6]
Rowell, J.P.; Simpson, K.L.; Stott, K.; Watson, M.; Thomas, J.O. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure, 2012, 20(12), 2014-2024.
[http://dx.doi.org/10.1016/j.str.2012.09.004] [PMID: 23063560]
[7]
Zappavigna, V.; Falciola, L.; Helmer-Citterich, M.; Mavilio, F.; Bianchi, M.E. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J., 1996, 15(18), 4981-4991.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00878.x] [PMID: 8890171]
[8]
Zwilling, S.; König, H.; Wirth, T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J., 1995, 14(6), 1198-1208.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07103.x] [PMID: 7720710]
[9]
Aidinis, V.; Bonaldi, T.; Beltrame, M.; Santagata, S.; Bianchi, M.E.; Spanopoulou, E. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Mol. Cell. Biol., 1999, 19(10), 6532-6542.
[http://dx.doi.org/10.1128/MCB.19.10.6532] [PMID: 10490593]
[10]
Agresti, A.; Lupo, R.; Bianchi, M.E.; Müller, S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem. Biophys. Res. Commun., 2003, 302(2), 421-426.
[http://dx.doi.org/10.1016/S0006-291X(03)00184-0] [PMID: 12604365]
[11]
Tang, D.; Kang, R.; Zeh, H.J., III; Lotze, M.T. High-mobility group box 1, oxidative stress, and disease. Antioxid. Redox Signal., 2011, 14(7), 1315-1335.
[http://dx.doi.org/10.1089/ars.2010.3356] [PMID: 20969478]
[12]
Ohmori, H.; Luo, Y.; Kuniyasu, H. Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin. Ther. Targets, 2011, 15(2), 183-193.
[http://dx.doi.org/10.1517/14728222.2011.546785] [PMID: 21204727]
[13]
Kang, R.; Zhang, Q.; Zeh, H.J., III; Lotze, M.T.; Tang, D. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res., 2013, 19(15), 4046-4057.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0495] [PMID: 23723299]
[14]
He, S.J.; Cheng, J.; Feng, X.; Yu, Y.; Tian, L.; Huang, Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget, 2017, 8(38), 64534-64550.
[http://dx.doi.org/10.18632/oncotarget.17885] [PMID: 28969092]
[15]
van Beijnum, J.R.; Nowak-Sliwinska, P.; van den Boezem, E.; Hautvast, P.; Buurman, W.A.; Griffioen, A.W. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene, 2013, 32(3), 363-374.
[http://dx.doi.org/10.1038/onc.2012.49] [PMID: 22391561]
[16]
Abraham, A. B.; Bronstein, R.; Chen, E. I.; Koller, A.; Ronfani, L.; Maletic-Savatic, M.; Tsirka, S. E. Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells, 2013, 11(1), 18.
[http://dx.doi.org/10.1186/1477-5956-11-18]
[17]
Li, M.; Sun, L.; Luo, Y.; Xie, C.; Pang, Y.; Li, Y. High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells. Int. J. Mol. Med., 2014, 34(3), 705-714.
[http://dx.doi.org/10.3892/ijmm.2014.1820] [PMID: 24970310]
[18]
Zhao, Y.; Yang, Z.; Wu, J.; Wu, R.; Keshipeddy, S.K.; Wright, D.; Wang, L. High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol Commun, 2017, 1(8), 816-830.
[http://dx.doi.org/10.1002/hep4.1086] [PMID: 29218329]
[19]
Conti, L.; Lanzardo, S.; Arigoni, M.; Antonazzo, R.; Radaelli, E.; Cantarella, D.; Calogero, R.A.; Cavallo, F. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J., 2013, 27(12), 4731-4744.
[http://dx.doi.org/10.1096/fj.13-230201] [PMID: 23970797]
[20]
Muhammad, S.; Barakat, W.; Stoyanov, S.; Murikinati, S.; Yang, H.; Tracey, K.J.; Bendszus, M.; Rossetti, G.; Nawroth, P.P.; Bierhaus, A.; Schwaninger, M. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci., 2008, 28(46), 12023-12031.
[http://dx.doi.org/10.1523/JNEUROSCI.2435-08.2008] [PMID: 19005067]
[21]
Venegas, C.; Heneka, M.T. Danger-associated molecular patterns in Alzheimer’s disease. J. Leukoc. Biol., 2017, 101(1), 87-98.
[http://dx.doi.org/10.1189/jlb.3MR0416-204R] [PMID: 28049142]
[22]
Zhang, J.; Zhang, L.; Zhang, S.; Yu, Q.; Xiong, F.; Huang, K.; Wang, C.Y.; Yang, P. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol. Cell. Endocrinol., 2017, 454, 103-111.
[http://dx.doi.org/10.1016/j.mce.2017.06.012] [PMID: 28619625]
[23]
Wang, Y.; Zhong, J.; Zhang, X.; Liu, Z.; Yang, Y.; Gong, Q.; Ren, B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J. Diabetes Res., 2016, 20162543268
[http://dx.doi.org/10.1155/2016/2543268] [PMID: 28101517]
[24]
Harris, H.E.; Andersson, U.; Pisetsky, D.S. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol., 2012, 8(4), 195-202.
[http://dx.doi.org/10.1038/nrrheum.2011.222] [PMID: 22293756]
[25]
Yanai, H.; Taniguchi, T. Nucleic acid sensing and beyond: virtues and vices of high-mobility group box 1. J. Intern. Med., 2014, 276(5), 444-453.
[http://dx.doi.org/10.1111/joim.12285] [PMID: 25041239]
[26]
Thomas, J.O. HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans., 2001, 29(Pt 4), 395-401.
[http://dx.doi.org/10.1042/bst0290395] [PMID: 11497996]
[27]
Paull, T.T.; Haykinson, M.J.; Johnson, R.C. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev., 1993, 7(8), 1521-1534.
[http://dx.doi.org/10.1101/gad.7.8.1521] [PMID: 8339930]
[28]
Ugrinova, I.; Pashev, I.G.; Pasheva, E.A. Nucleosome binding properties and Co-remodeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins. Biochemistry, 2009, 48(27), 6502-6507.
[http://dx.doi.org/10.1021/bi9004304] [PMID: 19522541]
[29]
Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[30]
Tang, L.M.; Lu, Z.Q.; Yao, Y.M. [The extracellular role of high mobility group box-1 protein in regulation of immune response]. Sheng Li Ke Xue Jin Zhan, 2011, 42(3), 188-194.
[PMID: 21932516]
[31]
Küchler, R.; Schroeder, B.O.; Jaeger, S.U.; Stange, E.F.; Wehkamp, J. Antimicrobial activity of high-mobility-group box 2: a new function to a well-known protein. Antimicrob. Agents Chemother., 2013, 57(10), 4782-4793.
[http://dx.doi.org/10.1128/AAC.00805-13] [PMID: 23877675]
[32]
Xu, J.; Jiang, Y.; Wang, J.; Shi, X.; Liu, Q.; Liu, Z.; Li, Y.; Scott, M.J.; Xiao, G.; Li, S.; Fan, L.; Billiar, T.R.; Wilson, M.A.; Fan, J. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ., 2014, 21(8), 1229-1239.
[http://dx.doi.org/10.1038/cdd.2014.40] [PMID: 24769733]
[33]
Tohme, S.; Yazdani, H.O.; Liu, Y.; Loughran, P.; van der Windt, D.J.; Huang, H.; Simmons, R.L.; Shiva, S.; Tai, S.; Tsung, A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology, 2017, 66(1), 182-197.
[http://dx.doi.org/10.1002/hep.29184] [PMID: 28370295]
[34]
Gu, J.; Xu, R.; Li, Y.; Zhang, J.; Wang, S. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1. Am. J. Transl. Res., 2016, 8(9), 3780-3790.
[PMID: 27725858]
[35]
Wang, Z.; Wang, X.; Li, J.; Yang, C.; Xing, Z.; Chen, R.; Xu, F. HMGB1 knockdown effectively inhibits the progression of rectal cancer by suppressing HMGB1 expression and promoting apoptosis of rectal cancer cells. Mol. Med. Rep., 2016, 14(1), 1026-1032.
[http://dx.doi.org/10.3892/mmr.2016.5340] [PMID: 27220399]
[36]
Li, Z.; Wang, H.; Song, B.; Sun, Y.; Xu, Z.; Han, J. [Silencing HMGB1 expression by lentivirus-mediated small interfering RNA (siRNA) inhibits the proliferation and invasion of colorectal cancer LoVo cells in vitro and in vivo]. Zhonghua Zhong Liu Za Zhi, 2015, 37(9), 664-670.
[PMID: 26813430]
[37]
Liu, X.; Wu, J. [Mechanism of inhibitory effects of silencing high mobility group box-1 on invasion and migration of endometrial carcinoma of uterus]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016, 41(3), 251-257.
[PMID: 27033788]
[38]
Gnanasekar, M.; Thirugnanam, S.; Ramaswamy, K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int. J. Oncol., 2009, 34(2), 425-431.
[PMID: 19148477]
[39]
Cai, X.; Ding, H.; Liu, Y.; Pan, G.; Li, Q.; Yang, Z.; Liu, W. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(2), 119-127.
[http://dx.doi.org/10.1093/abbs/gmw124] [PMID: 28069585]
[40]
Wu, Z.B.; Cai, L.; Lin, S.J.; Xiong, Z.K.; Lu, J.L.; Mao, Y.; Yao, Y.; Zhou, L.F. High-mobility group box 2 is associated with prognosis of glioblastoma by promoting cell viability, invasion, and chemotherapeutic resistance. Neuro-oncol., 2013, 15(9), 1264-1275.
[http://dx.doi.org/10.1093/neuonc/not078] [PMID: 23828241]
[41]
Zhang, W.; Zhang, Y.; Ding, K.; Zhang, H.; Zhao, Q.; Liu, Z.; Xu, Y. Involvement of JNK1/2-NF-κBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed. Pharmacother., 2018, 106, 1063-1071.
[http://dx.doi.org/10.1016/j.biopha.2018.07.015] [PMID: 30119172]
[42]
Yusein-Myashkova, S.; Stoykov, I.; Gospodinov, A.; Ugrinova, I.; Pasheva, E. The repair capacity of lung cancer cell lines A549 and H1299 depends on HMGB1 expression level and the p53 status. J. Biochem., 2016, 160(1), 37-47.
[http://dx.doi.org/10.1093/jb/mvw012] [PMID: 26896489]
[43]
Syed, N.; Chavan, S.; Sahasrabuddhe, N.A.; Renuse, S.; Sathe, G.; Nanjappa, V.; Radhakrishnan, A.; Raja, R.; Pinto, S.M.; Srinivasan, A.; Prasad, T.S.; Srikumar, K.; Gowda, H.; Santosh, V.; Sidransky, D.; Califano, J.A.; Pandey, A.; Chatterjee, A. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics, 2015, 15(2-3), 383-393.
[http://dx.doi.org/10.1002/pmic.201400338] [PMID: 25327479]
[44]
Li, Y.; Wang, P.; Zhao, J.; Li, H.; Liu, D.; Zhu, W. HMGB1 attenuates TGF-β-induced epithelial-mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression. Mol. Cell. Biochem., 2017, 431(1-2), 1-10.
[http://dx.doi.org/10.1007/s11010-017-2968-2] [PMID: 28285361]
[45]
Xu, Y.F.; Ge, F.J.; Han, B.; Yang, X.Q.; Su, H.; Zhao, A.C.; Zhao, M.H.; Yang, Y.B.; Yang, J. High-mobility group box 1 expression and lymph node metastasis in intrahepatic cholangiocarcinoma. World J. Gastroenterol., 2015, 21(11), 3256-3265.
[http://dx.doi.org/10.3748/wjg.v21.i11.3256] [PMID: 25805932]
[46]
Song, B.; Song, W.G.; Li, Z.J.; Xu, Z.F.; Wang, X.W.; Wang, C.X.; Liu, J. Effect of HMGB1 silencing on cell proliferation, invasion and apoptosis of MGC-803 gastric cancer cells. Cell Biochem. Funct., 2012, 30(1), 11-17.
[http://dx.doi.org/10.1002/cbf.1811] [PMID: 21953494]
[47]
Liu, P.L.; Tsai, J.R.; Hwang, J.J.; Chou, S.H.; Cheng, Y.J.; Lin, F.Y.; Chen, Y.L.; Hung, C.Y.; Chen, W.C.; Chen, Y.H.; Chong, I.W. High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am. J. Respir. Cell Mol. Biol., 2010, 43(5), 530-538.
[http://dx.doi.org/10.1165/rcmb.2009-0269OC] [PMID: 19933377]
[48]
Cui, G.; Cai, F.; Ding, Z.; Gao, L. HMGB2 promotes the malignancy of human gastric cancer and indicates poor survival outcome. Hum. Pathol., 2019, 84(1), 133-141.
[PMID: 30296520]
[49]
Chen, R.; Zhu, S.; Fan, X.G.; Wang, H.; Lotze, M.T.; Zeh, H.J., III; Billiar, T.R.; Kang, R.; Tang, D. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology, 2018, 67(5), 1823-1841.
[http://dx.doi.org/10.1002/hep.29663] [PMID: 29149457]
[50]
Wu, Q.; Meng, W.Y.; Jie, Y.; Zhao, H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J. Cell. Physiol., 2018, 233(9), 6750-6757.
[http://dx.doi.org/10.1002/jcp.26383] [PMID: 29226325]
[51]
Li, J.; Gao, J.; Tian, W.; Li, Y.; Zhang, J. Long non-coding RNA MALAT1 drives gastric cancer progression by regulating HMGB2 modulating the miR-1297. Cancer Cell Int., 2017, 17(1), 44.
[http://dx.doi.org/10.1186/s12935-017-0408-8]
[52]
Elangovan, I.; Thirugnanam, S.; Chen, A.; Zheng, G.; Bosland, M.C.; Kajdacsy-Balla, A.; Gnanasekar, M. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth. Biochem. Biophys. Res. Commun., 2012, 417(4), 1133-1138.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.060] [PMID: 22206663]
[53]
Arumugam, T.; Ramachandran, V.; Gomez, S.B.; Schmidt, A.M.; Logsdon, C.D. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin. Cancer Res., 2012, 18(16), 4356-4364.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0221] [PMID: 22718861]
[54]
Zhang, Y.; Liu, Z.; Hao, X.; Li, A.; Zhang, J.; Carey, C.D.; Falo, L.D.; You, Z. Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model. Cancer Immunol. Immunother., 2018, 67(3), 353-366.
[http://dx.doi.org/10.1007/s00262-017-2087-7] [PMID: 29116372]
[55]
Ronfani, L.; Ferraguti, M.; Croci, L.; Ovitt, C.E.; Schöler, H.R.; Consalez, G.G.; Bianchi, M.E. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development, 2001, 128(8), 1265-1273.
[PMID: 11262228]
[56]
Calogero, S.; Grassi, F.; Aguzzi, A.; Voigtländer, T.; Ferrier, P.; Ferrari, S.; Bianchi, M.E. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet., 1999, 22(3), 276-280.
[http://dx.doi.org/10.1038/10338] [PMID: 10391216]
[57]
Pasheva, E.; Sarov, M.; Bidjekov, K.; Ugrinova, I.; Sarg, B.; Lindner, H.; Pashev, I.G. In vitro acetylation of HMGB-1 and -2 proteins by CBP: the role of the acidic tail. Biochemistry, 2004, 43(10), 2935-2940.
[http://dx.doi.org/10.1021/bi035615y] [PMID: 15005629]
[58]
Bonaldi, T.; Talamo, F.; Scaffidi, P.; Ferrera, D.; Porto, A.; Bachi, A.; Rubartelli, A.; Agresti, A.; Bianchi, M.E. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J., 2003, 22(20), 5551-5560.
[http://dx.doi.org/10.1093/emboj/cdg516] [PMID: 14532127]
[59]
Fan, Z.; Beresford, P.J.; Zhang, D.; Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol., 2002, 22(8), 2810-2820.
[http://dx.doi.org/10.1128/MCB.22.8.2810-2820.2002] [PMID: 11909973]
[60]
Müller, S.; Ronfani, L.; Bianchi, M.E. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med., 2004, 255(3), 332-343.
[http://dx.doi.org/10.1111/j.1365-2796.2003.01296.x] [PMID: 14871457]
[61]
Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; Foster, B. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013, 29; 45(6), 580-585.
[62]
Lindskog, C. The Human Protein Atlas - an important resource for basic and clinical research. Expert Rev. Proteomics, 2016, 13(7), 627-629.
[http://dx.doi.org/10.1080/14789450.2016.1199280] [PMID: 27276068]
[63]
Kawaji, H.; Kasukawa, T.; Forrest, A.; Carninci, P.; Hayashizaki, Y. The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. Sci. Data, 2017, 4170113
[http://dx.doi.org/10.1038/sdata.2017.113] [PMID: 28850107]
[64]
Wang, B.; Li, F.; Zhang, C.; Wei, G.; Liao, P.; Dong, N. High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg., 2016, 151(1), 255-262.
[http://dx.doi.org/10.1016/j.jtcvs.2015.09.077] [PMID: 26515875]
[65]
Laurent, B.; Randrianarison-Huetz, V.; Maréchal, V.; Mayeux, P.; Dusanter-Fourt, I.; Duménil, D. High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood, 2010, 115(3), 687-695.
[http://dx.doi.org/10.1182/blood-2009-06-230094] [PMID: 19965638]
[66]
Taniguchi, N.; Caramés, B.; Hsu, E.; Cherqui, S.; Kawakami, Y.; Lotz, M. Expression patterns and function of chromatin protein HMGB2 during mesenchymal stem cell differentiation. J. Biol. Chem., 2011, 286(48), 41489-41498.
[http://dx.doi.org/10.1074/jbc.M111.236984] [PMID: 21890638]
[67]
Zhou, X.; Li, M.; Huang, H.; Chen, K.; Yuan, Z.; Zhang, Y.; Nie, Y.; Chen, H.; Zhang, X.; Chen, L.; Chen, Y.; Mo, D. HMGB2 regulates satellite-cell-mediated skeletal muscle regeneration through IGF2BP2. J. Cell Sci., 2016, 129(22), 4305-4316.
[http://dx.doi.org/10.1242/jcs.189944] [PMID: 27672022]
[68]
Bronstein, R.; Kyle, J.; Abraham, A.B.; Tsirka, S.E. Neurogenic to gliogenic fate transition perturbed by loss of HMGB2. Front. Mol. Neurosci., 2017, 10, 153.
[http://dx.doi.org/10.3389/fnmol.2017.00153] [PMID: 28588451]
[69]
Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Tanizawa, H.; Fatkhutdinov, N.; Bitler, B.G.; Le, L.; Alicea, G.; Yang, T.L.; Johnson, F.B.; Noma, K.I.; Zhang, R. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol., 2016, 215(3), 325-334.
[http://dx.doi.org/10.1083/jcb.201608026] [PMID: 27799366]
[70]
Taniguchi, N.; Caramés, B.; Kawakami, Y.; Amendt, B.A.; Komiya, S.; Lotz, M. Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc. Natl. Acad. Sci. USA, 2009, 106(39), 16817-16822.
[http://dx.doi.org/10.1073/pnas.0904414106] [PMID: 19805379]
[71]
Kimura, A.; Matsuda, T.; Sakai, A.; Murao, N.; Nakashima, K. HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev. Dyn., 2018, 247(1), 229-238.
[http://dx.doi.org/10.1002/dvdy.24559] [PMID: 28771884]
[72]
Bukowska, B.; Rogalska, A.; Marczak, A. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B. Life Sci., 2016, 151, 86-92.
[http://dx.doi.org/10.1016/j.lfs.2016.02.095] [PMID: 26944437]
[73]
Paek, J.; Lee, M.; Nam, E.J.; Kim, S.W.; Kim, Y.T. Clinical impact of high mobility group box 1 protein in epithelial ovarian cancer. Arch. Gynecol. Obstet., 2016, 293(3), 645-650.
[http://dx.doi.org/10.1007/s00404-015-3864-1] [PMID: 26305032]
[74]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA, 2004, 101(25), 9309-9314.
[http://dx.doi.org/10.1073/pnas.0401994101] [PMID: 15184677]
[75]
Ouellet, V.; Le Page, C.; Guyot, M.C.; Lussier, C.; Tonin, P.N.; Provencher, D.M.; Mes-Masson, A.M. SET complex in serous epithelial ovarian cancer. Int. J. Cancer, 2006, 119(9), 2119-2126.
[http://dx.doi.org/10.1002/ijc.22054] [PMID: 16823850]
[76]
Bernardini, M.; Lee, C.H.; Beheshti, B.; Prasad, M.; Albert, M.; Marrano, P.; Begley, H.; Shaw, P.; Covens, A.; Murphy, J.; Rosen, B.; Minkin, S.; Squire, J.A.; Macgregor, P.F. High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia, 2005, 7(6), 603-613.
[http://dx.doi.org/10.1593/neo.04760] [PMID: 16036111]
[77]
Varma, R.R.; Hector, S.M.; Clark, K.; Greco, W.R.; Hawthorn, L.; Pendyala, L. Gene expression profiling of a clonal isolate of oxaliplatin-resistant ovarian carcinoma cell line A2780/C10. Oncol. Rep., 2005, 14(4), 925-932.
[http://dx.doi.org/10.3892/or.14.4.925] [PMID: 16142353]
[78]
Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet., 2013, 45(10), 1113-1120.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[79]
Ko, Y.B.; Kim, B.R.; Nam, S.L.; Yang, J.B.; Park, S.Y.; Rho, S.B. High-mobility group box 1 (HMGB1) protein regulates tumor-associated cell migration through the interaction with BTB domain. Cell. Signal., 2014, 26(4), 777-783.
[http://dx.doi.org/10.1016/j.cellsig.2013.12.018] [PMID: 24412753]
[80]
Zhang, J.; Shao, S.; Han, D.; Xu, Y.; Jiao, D.; Wu, J.; Yang, F.; Ge, Y.; Shi, S.; Li, Y.; Wen, W.; Qin, W. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-κB signaling pathway. Int. J. Oncol., 2018, 53(2), 659-671.
[http://dx.doi.org/10.3892/ijo.2018.4420] [PMID: 29845254]
[81]
Brusa, D.; Migliore, E.; Garetto, S.; Simone, M.; Matera, L. Immunogenicity of 56 degrees C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate, 2009, 69(12), 1343-1352.
[http://dx.doi.org/10.1002/pros.20981] [PMID: 19496055]
[82]
De Sanctis, F.; Sandri, S.; Martini, M.; Mazzocco, M.; Fiore, A.; Trovato, R.; Garetto, S.; Brusa, D.; Ugel, S.; Sartoris, S. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens. Vaccine, 2018, 36(25), 3708-3716.
[http://dx.doi.org/10.1016/j.vaccine.2018.05.010] [PMID: 29752021]
[83]
Gao, T.; Chen, Z.; Chen, H.; Yuan, H.; Wang, Y.; Peng, X.; Wei, C.; Yang, J.; Xu, C. Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization. Biochem. Biophys. Res. Commun., 2018, 497(1), 430-436.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.102] [PMID: 29448108]
[84]
Shi, Y.; Guo, X.; Zhang, J.; Zhou, H.; Sun, B.; Feng, J. DNA binding protein HMGB1 secreted by activated microglia promotes the apoptosis of hippocampal neurons in diabetes complicated with OSA. Brain Behav. Immun., 2018, 73, 482-492.
[http://dx.doi.org/10.1016/j.bbi.2018.06.012] [PMID: 29920330]
[85]
Bianchi, M.E.; Crippa, M.P.; Manfredi, A.A.; Mezzapelle, R.; Rovere Querini, P.; Venereau, E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev., 2017, 280(1), 74-82.
[http://dx.doi.org/10.1111/imr.12601] [PMID: 29027228]
[86]
Cottone, L.; Capobianco, A.; Gualteroni, C.; Perrotta, C.; Bianchi, M.E.; Rovere-Querini, P.; Manfredi, A.A. 5-Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells. Int. J. Cancer, 2015, 136(6), 1381-1389.
[http://dx.doi.org/10.1002/ijc.29125] [PMID: 25098891]
[87]
Wan, W.; Cao, L.; Khanabdali, R.; Kalionis, B.; Tai, X.; Xia, S. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. J. Immunol. Res., 2016, 20166430423
[http://dx.doi.org/10.1155/2016/6430423] [PMID: 27294160]
[88]
Schiraldi, M.; Raucci, A.; Muñoz, L.M.; Livoti, E.; Celona, B.; Venereau, E.; Apuzzo, T.; De Marchis, F.; Pedotti, M.; Bachi, A.; Thelen, M.; Varani, L.; Mellado, M.; Proudfoot, A.; Bianchi, M.E.; Uguccioni, M. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med., 2012, 209(3), 551-563.
[http://dx.doi.org/10.1084/jem.20111739] [PMID: 22370717]
[89]
Foglio, E.; Puddighinu, G.; Germani, A.; Russo, M.A.; Limana, F. HMGB1 Inhibits Apoptosis Following MI and Induces Autophagy via mTORC1 Inhibition. J. Cell. Physiol., 2017, 232(5), 1135-1143.
[http://dx.doi.org/10.1002/jcp.25576] [PMID: 27580416]
[90]
Chen, S.; Dong, Z.; Yang, P.; Wang, X.; Jin, G.; Yu, H.; Chen, L.; Li, L.; Tang, L.; Bai, S.; Yan, H.; Shen, F.; Cong, W.; Wen, W.; Wang, H. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett., 2017, 394, 22-32.
[http://dx.doi.org/10.1016/j.canlet.2017.02.011] [PMID: 28216372]
[91]
Uzawa, A.; Mori, M.; Taniguchi, J.; Masuda, S.; Muto, M.; Kuwabara, S. Anti-high mobility group box 1 monoclonal antibody ameliorates experimental autoimmune encephalomyelitis. Clin. Exp. Immunol., 2013, 172(1), 37-43.
[http://dx.doi.org/10.1111/cei.12036] [PMID: 23480183]
[92]
Liu, K.; Mori, S.; Takahashi, H.K.; Tomono, Y.; Wake, H.; Kanke, T.; Sato, Y.; Hiraga, N.; Adachi, N.; Yoshino, T.; Nishibori, M. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J., 2007, 21(14), 3904-3916.
[http://dx.doi.org/10.1096/fj.07-8770com] [PMID: 17628015]
[93]
Nishibori, M. [HMGB1 as a representative DAMP and anti-HMGB1 antibody therapy]. Nippon Yakurigaku Zasshi, 2018, 151(1), 4-8.
[http://dx.doi.org/10.1254/fpj.151.4] [PMID: 29321395]
[94]
Fujita, K.; Motoki, K.; Tagawa, K.; Chen, X.; Hama, H.; Nakajima, K.; Homma, H.; Tamura, T.; Watanabe, H.; Katsuno, M.; Matsumi, C.; Kajikawa, M.; Saito, T.; Saido, T.; Sobue, G.; Miyawaki, A.; Okazawa, H. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep., 2016, 6, 31895.
[http://dx.doi.org/10.1038/srep31895] [PMID: 27557632]
[95]
Xiong, X.; Gu, L.; Wang, Y.; Luo, Y.; Zhang, H.; Lee, J.; Krams, S.; Zhu, S.; Zhao, H. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. J. Neuroinflammation, 2016, 13(1), 241.
[http://dx.doi.org/10.1186/s12974-016-0705-5] [PMID: 27609334]
[96]
Santoro, M.; Maetzler, W.; Stathakos, P.; Martin, H.L.; Hobert, M.A.; Rattay, T.W.; Gasser, T.; Forrester, J.V.; Berg, D.; Tracey, K.J.; Riedel, G.; Teismann, P. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol. Dis., 2016, 91, 59-68.
[http://dx.doi.org/10.1016/j.nbd.2016.02.018] [PMID: 26921471]
[97]
Zhao, F.; Fang, Y.; Deng, S.; Li, X.; Zhou, Y.; Gong, Y.; Zhu, H.; Wang, W. Glycyrrhizin Protects Rats from Sepsis by Blocking HMGB1 Signaling. BioMed Res. Int., 2017, 20179719647
[http://dx.doi.org/10.1155/2017/9719647] [PMID: 28484719]
[98]
Kuroiwa, Y.; Takakusagi, Y.; Kusayanagi, T.; Kuramochi, K.; Imai, T.; Hirayama, T.; Ito, I.; Yoshida, M.; Sakaguchi, K.; Sugawara, F. Identification and characterization of the direct interaction between methotrexate (MTX) and high-mobility group box 1 (HMGB1) protein. PLoS One, 2013, 8(5)e63073
[http://dx.doi.org/10.1371/journal.pone.0063073] [PMID: 23658798]
[99]
Song, J.H.; Kim, J.Y.; Piao, C.; Lee, S.; Kim, B.; Song, S.J.; Choi, J.S.; Lee, M. Delivery of the high-mobility group box 1 box A peptide using heparin in the acute lung injury animal models. J. Control. Release, 2016, 234, 33-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.039] [PMID: 27196743]
[100]
Choi, H.W.; Tian, M.; Song, F.; Venereau, E.; Preti, A.; Park, S.W.; Hamilton, K.; Swapna, G.V.; Manohar, M.; Moreau, M.; Agresti, A.; Gorzanelli, A.; De Marchis, F.; Wang, H.; Antonyak, M.; Micikas, R.J.; Gentile, D.R.; Cerione, R.A.; Schroeder, F.C.; Montelione, G.T.; Bianchi, M.E.; Klessig, D.F. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Mol. Med., 2015, 21, 526-535.
[http://dx.doi.org/10.2119/molmed.2015.00148] [PMID: 26101955]
[101]
Lee, S.; Nam, Y.; Koo, J.Y.; Lim, D.; Park, J.; Ock, J.; Kim, J.; Suk, K.; Park, S.B. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat. Chem. Biol., 2014, 10(12), 1055-1060.
[http://dx.doi.org/10.1038/nchembio.1669] [PMID: 25306442]
[102]
Horiuchi, T.; Sakata, N.; Narumi, Y.; Kimura, T.; Hayashi, T.; Nagano, K.; Liu, K.; Nishibori, M.; Tsukita, S.; Yamada, T.; Katagiri, H.; Shirakawa, R.; Horiuchi, H. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J. Biol. Chem., 2017, 292(20), 8436-8446.
[http://dx.doi.org/10.1074/jbc.M116.769380] [PMID: 28373282]
[103]
Yang, M.; Cao, L.; Xie, M.; Yu, Y.; Kang, R.; Yang, L.; Zhao, M.; Tang, D. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem. Pharmacol., 2013, 86(3), 410-418.
[http://dx.doi.org/10.1016/j.bcp.2013.05.013] [PMID: 23707973]
[104]
Chang, K.C.; Ko, Y.S.; Kim, H.J.; Nam, D.Y.; Lee, D.U. 13-Methylberberine reduces HMGB1 release in LPS-activated RAW264.7 cells and increases the survival of septic mice through AMPK/P38 MAPK activation. Int. Immunopharmacol., 2016, 40, 269-276.
[http://dx.doi.org/10.1016/j.intimp.2016.08.022] [PMID: 27632705]
[105]
Chang, K.C. Cilostazol inhibits HMGB1 release in LPS-activated RAW 264.7 cells and increases the survival of septic mice. Thromb. Res., 2015, 136(2), 456-464.
[http://dx.doi.org/10.1016/j.thromres.2015.06.017] [PMID: 26116490]
[106]
Kim, Y.M.; Park, E.J.; Kim, J.H.; Park, S.W.; Kim, H.J.; Chang, K.C. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages. Int. Immunopharmacol., 2016, 41, 98-105.
[http://dx.doi.org/10.1016/j.intimp.2016.11.002] [PMID: 27865166]
[107]
Tuan, N.Q.; Lee, W.; Oh, J.; Kulkarni, R.R.; Gény, C.; Jung, B.; Kang, H.; Bae, J.S.; Na, M. Flavanones and Chromones from Salicornia herbacea Mitigate Septic Lethality via Restoration of Vascular Barrier Integrity. J. Agric. Food Chem., 2015, 63(46), 10121-10130.
[http://dx.doi.org/10.1021/acs.jafc.5b04069] [PMID: 26522440]
[108]
Kim, H.S.; Park, E.J.; Park, S.W.; Kim, H.J.; Chang, K.C. A tetrahydroisoquinoline alkaloid THI-28 reduces LPS-induced HMGB1 and diminishes organ injury in septic mice through p38 and PI3K/Nrf2/HO-1 signals. Int. Immunopharmacol., 2013, 17(3), 684-692.
[http://dx.doi.org/10.1016/j.intimp.2013.08.016] [PMID: 24029593]
[109]
Chorny, A.; Delgado, M. Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am. J. Pathol., 2008, 172(5), 1297-1307.
[http://dx.doi.org/10.2353/ajpath.2008.070969] [PMID: 18385521]
[110]
Chen, S.; Wang, Y.; Gong, G.; Chen, J.; Niu, Y.; Kong, W. Ethyl pyruvate attenuates murine allergic rhinitis partly by decreasing high mobility group box 1 release. Exp. Biol. Med. (Maywood), 2015, 240(11), 1490-1499.
[http://dx.doi.org/10.1177/1535370214566563] [PMID: 25681468]
[111]
Yu, W.G.; He, H.; Qian, J.; Lu, Y.H. Dual role of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone in inhibiting high-mobility group box 1 secretion and blocking its pro-inflammatory activity in hepatic inflammation. J. Agric. Food Chem., 2014, 62(49), 11949-11956.
[http://dx.doi.org/10.1021/jf504527r] [PMID: 25400111]
[112]
Zeng, W.; Shan, W.; Gao, L.; Gao, D.; Hu, Y.; Wang, G.; Zhang, N.; Li, Z.; Tian, X.; Xu, W.; Peng, J.; Ma, X.; Yao, J. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci. Rep., 2015, 5, 16013.
[http://dx.doi.org/10.1038/srep16013] [PMID: 26525891]
[113]
Lu, B.; Antoine, D.J.; Kwan, K.; Lundbäck, P.; Wähämaa, H.; Schierbeck, H.; Robinson, M.; Van Zoelen, M.A.; Yang, H.; Li, J.; Erlandsson-Harris, H.; Chavan, S.S.; Wang, H.; Andersson, U.; Tracey, K.J. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 3068-3073.
[http://dx.doi.org/10.1073/pnas.1316925111] [PMID: 24469805]
[114]
Xu, W.; Lu, Y.; Yao, J.; Li, Z.; Chen, Z.; Wang, G.; Jing, H.; Zhang, X.; Li, M.; Peng, J.; Tian, X. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury. Shock, 2014, 42(5), 440-447.
[http://dx.doi.org/10.1097/SHK.0000000000000225] [PMID: 25004063]
[115]
Lei, H.; Wen, Q.; Li, H.; Du, S.; Wu, J.J.; Chen, J.; Huang, H.; Chen, D.; Li, Y.; Zhang, S.; Zhou, J.; Deng, R.; Yang, Q. Paeonol inhibits lipopolysaccharide-induced HMGB1 translocation from the nucleus to the cytoplasm in RAW264.7 cells. Inflammation, 2016, 39(3), 1177-1187.
[http://dx.doi.org/10.1007/s10753-016-0353-z] [PMID: 27106477]
[116]
Chi, J.H.; Seo, G.S.; Cheon, J.H.; Lee, S.H. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur. J. Pharmacol., 2017, 796, 101-109.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.026] [PMID: 28012970]
[117]
Wen, S.; Ling, Y.; Yang, W.; Shen, J.; Li, C.; Deng, W.; Liu, W.; Liu, K. Necroptosis is a key mediator of enterocytes loss in intestinal ischaemia/reperfusion injury. J. Cell. Mol. Med., 2017, 21(3), 432-443.
[http://dx.doi.org/10.1111/jcmm.12987] [PMID: 27677535]
[118]
Ostberg, T.; Wähämaa, H.; Palmblad, K.; Ito, N.; Stridh, P.; Shoshan, M.; Lotze, M.T.; Harris, H.E.; Andersson, U. Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis. Arthritis Res. Ther., 2008, 10(1), R1.
[http://dx.doi.org/10.1186/ar2347] [PMID: 18179697]
[119]
Lohani, N.; Singh, H.N.; Moganty, R.R. Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene. Int. J. Biol. Macromol., 2016, 87, 433-442.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.060] [PMID: 26923673]
[120]
Lohani, N.; Narayan Singh, H.; Agarwal, S.; Mehrotra, R.; Rajeswari, M.R. Interaction of adriamycin with a regulatory element of hmgb1: spectroscopic and calorimetric approach. J. Biomol. Struct. Dyn., 2015, 33(8), 1612-1623.
[http://dx.doi.org/10.1080/07391102.2014.967301] [PMID: 25311659]
[121]
Qin, M.Z.; Gu, Q.H.; Tao, J.; Song, X.Y.; Gan, G.S.; Luo, Z.B.; Li, B.X. Ketamine effect on HMGB1 and TLR4 expression in rats with acute lung injury. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12943-12948.
[PMID: 26722488]
[122]
Zhao, X.; Shen, L.; Xu, L.; Wang, Z.; Ma, C.; Huang, Y. Inhibition of CaMKIV relieves streptozotocin-induced diabetic neuropathic pain through regulation of HMGB1. BMC Anesthesiol., 2016, 16(1), 27.
[http://dx.doi.org/10.1186/s12871-016-0191-4] [PMID: 27216039]
[123]
Grootaert, M.O.J.; Schrijvers, D.M.; Van Spaendonk, H.; Breynaert, A.; Hermans, N.; Van Hoof, V.O.; Takahashi, N.; Vandenabeele, P.; Kim, S.H.; De Meyer, G.R.Y.; Martinet, W. NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis, 2016, 252, 166-174.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.045] [PMID: 27425215]
[124]
Wang, Y.S.; Li, Y.Y.; Wang, L.H.; Kang, Y.; Zhang, J.; Liu, Z.Q.; Wang, K.; Kaye, A.D.; Chen, L. Tanshinone IIA attenuates chronic pancreatitis-induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord. Pain Physician, 2015, 18(4), E615-E628.
[PMID: 26218952]
[125]
Gao, M.; Hu, Z.; Zheng, Y.; Zeng, Y.; Shen, X.; Zhong, D.; He, F. Peroxisome proliferator-activated receptor γ agonist troglitazone inhibits high mobility group box 1 expression in endothelial cells via suppressing transcriptional activity of nuclear factor κB and activator protein 1. Shock, 2011, 36(3), 228-234.
[http://dx.doi.org/10.1097/SHK.0b013e318225b29a] [PMID: 21617575]
[126]
Yuan, Z.; Luo, G.; Li, X.; Chen, J.; Wu, J.; Peng, Y. PPARγ inhibits HMGB1 expression through upregulation of miR-142-3p in vitro and in vivo. Cell. Signal., 2016, 28(3), 158-164.
[http://dx.doi.org/10.1016/j.cellsig.2015.12.013] [PMID: 26721185]
[127]
Feng, L.; Zhu, M.; Zhang, M.; Jia, X.; Cheng, X.; Ding, S.; Zhu, Q. Amelioration of compound 4,4′-diphenylmethane-bis(methyl)carbamate on high mobility group box1-mediated inflammation and oxidant stress responses in human umbilical vein endothelial cells via RAGE/ERK1/2/NF-κB pathway. Int. Immunopharmacol., 2013, 15(2), 206-216.
[http://dx.doi.org/10.1016/j.intimp.2012.11.015] [PMID: 23219582]
[128]
Yang, J.; Huang, C.; Yang, J.; Jiang, H.; Ding, J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation : a key role for TLR4/NF-κB signaling pathway. Mol. Cell. Biochem., 2010, 345(1-2), 189-195.
[http://dx.doi.org/10.1007/s11010-010-0572-9] [PMID: 20714791]
[129]
Zhou, W.; Oh, J.; Wonhwa, L.; Kwak, S.; Li, W.; Chittiboyina, A.G.; Ferreira, D.; Hamann, M.T.; Lee, S.H.; Bae, J.S.; Na, M. The first cyclomegastigmane rhododendroside A from Rhododendron brachycarpum alleviates HMGB1-induced sepsis. Biochim. Biophys. Acta, 2014, 1840(6), 2042-2049.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.016] [PMID: 24576671]
[130]
Kim, J.M.; Han, H.J.; Hur, Y.H.; Quan, H.; Kwak, S.H.; Choi, J.I.; Bae, H.B. Stearoyl lysophosphatidylcholine prevents lipopolysaccharide-induced extracellular release of high mobility group box-1 through AMP-activated protein kinase activation. Int. Immunopharmacol., 2015, 28(1), 540-545.
[http://dx.doi.org/10.1016/j.intimp.2015.07.010] [PMID: 26218280]
[131]
Patnaik, A.; Swanson, K.D.; Csizmadia, E.; Solanki, A.; Landon-Brace, N.; Gehring, M.P.; Helenius, K.; Olson, B.M.; Pyzer, A.R.; Wang, L.C.; Elemento, O.; Novak, J.; Thornley, T.B.; Asara, J.M.; Montaser, L.; Timmons, J.J.; Morgan, T.M.; Wang, Y.; Levantini, E.; Clohessy, J.G.; Kelly, K.; Pandolfi, P.P.; Rosenblatt, J.M.; Avigan, D.E.; Ye, H.; Karp, J.M.; Signoretti, S.; Balk, S.P.; Cantley, L.C. Cabozantinib Eradicates Advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov., 2017, 7(7), 750-765.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0778] [PMID: 28274958]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 20
Year: 2020
Page: [3271 - 3289]
Pages: 19
DOI: 10.2174/0929867326666190123120338
Price: $65

Article Metrics

PDF: 30
HTML: 2