Multigram-scale Synthesis of Building Block Nitro-imine Derivative by Using Classical Method and Ultrasound Irradiation and Conversion to Imino-alcohol Derivative, Using Camphor as Starting Material

Author(s): Emerson Teixeira da Silva, Adriele da Silva Araújo, Adriana Marques Moraes, Marcus Vinícius Nora de Souza*.

Journal Name: Letters in Organic Chemistry

Volume 17 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

This study describes a simple multigram-scale procedure for the preparation of (E)-N-(1,7,7- trimethylbicyclo[2.2.1]heptan-2-ylidene)nitramide, nitro-imine 2, by using both classical methods and ultrasound irradiation from 1 utilizing Camphor, a natural product, as starting material. This key intermediate 2, a good building block, is useful to prepare various substances such as terpenoids, reagents for large-scale hydroxylation and amination of organic substrates, and derivatives with anticonvulsant, hypoglycemic, anti-inflammatory, antimicrobial and antiviral activities. It can be transformed into a wide range of other derivatives which can then also be employed in inorganic chemistry. In this work, another useful derivative (E)-2-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)ethanol 3 has been prepared from nitro-imine 2 on multigram-scale which also allows access to a variety of products of biological interest after suitable chemical transformations.

Keywords: Camphor, Multigram-scale synthesis, Ultrasound, Oxime, Nitro-imine, Building Block, structure-activity.

[1]
Szmant, H.H. Organic Building Blocks of the Chemical Industry, 1st ed; Wiley & Sons: New York, 1989.
[2]
Krasheninina, O.A.; Novopashina, D.S.; Apartsin, E.K.; Venyaminova, A.G. Molecules, 2017, 22, 2108/1-2108/48.
[3]
(a)Kljun, J.; Turel, I. Eur. J. Inorg. Chem., 2017, 12, 1655-1666.
(b)Harriman, K.L.M.; Murugesu, M. Acc. Chem. Res., 2016, 49(6), 1158-1167.
[4]
Arshadi, S.; Vessally, E.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. RSC Advances, 2017, 7, 13198-13211.
[5]
Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. ACS Sustain. Chem. Eng., 2018, 6(7), 8064-8092.
[6]
Mordini, A.; Reginato, G.; Calamante, M.; Zani, L. Curr. Top. Med. Chem., 2014, 14(10), 1308-1316.
[7]
Goldberg, F.W.; Kettle, J.G.; Kogej, T.; Perry, M.W.D.; Tomkinson, N.P. Drug Discov. Today, 2015, 20(1), 11-17.
[8]
Gopi, C.; Sastry, V.G.; Dhanaraju, M.D. Rev. J. Chem., 2016, 6(3), 177-217.
[9]
Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Org. Biomol. Chem., 2006, 4(12), 2337-2347.
[10]
Shokova, E.A.; Kim, J.K.; Kovalev, V.V. Russ. J. Org. Chem., 2016, 52(4), 459-488.
[11]
(a)Koppenwallner, M.; Rais, E.; Uzarewicz-Baig, M.; Tabassum, S.; Gilani, M.A.; Wilhelm, R. Synthesis, 2015, 47, 789-800.
(b)Helliwell, M.; Thomas, E.J.; Townsend, L.A. J. Chem. Soc., Perkin Trans. 1, 2002, (10), 1286-1296.
[12]
da Silva, E.T.; Araújo, A.S.; Moraes, A.M.; de Souza, L.A.; Lourenço, M.C.S.; de Souza, M.V.N.; Wardell, J.L.; Wardell, S.M.V. Sci. Pharm., 2016, 84, 467-483.
[13]
da Silva, E.T.; Moraes, A.M.; Araújo, A.S.; de Souza, M.V.N. Org. Synth., 2018, 95, 192-204.
[14]
Bondavalli, F.; Schenone, P.; Ranise, A. Synthesis, 1979, 10, 830-832.
[15]
Aboul-Eneina, M.N. EL-Azzounya, A.A.; Maklada, Y.A.; Sokeirika, Y.S.; Safwat, H. J. Iran. Chem. Soc., 2006, 3, 191-208.
[16]
Gao, H.; Zhou, Z.; Kwon, D-H.; Coombs, J.; Jones, S.; Behnke, N.; Er, E.D.H.; Kurti, L. Nat. Chem., 2017, 9(7), 681-688.
[17]
Sokolova, A.S.; Yarovaya, O.I.; Shernyukov, A.V.; Gatilov, Y.V.; Razumova, Y.V.; Zarubaev, V.V.; Tretiak, T.S.; Pokrovsky, A.G.; Kiselev, O.I.; Salakhutdinov, N.F. Eur. J. Med. Chem., 2015, 105, 263-273.
[18]
Page, P.C.B.; Murrell, V.L.; Limousin, C.; Laffan, D.D.P.; Bethell, D.; Slawin, A.M.Z.; Smith, T.A.D. J. Org. Chem., 2000, 65, 4204-4207.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Page: [165 - 169]
Pages: 5
DOI: 10.2174/1570178616666190123114922
Price: $65

Article Metrics

PDF: 20
HTML: 3
EPUB: 1
PRC: 1