Ni-Based Non-Sulfided Inexpensive Catalysts for Hydrocracking/ Hydrotreating of Jatropha Oil

Author(s): Jing Liu*, Yucheng Li, Jing He, Luying Wang, Jiandu Lei*, Long Rong

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Conventional hydrocracking catalysts generally to retain their active form. However, sulfuration may cause sulfur dioxide emissions, corrosion, and sulfur residue in products, as plant oils become freed of sulfur compounds. The high price of this noble metal also limits industrial applications. Therefore, non-sulfided catalysts can eliminate the presulfurization step and mitigate sulfiderelated threats on both the environment and human health. The purpose of this paper is to review current developments in the species and application of inexpensive non-sulfided catalysts for the hydrocracking of non-edible Jatropha curcas L. oil. This mini-review predominantly concerns Nibased catalysts supported by rare-earth metals or heteropoly acid. These catalysts were used in the hydrotreating or hydrocracking of Jatropha oil to produce green diesel.

Keywords: Biodiesel, hydrocracking process, non-noble metal catalysts, non-sulfided, biofuels, plant oil.

[1]
Koh, M.Y.; Ghazi, T.I.M. A review of biodiesel production from Jatropha curcas L. oil. Renew. Sustain. Energy Rev., 2011, 15(5), 2240-2251.
[http://dx.doi.org/10.1016/j.rser.2011.02.013]
[2]
Abdulla, R.; Chan, E.S.; Ravindra, P. Biodiesel production from Jatropha curcas: A critical review. Crit. Rev. Biotechnol., 2011, 31(1), 53-64.
[http://dx.doi.org/10.3109/07388551.2010.487185] [PMID: 20572796]
[3]
Juan, J.C.; Kartika, D.A.; Wu, T.Y.; Hin, T.Y. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresour. Technol., 2011, 102(2), 452-460.
[http://dx.doi.org/10.1016/j.biortech.2010.09.093] [PMID: 21094045]
[4]
Demirbas, A.; Bafail, A.; Ahmad, W.; Sheikh, M. Biodiesel production from non-edible plant oils. Energ. Explor. Exploitat., 2016, 34(2), 290-318.
[http://dx.doi.org/10.1177/0144598716630166]
[5]
Tao, L.; Milbrandt, A.; Zhang, Y.; Wang, W.C. Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnol. Biofuels, 2017, 10(1), 261.
[http://dx.doi.org/10.1186/s13068-017-0945-3] [PMID: 29151890]
[6]
Mazumdar, P.; Singh, P.; Babu, S.; Siva, R.; Harikrishna, J.A. An update on biological advancement of Jatropha curcas L.: New insight and challenges. Renew. Sustain. Energy Rev., 2018, 91, 903-917.
[http://dx.doi.org/10.1016/j.rser.2018.04.082]
[7]
Meher, L.C.; Churamani, C.P.; Arif, M.; Ahmed, Z.; Naik, S.N. Jatropha curcas as a renewable source for bio-fuels- a review. Renew. Sustain. Energy Rev., 2013, 26, 397-407.
[http://dx.doi.org/10.1016/j.rser.2013.05.065]
[8]
Navarropineda, F.S.; Bazrodríguez, S.A.; Handler, R.; Sacramentorivero, J.C. Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renew. Sustain. Energy Rev., 2016, 54, 247-269.
[http://dx.doi.org/10.1016/j.rser.2015.10.009]
[9]
García-Dávila, J.; Ocaranza-Sánchez, E.; Rojas-Lopez, M.; Muñoz-Arroyo, J.; Ramírez, J.; Martinez-Ayala, A.L. Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production. Fuel, 2014, 135, 380-386.
[http://dx.doi.org/10.1016/j.fuel.2014.07.006]
[10]
Zhao, X.; Wei, L.; Cheng, S.; Julson, J. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. Catalysts, 2017, 7(3), 83.
[http://dx.doi.org/10.3390/catal7030083]
[11]
Sotelo-Boyás, R.; Liu, Y.; Minowa, T. Renewable diesel production from the hydrotreating of rapeseed oil with Pt/Zeolite and NiMo/Al2O3 catalysts. Ind. Eng. Chem. Res., 2011, 50(5), 2791-2799.
[http://dx.doi.org/10.1021/ie100824d]
[12]
Ishihara, A.; Fukui, N.; Nasu, H.; Hashimoto, T. Hydrocracking of soybean oil using zeolite–alumina composite supported NiMo catalysts. Fuel, 2014, 134(0), 611-617.
[http://dx.doi.org/10.1016/j.fuel.2014.06.004]
[13]
Vásquez, M.C.; Silva, E.E.; Castillo, E.F. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass Bioenergy, 2017, 105, 197-206.
[http://dx.doi.org/10.1016/j.biombioe.2017.07.008]
[14]
Zhao, C.; Brück, T.; Lercher, J.A. Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem., 2013, 15(7), 1720-1739.
[http://dx.doi.org/10.1039/c3gc40558c]
[15]
Ameen, M.; Azizan, M.T.; Yusup, S.; Ramli, A.; Yasir, M. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production. Renew. Sustain. Energy Rev., 2017, 80, 1072-1088.
[http://dx.doi.org/10.1016/j.rser.2017.05.268]
[16]
Chang, J.; Danuthai, T.; Dewiyanti, S.; Wang, C.; Borgna, A. Hydrodeoxygenation of Guaiacol over carbon-supported metal catalysts. ChemCatChem, 2013, 5(10), 3041-3049.
[http://dx.doi.org/10.1002/cctc.201300096]
[17]
Hachemi, I.; Kumar, N.; Mäki-Arvela, P.; Roine, J.; Peurla, M.; Hemming, J.; Salonen, J.; Murzin, D.Y. Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation. J. Catal., 2017, 347, 205-221.
[http://dx.doi.org/10.1016/j.jcat.2016.12.009]
[18]
Cheng, S.; Wei, L.; Julson, J.; Rabnawaz, M. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst. Energy Convers. Manage., 2017, 150, 331-342.
[http://dx.doi.org/10.1016/j.enconman.2017.08.024]
[19]
Chen, N.; Gong, S.; Qian, E.W. Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Appl. Catal. B, 2015, 174, 253-263.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.011]
[20]
Kordulis, C.; Bourikas, K.; Gousi, M.; Kordouli, E.; Lycourghiotis, A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl. Catal. B, 2016, 181, 156-196.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.042]
[21]
Liu, J.; Liu, C.; Zhou, G.; Shen, S.; Rong, L. Hydrotreatment of Jatropha oil over NiMoLa/Al2O3 catalyst. Green Chem., 2012, 14(9), 2499-2505.
[http://dx.doi.org/10.1039/c2gc35450k]
[22]
Liu, J.; Fan, K.; Tian, W.; Liu, C.; Rong, L. Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst. Int. J. Hydrogen Energy, 2012, 37(23), 17731-17737.
[http://dx.doi.org/10.1016/j.ijhydene.2012.09.020]
[23]
Zhu, J.; Peng, X.; Yao, L.; Shen, J.; Tong, D.; Hu, C. The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane. Int. J. Hydrogen Energy, 2011, 36(12), 7094-7104.
[http://dx.doi.org/10.1016/j.ijhydene.2011.02.133]
[24]
Chen, X.; Tadd, A.R.; Schwank, J.W. Carbon deposited on Ni/CeZrO isooctane autothermal reforming catalysts. J. Catal., 2007, 251(2), 374-387.
[http://dx.doi.org/10.1016/j.jcat.2007.07.031]
[25]
Guisnet, M.; Magnoux, P. Organic chemistry of coke formation. Appl. Catal. A Gen., 2001, 212(1), 83-96.
[http://dx.doi.org/10.1016/S0926-860X(00)00845-0]
[26]
Fan, K.; Yang, X.; Liu, J.; Rong, L. Effect of reducing catalyst coke by La loading in hydrocracking of Jatropha oil. RSC Advances, 2015, 5(42), 33339-33346.
[http://dx.doi.org/10.1039/C5RA04205D]
[27]
Al-Marshed, A.; Hart, A.; Leeke, G.; Greaves, M.; Wood, J. Optimization of heavy oil upgrading using dispersed nanoparticulate iron oxide as a catalyst. Energy Fuels, 2015, 29(10), 6306-6316.
[http://dx.doi.org/10.1021/acs.energyfuels.5b01451]
[28]
Li, C.L.; Novaro, O.; Muñoz, E.; Boldú, J.L.; Bokhimi, X.; Wang, J.A.; López, T.; Gómez, R. Coke deactivation of Pd/H-mordenite catalysts used for C5/C6 hydroisomerization. Appl. Catal. A Gen., 2000, 199(2), 211-220.
[http://dx.doi.org/10.1016/S0926-860X(99)00559-1]
[29]
Callejas, M.A.; Martínez, M.T.; Blasco, T.; Sastre, E. Coke characterisation in aged residue hydrotreating catalysts by solid-state 13C-NMR spectroscopy and temperature-programmed oxidation. Appl. Catal. A Gen., 2001, 218(1), 181-188.
[http://dx.doi.org/10.1016/S0926-860X(01)00640-8]
[30]
Cerqueira, H.S.; Caeiro, G.; Costa, L.; Ramôa Ribeiro, F. Deactivation of FCC catalysts. J. Mol. Catal. Chem., 2008, 292(1), 1-13.
[http://dx.doi.org/10.1016/j.molcata.2008.06.014]
[31]
Martin, A.; Armbruster, U.; Atia, H. Recent developments in dehydration of glycerol toward acrolein over heteropolyacids. Eur. J. Lipid Sci. Technol., 2012, 114(1), 10-23.
[http://dx.doi.org/10.1002/ejlt.201100047]
[32]
Marci, G.; Garcia-Lopez, E.I.; Palmisano, L. Heteropolyacid-based materials as heterogeneous photocatalysts. Eur. J. Inorg. Chem., 2014, 2014(1), 21-35.
[http://dx.doi.org/10.1002/ejic.201300883]
[33]
Liu, J.; Lei, J.; He, J.; Deng, L.; Wang, L.; Fan, K.; Rong, L. Hydroprocessing of Jatropha oil for production of green diesel over non-sulfided Ni-PTA/Al2O3 catalyst. Sci. Rep., 2015, 5, 11327.
[http://dx.doi.org/10.1038/srep11327] [PMID: 26162092]
[34]
Liu, J.; He, J.; Wang, L.; Li, R.; Chen, P.; Rao, X.; Deng, L.; Rong, L.; Lei, J. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Sci. Rep., 2016, 6, 23667.
[http://dx.doi.org/10.1038/srep23667] [PMID: 27020579]
[35]
Fan, K.; Liu, J.; Yang, X.; Rong, L. Hydrocracking of Jatropha oil over Ni-H3PW12O40/nano-hydroxyapatite catalyst. Int. J. Hydrogen Energy, 2014, 39(8), 3690-3697.
[http://dx.doi.org/10.1016/j.ijhydene.2013.12.123]
[36]
Yang, X.; Liu, J.; Fan, K.; Rong, L. Hydrocracking of Jatropha oil over non-sulfided PTA-NiMo/ZSM-5 catalyst. Sci. Rep., 2017, 7, 41654.
[http://dx.doi.org/10.1038/srep41654] [PMID: 28134313]
[37]
Sadrameli, S.; Green, A.E.; Seames, W. Modeling representations of canola oil catalytic cracking for the production of renewable aromatic hydrocarbons. J. Anal. Appl. Pyrolysis, 2009, 86(1), 1-7.
[http://dx.doi.org/10.1016/j.jaap.2008.02.004]
[38]
Abdelsayed, V.; Shekhawat, D.; Smith, M.W. Effect of Fe and Zn promoters on Mo/HZSM-5 catalyst for methane dehydroaromatization. Fuel, 2015, 139, 401-410.
[http://dx.doi.org/10.1016/j.fuel.2014.08.064]
[39]
Galadima, A.; Muraza, O. Hydrocracking catalysts based on hierarchical zeolites: A recent progress. J. Ind. Eng. Chem., 2017.
[40]
Lai, Z. Development of ZIF-8 membranes: Opportunities and challenges for commercial applications. Curr. Opin. Chem. Eng., 2018, 20, 78-85.
[http://dx.doi.org/10.1016/j.coche.2018.03.002]
[41]
Tang, J.; Salunkhe, R.R.; Liu, J.; Torad, N.L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc., 2015, 137(4), 1572-1580.
[http://dx.doi.org/10.1021/ja511539a] [PMID: 25580699]
[42]
Zhang, M.; Gao, Y.; Li, C.; Liang, C. Chemical vapor deposition of Pd(C3H5)(C5H5) for the synthesis of reusable Pd@ZIF-8 catalysts for the Suzuki coupling reaction. Chin. J. Catal., 2015, 36(4), 588-594.
[http://dx.doi.org/10.1016/S1872-2067(14)60292-8]
[43]
Zhou, G.; Hou, Y.; Liu, L.; Liu, H.; Liu, C.; Liu, J.; Qiao, H.; Liu, W.; Fan, Y.; Shen, S.; Rong, L. Preparation and characterization of NiW-nHA composite catalyst for hydrocracking. Nanoscale, 2012, 4(24), 7698-7703.
[http://dx.doi.org/10.1039/c2nr31486j] [PMID: 23128670]
[44]
Fan, K.; Liu, J.; Yang, X.; Rong, L. Effect of Keggin-type heteropolyacids on the hydrocracking of Jatropha oil. RSC Advances, 2015, 5(47), 37916-37924.
[http://dx.doi.org/10.1039/C5RA04007H]
[45]
Sun, J.; Baylon, R.A.L.; Liu, C.; Mei, D.; Martin, K.J.; Venkitasubramanian, P.; Wang, Y. Key roles of Lewis acid-base pairs on ZnxZryOz in direct ethanol/acetone to isobutene conversion. J. Am. Chem. Soc., 2016, 138(2), 507-517.
[http://dx.doi.org/10.1021/jacs.5b07401] [PMID: 26624526]
[46]
Gonçalves, J.C.; Rodrigues, A.E. Xylene isomerization in the liquid phase using large-pore zeolites. Chem. Eng. Technol., 2016, 39(2), 225-232.
[http://dx.doi.org/10.1002/ceat.201500219]
[47]
Rabaev, M.; Landau, M.V.; Vidruk-Nehemya, R.; Goldbourt, A.; Herskowitz, M. Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation-isomerization-aroma-tization of vegetable oil. J. Catal., 2015, 332, 164-176.
[http://dx.doi.org/10.1016/j.jcat.2015.10.005]
[48]
Liu, J.; Chen, P.; Deng, L.; He, J.; Wang, L.; Rong, L.; Lei, J. A non-sulfided flower-like Ni-PTA catalyst that enhances the hydrotreatment efficiency of plant oil to produce green diesel. Sci. Rep., 2015, 5, 15576.
[http://dx.doi.org/10.1038/srep15576] [PMID: 26503896]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Published on: 28 February, 2020
Page: [141 - 147]
Pages: 7
DOI: 10.2174/1570193X16666190122164046
Price: $65

Article Metrics

PDF: 16
HTML: 2
EPUB: 1