Novel Strategies and Pharmaceutical Agents for the Treatment of Leishmaniasis: A Review

Author(s): Mohammad A. Nilforoushzadeh, Maryam Heidari-Kharaji*, Mehrak Zare, Elham Torkamaniha, Sima Rafati

Journal Name: Anti-Infective Agents
Anti-Infective Agents in Medicinal Chemistry

Volume 18 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Leishmaniasis is a major tropical disease. There is no effective vaccine against leishmaniasis and chemotherapy is still the most effective treatment for the disease. However, most of the common drugs have many disadvantages such as toxicity and high cost. Most important of all is the development of resistance against these drugs. Many studies have tried to provide new pharmaceutical agents and formulations in various ways to overcome these problems. In recent years, medical plants have been widely considered for leishmaniasis treatment. Besides, various drug delivery strategies have been studied for the treatment of leishmaniasis in order to increase activity and reduce the side effects of the drugs. Accordingly, nanotechnology will play an important role in the preparation of new pharmaceutical formulations. In this review, we focused on various therapeutic approaches for leishmaniasis.

Keywords: Leishmaniasis, herbal drugs, liposomes, Solid Lipid Nanoparticles (SLNs), Carbon Nanotubes (CNTs), nanomedicine.

[1]
De Menezes, J.P.B.; Guedes, C.E.S.; Petersen, A. L. d. O. A; Fraga, D.B.M.; Veras, P.S.T. Advances in development of new treatment for leishmaniasis. BioMed Research International, 2015, 2015
[http://dx.doi.org/10.1155/2015/815023]
[2]
Jaffary, F.; Nilforoushzadeh, M.A.; Moradi, S.; Derakhshan, R.; Ansari, N. The efficacy of topical treatment of concentrated boiled extract and hydroalcoholic extract of Cassia Fistula in comparison to the intralesional injection of meglumine antimoniate in the treatment of acute cutaneous Leishmaniasis. J. Skin Leish., 2010, 1(1)e16631
[3]
Fernandez, M.; Murillo, J.; Ríos-Vásquez, L.A.; Ocampo-Cardona, R.; Cedeño, D.L.; Jones, M.A.; Velez, I.D.; Robledo, S.M. In vivo studies of the effectiveness of novel N-halomethylated and non-halomethylated quaternary ammonium salts in the topical treatment of cutaneous leishmaniasis. Parasitol. Res., 2018, 117(1), 273-286.
[http://dx.doi.org/10.1007/s00436-017-5702-9] [PMID: 29230580]
[4]
Nilforoushzadeh, M.A.; Shirani-Bidabadi, L.; Zolfaghari-Baghbaderani, A.; Saberi, S.; Siadat, A.H.; Mahmoudi, M. Comparison of Thymus vulgaris (Thyme), Achillea millefolium (Yarrow) and propolis hydroalcoholic extracts versus systemic glucantime in the treatment of cutaneous leishmaniasis in balb/c mice. J. Vector Borne Dis., 2008, 45(4), 301-306.
[PMID: 19248657]
[5]
Nilforoushzadeh, M.A.; Hejazi, S.H.; Zarkoob, H.; Shirani-Bidabadi, L.; Jaffary, F. Efficacy of adding topical honey-based hydroalcoholic extract Nigella sativa 60% compared to honey alone in patients with cutaneous leishmaniasis receiving intralesional glucantime. J. Skin Leish., 2010, 1(1), 1-7.
[6]
Nilforoushzadeh, M.A.; Jaffary, F.; Moradi, S.; Derakhshan, R.; Haftbaradaran, E. Effect of topical honey application along with intralesional injection of glucantime in the treatment of cutaneous leishmaniasis. BMC Complement. Altern. Med., 2007, 7(1), 13.
[http://dx.doi.org/10.1186/1472-6882-7-13] [PMID: 17466071]
[7]
Topical trichloroacetic acid compared with intralesional Glucantime injection in the treatment of acute wet cutaneous leishmaniasis:an open clinical trial 2003.
[8]
Nilforoushzadeh, M.A.; Sadeghian, G.; Jaffary, F.; Ziaei, H.; Shirani-Bidabad, L.; Mahzoni, P. Successful treatment of lupoid cutaneous leishmaniasis with glucantime and topical trichloroacetic acid (a case report). Korean J. Parasitol., 2008, 46(3), 175-177.
[http://dx.doi.org/10.3347/kjp.2008.46.3.175] [PMID: 18830058]
[9]
de Oliveira, L.F.G.; Pereira, B.A.S.; Gilbert, B.; Corrêa, A.L.; Rocha, L.; Alves, C.R. Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment. Phytochem. Rev., 2017, 16(2), 219-233.
[http://dx.doi.org/10.1007/s11101-016-9471-3]
[10]
Heidari-Kharaji, M.; Badirzadeh, A.; Khadir, F.; Soori, M.; Nilforoushzadeh, M.A. Herbal drugs with promising anti-leishmanial activity: new Hope for Leishmaniasis Treatment. Journal of Skin and Stem Cell, In Press
[http://dx.doi.org/10.5812/jssc.66527]
[11]
Jaffary, F.; Nilforoushzadeh, M.A.; Moradi, S.; Derakhshan, R.; Ansari, N. Concentrated extracts of cassia fistula versus intralesional injection of meglumine antimoniate in treatment of acute cutaneous leishmaniasis. J. Skin Leish., 2014, 1(1)
[http://dx.doi.org/10.17795/jssc16631]
[12]
Santos, A.O.; Santin, A.C.; Yamaguchi, M.U.; Cortez, L.E.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Nakamura, C.V. Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Ann. Trop. Med. Parasitol., 2010, 104(6), 475-483.
[http://dx.doi.org/10.1179/136485910X12786389891281] [PMID: 20863436]
[13]
Mirzaei, F.; Bafghi, A.F.; Mohaghegh, M.A.; Jaliani, H.Z.; Faridnia, R.; Kalani, H. In vitro anti-leishmanial activity of Satureja hortensis and Artemisia dracunculus extracts on Leishmania major promastigotes. J. Parasit. Dis., 2016, 40(4), 1571-1574.
[http://dx.doi.org/10.1007/s12639-015-0730-9] [PMID: 27876985]
[14]
Vandesmet, V.C.S.; Felipe, C.F.B.; Kerntopf, M.R.; Rolón, M.; Vega, C.; Coronel, C.; Barbosa, A.G.R.; Coutinho, H.D.M.; Menezes, I.R.A. The use of herbs against neglected diseases: Evaluation of in vitro leishmanicidal and trypanocidal activity of Stryphnodendron rotundifolium Mart. Saudi J. Biol. Sci., 2017, 24(6), 1136-1141.
[http://dx.doi.org/10.1016/j.sjbs.2015.03.001] [PMID: 28855804]
[15]
Mahmoudvand, H.; Sharififar, F.; Sharifi, I.; Ezatpour, B.; Fasihi Harandi, M.; Makki, M.S.; Zia-Ali, N.; Jahanbakhsh, S. In vitro inhibitory effect of Berberis vulgaris (Berberidaceae) and its main component, berberine against different Leishmania species. Iran. J. Parasitol., 2014, 9(1), 28-36.
[PMID: 25642257]
[16]
Mohammadpour, G.; Marzony, E.T.; Farahmand, M. Evaluation of the anti-Leishmania major activity of Satureja bakhtiarica essential oil in vitro. Nat. Prod. Commun., 2012, 7(1), 133-136.
[http://dx.doi.org/10.1177/1934578X1200700142] [PMID: 22428267]
[17]
Cunha, Ade.C.; Chierrito, T.P.C.; Machado, G.M.; Leon, L.L.P.; da Silva, C.C.; Tanaka, J.C.; de Souza, L.M.; Gonçalves, R.A.C.; de Oliveira, A.J.B. Anti-leishmanial activity of alkaloidal extracts obtained from different organs of Aspidosperma ramiflorum. Phytomedicine, 2012, 19(5), 413-417.
[http://dx.doi.org/10.1016/j.phymed.2011.12.004] [PMID: 22326547]
[18]
Dos Santos, R.A.N.; Batista, J., Jr; Rosa, S.I.; Torquato, H.F.; Bassi, C.L.; Ribeiro, T.A.; De Sousa, P.T., Jr; Bessera, A.M.; Fontes, C.J.; Da Silva, L.E.; Piuvezam, M.R. Leishmanicidal effect of Spiranthera odoratíssima (Rutaceae) and its isolated alkaloid skimmianine occurs by a nitric oxide dependent mechanism. Parasitology, 2011, 138(10), 1224-1233.
[http://dx.doi.org/10.1017/S0031182011001168] [PMID: 21810308]
[19]
Feily, A.; Saki, J.; Maraghi, S.; Moosavi, Z.; Khademvatan, S.; Siahpoosh, A. In vitro activity of green tea extract against Leishmania major promastigotes. Int. J. Clin. Pharmacol. Ther., 2012, 50(3), 233-236.
[http://dx.doi.org/10.5414/CP201571] [PMID: 22373836]
[20]
Mishra, B.B.; Gour, J.K.; Kishore, N.; Singh, R.K.; Tripathi, V.; Tiwari, V.K. An antileishmanial prenyloxy-naphthoquinone from roots of Plumbago zeylanica. Nat. Prod. Res., 2013, 27(4-5), 480-485.
[http://dx.doi.org/10.1080/14786419.2012.696254] [PMID: 22708724]
[21]
Morais, T.R.; Romoff, P.; Fávero, O.A.; Reimão, J.Q.; Lourenço, W.C.; Tempone, A.G.; Hristov, A.D.; Di Santi, S.M.; Lago, J.H.G.; Sartorelli, P.; Ferreira, M.J. Anti-malarial, anti-trypanosomal, and anti-leishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae). Parasitol. Res., 2012, 110(1), 95-101.
[http://dx.doi.org/10.1007/s00436-011-2454-9] [PMID: 21614544]
[22]
Ezatpour, B.; Saedi Dezaki, E.; Mahmoudvand, H.; Azadpour, M.; Ezzatkhah, F. In vitro and in vivo antileishmanial effects of Pistacia khinjuk against Leishmania tropica and Leishmania major.Evidence-Based Complementary and Alternative Medicine; , 2015, 2015, .
[23]
Mesa, L.E.; Vasquez, D.; Lutgen, P.; Vélez, I.D.; Restrepo, A.M.; Ortiz, I.; Robledo, S.M. In vitro and in vivo antileishmanial activity of Artemisia annua L. leaf powder and its potential usefulness in the treatment of uncomplicated cutaneous leishmaniasis in humans. Rev. Soc. Bras. Med. Trop., 2017, 50(1), 52-60.
[http://dx.doi.org/10.1590/0037-8682-0457-2016] [PMID: 28327802]
[24]
Maleki, F.; Zarebavani, M.; Mohebali, M.; Dayer, M.S.; Hajialiani, F.; Tabatabaie, F. In vitro and in vivo susceptibility of Leishmania major to some medicinal plants. Asian Pac. J. Trop. Biomed., 2017, 7(1), 37-42.
[http://dx.doi.org/10.1016/j.apjtb.2016.11.008]
[25]
Doroodgar, A.; Arbabi, M.; Razavi, M.; Mohebali, M.; Sadr, F. Treatment of cutaneous leishmaniasis in murine model by hydro alcoholic essence of Artemisia sieberi. J. Arthropod Borne Dis., 2008, 2(2), 42-47.
[26]
Ostan, I.; Saglam, H.; Limoncu, M.E.; Ertabaklar, H.; Toz, S.O.; Ozbel, Y.; Ozbilgin, A. In vitro and in vivo activities of Haplophyllum myrtifolium against Leishmania tropica. New Microbiol., 2007, 30(4), 439-445.
[PMID: 18080680]
[27]
Marango, S.N.; Khayeka-Wandabwa, C.; Makwali, J.A.; Jumba, B.N.; Choge, J.K.; Adino, E.O.; Anjili, C.O. Experimental therapeutic assays of Tephrosia vogelii against Leishmania major infection in murine model: in vitro and in vivo. BMC Res. Notes, 2017, 10(1), 698.
[http://dx.doi.org/10.1186/s13104-017-3022-x] [PMID: 29208030]
[28]
Metwally, D.M.; Al-Olayan, E.M.; El-Khadragy, M.F.; Alkathiri, B. Anti-leishmanial activity (in vitro and in vivo) of allicin and allicin cream using Leishmania major (Sub-strain Zymowme LON4) and BALB/c mice. PLoS One, 2016, 11(8)e0161296
[http://dx.doi.org/10.1371/journal.pone.0161296] [PMID: 27537199]
[29]
Dayakar, A.; Chandrasekaran, S.; Veronica, J.; Sundar, S.; Maurya, R. In vitro and in vivo evaluation of anti-leishmanial and immunomodulatory activity of Neem leaf extract in Leishmania donovani infection. Exp. Parasitol., 2015, 153, 45-54.
[http://dx.doi.org/10.1016/j.exppara.2015.02.011] [PMID: 25747203]
[30]
Prabhu, P.; Patravale, V.; Joshi, M. Nanocarriers for effective topical delivery of anti-infectives. Curr. Nanosci., 2012, 8(4), 491-503.
[http://dx.doi.org/10.2174/157341312801784221]
[31]
Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Front. Immunol., 2018, 9, 155.
[http://dx.doi.org/10.3389/fimmu.2018.00155] [PMID: 29459867]
[32]
Heidari-Kharaji, M.; Taheri, T.; Doroud, D.; Habibzadeh, S.; Rafati, S. Solid lipid nanoparticle loaded with paromomycin: in vivo efficacy against Leishmania tropica infection in BALB/c mice model. Appl. Microbiol. Biotechnol., 2016, 100(16), 7051-7060.
[http://dx.doi.org/10.1007/s00253-016-7422-y] [PMID: 26960322]
[33]
Heidari-Kharaji, M.; Taheri, T.; Doroud, D.; Habibzadeh, S.; Badirzadeh, A.; Rafati, S. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol., 2016, 38(10), 599-608.
[http://dx.doi.org/10.1111/pim.12340] [PMID: 27213964]
[34]
Kharaji, M.H.; Doroud, D.; Taheri, T.; Rafati, S. Drug targeting to macrophages with solid lipid nanoparticles harboring paromomycin: an in vitro evaluation against L. major and L. tropica. AAPS PharmSciTech, 2016, 17(5), 1110-1119.
[http://dx.doi.org/10.1208/s12249-015-0439-1] [PMID: 26552399]
[35]
Wijnant, G-J.; Van Bocxlaer, K.; Yardley, V.; Harris, A.; Murdan, S.; Croft, S.L. Relation between skin pharmacokinetics and efficacy in AmBisome treatment of murine cutaneous leishmaniasis. Antimicrob. Agents Chemother., 2018, 62(3), e02009-e02017.
[PMID: 29263075]
[36]
Grant, G.J.; Bansinath, M. Liposomal delivery systems for local anesthetics. Reg. Anesth. Pain Med., 2001, 26(1), 61-63.
[http://dx.doi.org/10.1097/00115550-200101000-00013] [PMID: 11172513]
[37]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. Journal of pharmaceutics, 2018, 2018
[http://dx.doi.org/10.1155/2018/3420204]
[38]
Borborema, S.E.T.; Osso Junior, J.A.; Andrade Junior, H.F.; Nascimento, Nd. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity. Rev. Soc. Bras. Med. Trop., 2016, 49(2), 196-203.
[http://dx.doi.org/10.1590/0037-8682-0041-2016] [PMID: 27192589]
[39]
Ferreira, F.M.; Castro, R.A.; Batista, M.A.; Rossi, F.M.; Silveira-Lemos, D.; Frézard, F.; Moura, S.A.; Rezende, S.A. Association of water extract of green propolis and liposomal meglumine antimoniate in the treatment of experimental visceral leishmaniasis. Parasitol. Res., 2014, 113(2), 533-543.
[http://dx.doi.org/10.1007/s00436-013-3685-8] [PMID: 24292604]
[40]
Momeni, A.; Rasoolian, M.; Momeni, A.; Navaei, A.; Emami, S.; Shaker, Z.; Mohebali, M.; Khoshdel, A. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J. Liposome Res., 2013, 23(2), 134-144.
[http://dx.doi.org/10.3109/08982104.2012.762519] [PMID: 23350940]
[41]
Tempone, A.G.; Andrade, H.F.d., Jr Nanoformulations of pentavalent antimony entrapped in phosphatidylserine-liposomes demonstrate highest efficacy against experimental visceral leishmaniasis. Revista do Instituto Adolfo Lutz (Impresso), 2008, 67(2), 131-136.
[42]
Borborema, S.E.T.; Schwendener, R.A.; Osso, J.A., Jr; de Andrade, H.F., Jr; do Nascimento, N. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages. Int. J. Antimicrob. Agents, 2011, 38(4), 341-347.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.05.012] [PMID: 21783345]
[43]
Banerjee, A.; De, M.; Ali, N. Combination therapy with paromomycin-associated stearylamine-bearing liposomes cures experimental visceral leishmaniasis through Th1-biased immunomodulation. Antimicrob. Agents Chemother., 2011, 55(4), 1661-1670.
[http://dx.doi.org/10.1128/AAC.00524-10] [PMID: 21220536]
[44]
Jaafari, M.R.; Bavarsad, N.; Bazzaz, B.S.F.; Samiei, A.; Soroush, D.; Ghorbani, S.; Heravi, M.M.L.; Khamesipour, A. Effect of topical liposomes containing paromomycin sulfate in the course of Leishmania major infection in susceptible BALB/c mice. Antimicrob. Agents Chemother., 2009, 53(6), 2259-2265.
[http://dx.doi.org/10.1128/AAC.01319-08] [PMID: 19223613]
[45]
Reimão, J.Q.; Colombo, F.A.; Pereira-Chioccola, V.L.; Tempone, A.G. Effectiveness of liposomal buparvaquone in an experimental hamster model of Leishmania (L.) infantum chagasi. Exp. Parasitol., 2012, 130(3), 195-199.
[http://dx.doi.org/10.1016/j.exppara.2012.01.010] [PMID: 22281156]
[46]
da Silva, S.M.; Amorim, I.F.; Ribeiro, R.R.; Azevedo, E.G.; Demicheli, C.; Melo, M.N.; Tafuri, W.L.; Gontijo, N.F.; Michalick, M.S.; Frézard, F. Efficacy of combined therapy with liposome-encapsulated meglumine antimoniate and allopurinol in treatment of canine visceral leishmaniasis. Antimicrob. Agents Chemother., 2012, 56(6), 2858-2867.
[http://dx.doi.org/10.1128/AAC.00208-12] [PMID: 22411610]
[47]
Tempone, A.G.; Mortara, R.A.; de Andrade, H.F., Jr; Reimão, J.Q. Therapeutic evaluation of free and liposome-loaded furazolidone in experimental visceral leishmaniasis. Int. J. Antimicrob. Agents, 2010, 36(2), 159-163.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.04.006] [PMID: 20554161]
[48]
Lopes, R.M.; Pereira, J.; Esteves, M.A.; Gaspar, M.M.; Carvalheiro, M.; Eleutério, C.V.; Gonçalves, L.; Jiménez-Ruiz, A.; Almeida, A.J.; Cruz, M.E.M. Lipid-based nanoformulations of trifluralin analogs in the management of Leishmania infantum infections. Nanomedicine (Lond.), 2016, 11(2), 153-170.
[http://dx.doi.org/10.2217/nnm.15.190] [PMID: 26651236]
[49]
Lopes, R.M.; Gaspar, M.M.; Pereira, J.; Eleutério, C.V.; Carvalheiro, M.; Almeida, A.J.; Cruz, M.E. Liposomes versus lipid nanoparticles: comparative study of lipid-based systems as oryzalin carriers for the treatment of leishmaniasis. J. Biomed. Nanotechnol., 2014, 10(12), 3647-3657.
[http://dx.doi.org/10.1166/jbn.2014.1874] [PMID: 26000378]
[50]
Carneiro, G.; Santos, D.C.; Oliveira, M.C.; Fernandes, A.P.; Ferreira, L.S.; Ramaldes, G.A.; Nunan, E.A.; Ferreira, L.A. Topical delivery and in vivo antileishmanial activity of paromomycin-loaded liposomes for treatment of cutaneous leishmaniasis. J. Liposome Res., 2010, 20(1), 16-23.
[http://dx.doi.org/10.3109/08982100903015025] [PMID: 19530897]
[51]
Solomon, M.; Pavlotsky, F.; Leshem, E.; Ephros, M.; Trau, H.; Schwartz, E. Liposomal amphotericin B treatment of cutaneous leishmaniasis due to Leishmania tropica. J. Eur. Acad. Dermatol. Venereol., 2011, 25(8), 973-977.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03908.x] [PMID: 21129042]
[52]
Brown, M.; Noursadeghi, M.; Boyle, J.; Davidson, R.N. Successful liposomal amphotericin B treatment of Leishmania braziliensis cutaneous leishmaniasis. Br. J. Dermatol., 2005, 153(1), 203-205.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06670.x] [PMID: 16029352]
[53]
Solomon, M.; Schwartz, E.; Pavlotsky, F.; Sakka, N.; Barzilai, A.; Greenberger, S. Leishmania tropica in children: a retrospective study. J. Am. Acad. Dermatol., 2014, 71(2), 271-277.
[http://dx.doi.org/10.1016/j.jaad.2013.12.047] [PMID: 24775403]
[54]
Rocio, C.; Amato, V.S.; Camargo, R.A.; Tuon, F.F.; Nicodemo, A.C. Liposomal formulation of amphotericin B for the treatment of mucosal leishmaniasis in HIV-negative patients. Trans. R. Soc. Trop. Med. Hyg., 2014, 108(3), 176-178.
[http://dx.doi.org/10.1093/trstmh/tru011] [PMID: 24535153]
[55]
Sundar, S.; Singh, A.; Rai, M.; Chakravarty, J. Single-dose indigenous liposomal amphotericin B in the treatment of Indian visceral leishmaniasis: a phase 2 study. Am. J. Trop. Med. Hyg., 2015, 92(3), 513-517.
[http://dx.doi.org/10.4269/ajtmh.14-0259] [PMID: 25510715]
[56]
Lucero, E.; Collin, S.M.; Gomes, S.; Akter, F.; Asad, A.; Kumar Das, A.; Ritmeijer, K. Effectiveness and safety of short course liposomal amphotericin B (AmBisome) as first line treatment for visceral leishmaniasis in Bangladesh. PLoS Negl. Trop. Dis., 2015, 9(4)e0003699
[http://dx.doi.org/10.1371/journal.pntd.0003699] [PMID: 25837313]
[57]
Machado, P.R.; Rosa, M.E.A.; Guimarães, L.H.; Prates, F.V.; Queiroz, A.; Schriefer, A.; Carvalho, E.M. Treatment of disseminated leishmaniasis with liposomal amphotericin B. Clin. Infect. Dis., 2015, 61(6), 945-949.
[http://dx.doi.org/10.1093/cid/civ416] [PMID: 26048961]
[58]
den Boer, M.; Das, A.K.; Akhter, F.; Burza, S.; Ramesh, V.; Ahmed, B-N.; Zijlstra, E.E.; Ritmeijer, K. Safety and effectiveness of short-course AmBisome in the treatment of Post-Kala-azar Dermal Leishmaniasis (PKDL): a prospective cohort study in Bangladesh. Clin. Infect. Dis., 2018, 67(5), 667-675.
[http://dx.doi.org/10.1093/cid/ciy172] [PMID: 29554244]
[59]
Burza, S.; Sinha, P.K.; Mahajan, R.; Sanz, M.G.; Lima, M.A.; Mitra, G.; Verma, N.; Das, P. Post Kala-Azar dermal leishmaniasis following treatment with 20 mg/kg liposomal amphotericin B (Ambisome) for primary visceral leishmaniasis in Bihar, India. PLoS Negl. Trop. Dis., 2014, 8(1)e2611
[http://dx.doi.org/10.1371/journal.pntd.0002611] [PMID: 24392171]
[60]
Amato, V.S.; Tuon, F.F.; Camargo, R.A.; Souza, R.M.; Santos, C.R.; Nicodemo, A.C. Can we use a lower dose of liposomal amphotericin B for the treatment of mucosal American leishmaniasis? Am. J. Trop. Med. Hyg., 2011, 85(5), 818-819.
[http://dx.doi.org/10.4269/ajtmh.2011.11-0287] [PMID: 22049033]
[61]
Ekambaram, P.; Sathali, A.A.H.; Priyanka, K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun, 2012, 2(1), 80-102.
[62]
Ghadiri, M.; Fatemi, S.; Vatanara, A.; Doroud, D.; Najafabadi, A.R.; Darabi, M.; Rahimi, A.A. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int. J. Pharm., 2012, 424(1-2), 128-137.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.037] [PMID: 22227603]
[63]
Jain, V.; Gupta, A.; Pawar, V.K.; Asthana, S.; Jaiswal, A.K.; Dube, A.; Chourasia, M.K. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl. Biochem. Biotechnol., 2014, 174(4), 1309-1330.
[http://dx.doi.org/10.1007/s12010-014-1084-y] [PMID: 25106894]
[64]
Espuelas, M.S.; Legrand, P.; Loiseau, P.M.; Bories, C.; Barratt, G.; Irache, J.M. In vitro antileishmanial activity of amphotericin B loaded in poly(ε-caprolactone) nanospheres. J. Drug Target., 2002, 10(8), 593-599.
[http://dx.doi.org/10.1080/1061186021000060738] [PMID: 12683663]
[65]
Gaspar, R.; Opperdoes, F.R.; Préat, V.; Roland, M. Drug targeting with polyalkylcyanoacrylate nanoparticles: in vitro activity of primaquine-loaded nanoparticles against intracellular Leishmania donovani. Ann. Trop. Med. Parasitol., 1992, 86(1), 41-49.
[http://dx.doi.org/10.1080/00034983.1992.11812629] [PMID: 1616394]
[66]
Rodrigues, J. J.; Croft, S.; Fessi, H.; Bories, C.; Devissaguet, J. P. The activity and ultrastructural localization of primaquine-loaded poly (d, l-lactide) nanoparticles in Leishmania do-novani infected mice. Tropical medicine and parasitology: official organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), 1994, 45(3), 223-228.
[67]
Paul, M.; Durand, R.; Boulard, Y.; Fusaï, T.; Fernandez, C.; Rivollet, D.; Deniau, M.; Astier, A. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J. Drug Target., 1998, 5(6), 481-490.
[http://dx.doi.org/10.3109/10611869808997874] [PMID: 9783679]
[68]
Torres-Santos, E.C.; Rodrigues, J.M., Jr; Moreira, D.L.; Kaplan, M.A.C.; Rossi-Bergmann, B. Improvement of in vitro and in vivo antileishmanial activities of 2′, 6′-dihydroxy-4′-methoxychalcone by entrapment in poly(D,L-lactide) nanoparticles. Antimicrob. Agents Chemother., 1999, 43(7), 1776-1778.
[http://dx.doi.org/10.1128/AAC.43.7.1776] [PMID: 10390243]
[69]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.; Das, P. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv., 2015, 22(3), 383-388.
[http://dx.doi.org/10.3109/10717544.2014.891271] [PMID: 24601828]
[70]
Tyagi, R.; Lala, S.; Verma, A.K.; Nandy, A.K.; Mahato, S.B.; Maitra, A.; Basu, M.K. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J. Drug Target., 2005, 13(3), 161-171.
[http://dx.doi.org/10.1080/10611860500046732] [PMID: 16036304]
[71]
Costa Lima, S.A.; Silvestre, R.; Barros, D.; Cunha, J.; Baltazar, M.T.; Dinis-Oliveira, R.J.; Cordeiro-da-Silva, A. Crucial CD8(+) T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine (Lond.), 2014, 10(5), 1021-1030.
[http://dx.doi.org/10.1016/j.nano.2013.12.013] [PMID: 24412471]
[72]
Barros, D.; Costa Lima, S.A.; Cordeiro-da-Silva, A. Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in leishmaniasis therapy. Nanomedicine (Lond.), 2015, 10(3), 387-403.
[http://dx.doi.org/10.2217/nnm.14.116] [PMID: 25707974]
[73]
Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine (Lond.), 2008, 4(3), 173-182.
[http://dx.doi.org/10.1016/j.nano.2008.04.002] [PMID: 18550451]
[74]
Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine (Lond.), 2008, 4(3), 183-200.
[http://dx.doi.org/10.1016/j.nano.2008.04.003] [PMID: 18550450]
[75]
Karchemski, F.; Zucker, D.; Barenholz, Y.; Regev, O. Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. J. Control. Release, 2012, 160(2), 339-345.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.037] [PMID: 22245689]
[76]
Prajapati, V.K.; Awasthi, K.; Yadav, T.P.; Rai, M.; Srivastava, O.N.; Sundar, S. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J. Infect. Dis., 2012, 205(2), 333-336.
[http://dx.doi.org/10.1093/infdis/jir735] [PMID: 22158723]
[77]
Prajapati, V.K.; Awasthi, K.; Gautam, S.; Yadav, T.P.; Rai, M.; Srivastava, O.N.; Sundar, S. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J. Antimicrob. Chemother., 2011, 66(4), 874-879.
[http://dx.doi.org/10.1093/jac/dkr002] [PMID: 21393222]
[78]
Van de Ven, H.; Vermeersch, M.; Matheeussen, A.; Vandervoort, J.; Weyenberg, W.; Apers, S.; Cos, P.; Maes, L.; Ludwig, A. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: factor influence study and in vitro efficacy evaluation. Int. J. Pharm., 2011, 420(1), 122-132.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.016] [PMID: 21864661]
[79]
Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro, 2013, 27(6), 1896-1904.
[http://dx.doi.org/10.1016/j.tiv.2013.06.002] [PMID: 23806227]
[80]
Mohebali, M.; Rezayat, M.; Gilani, K.; Sarkar, S.; Akhoundi, B.; Esmaeili, J.; Satvat, T.; Elikaee, S.; Charehdar, S.; Hooshyar, H. Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an in vitro and in vivo study. DARU J. Pharma. Sci., 2009, 17(4), 285-289.
[81]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[82]
Poon, V.K.; Burd, A. In vitro cytotoxity of silver: implication for clinical wound care. Burns, 2004, 30(2), 140-147.
[http://dx.doi.org/10.1016/j.burns.2003.09.030] [PMID: 15019121]
[83]
Zhang, X-D.; Wu, H-Y.; Wu, D.; Wang, Y-Y.; Chang, J-H.; Zhai, Z-B.; Meng, A-M.; Liu, P-X.; Zhang, L-A.; Fan, F-Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine, 2010, 5, 771-781.
[http://dx.doi.org/10.2147/IJN.S8428] [PMID: 21042423]
[84]
Nilforoushzadeh, M.A.; Shirani-Bidabadi, L.A.; Zolfaghari-Baghbaderani, A.; Jafari, R.; Heidari-Beni, M.; Siadat, A.H.; Ghahraman-Tabrizi, M. Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in Balb/c mice. J. Vector Borne Dis., 2012, 49(4), 249-253.
[PMID: 23428525]
[85]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol., 2011, 6(8), 933-940.
[http://dx.doi.org/10.2217/fmb.11.78] [PMID: 21861623]
[86]
Delavari, M.; Dalimi, A.; Ghaffarifar, F.; Sadraei, J. In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of Leishmania major (MRHO/IR/75/ER). Iran. J. Parasitol., 2014, 9(1), 6-13.
[PMID: 25642254]
[87]
Mahmoudvand, H.; Shakibaie, M.; Tavakoli, R.; Jahanbakhsh, S.; Sharifi, I. In vitro study of leishmanicidal activity of biogenic selenium nanoparticles against Iranian isolate of sensitive and glucantime-resistant Leishmania tropica. Iran. J. Parasitol., 2014, 9(4), 452-460.
[PMID: 25759725]
[88]
Torabi, N.; Mohebali, M.; Shahverdi, A.R.; Rezayat, S.M.; Edrissian, G.H.; Esmaeili, J.; Charehdar, S. Nanogold for the treatment of zoonotic cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an animal trial with methanol extract of Eucalyptus camaldulensis. J. Pharm. Sci., 2012, 1(1), 13-16.
[89]
Soflaei, S.; Dalimi, A.; Abdoli, A.; Kamali, M.; Nasiri, V.; Shakibaie, M.; Tat, M. Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp. Clin. Pathol., 2014, 23(1), 15.
[http://dx.doi.org/10.1007/s00580-012-1561-z]
[90]
Ameneh, S.; Khadije, M.; Ahmad-Reza, T.; Omid, R. In: Inhibition of Leishmania major growth by Ultraviolet radiation B with Silver nanoparticles in an animal model Proceedings of the World Congress on Advances in Nano, Biomechanics, Robotics and Energy Research; Seoul, Korea. , 2013, pp. 25-28.
[91]
Halder, A.; Das, S.; Bera, T.; Mukherjee, A. Rapid synthesis for monodispersed gold nanoparticles in kaempferol and anti-leishmanial efficacy against wild and drug resistant strains. RSC Advances, 2017, 7(23), 14159-14167.
[http://dx.doi.org/10.1039/C6RA28632A]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2020
Page: [89 - 100]
Pages: 12
DOI: 10.2174/2211352517666190123113843

Article Metrics

PDF: 21
HTML: 1