Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review

Author(s): Dan Chen, Jing-Ru Liu, Yanjin Cheng, Hua Cheng, Ping He, Yang Sun*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 19 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Rhaponticin is a stilbenoid glucoside compound, found in medicinal plant of rhubarb rhizomes. Rhapontigenin (RHAG), the stilbene aglycone metabolite of rhaponticin, has shown various biological activities including anticancer activities to act a potential human cytochrome P450 inhibitor, antihyperlipidemic effect, anti-allergic action, antioxidant and antibacterial activities. Moreover, it was reported to scavenge intracellular Reactive Oxygen Species (ROS), the 1,1-Diphenyl-2-Picrylliydrazyl (DPPH) radical, and Hydrogen Peroxide (H2O2). Meanwhile, RHAG exhibited the inhibitory activity for the synthesis of DNA, RNA and protein, and also presented the capacity of inducing morphological changes and apoptosis of C. albicans. Here, the structure, pharmacokinetics, pharmacological effects as well as underlying mechanisms of rhaponticin and its metabolite, RHAG, have been extensively reviewed. This review will provide a certain reference value for developing the therapeutic drug of rhaponticin or RHAG.

Keywords: Metabolism, Pharmacokinetics, Cardiovascular disease, Cancer, Rhaponticin, Rhapontigenin.

[1]
Chen, D.Q.; Feng, Y.L.; Cao, G.; Zhao, Y.Y. Natural products as a source for antifibrosis therapy. Trends Pharmacol. Sci., 2018, 39(11), 937-952.
[http://dx.doi.org/10.1016/j.tips.2018.09.002] [PMID: 30268571]
[2]
Gong, X.; Sucher, N.J. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends Pharmacol. Sci., 1999, 20(5), 191-196.
[http://dx.doi.org/10.1016/S0165-6147(98)01276-0] [PMID: 10354613]
[3]
Hao, H.; Zheng, X.; Wang, G. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol. Sci., 2014, 35(4), 168-177.
[http://dx.doi.org/10.1016/j.tips.2014.02.001] [PMID: 24582872]
[4]
Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact., 2018, 292, 76-83.
[http://dx.doi.org/10.1016/j.cbi.2018.07.008] [PMID: 30017632]
[5]
Jiang, W.Y. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol. Sci., 2005, 26(11), 558-563.
[http://dx.doi.org/10.1016/j.tips.2005.09.006] [PMID: 16185775]
[6]
Chen, D.Q.; Hu, H.H.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Zhao, Y.Y. Natural products for the prevention and treatment of kidney disease. Phytomedicine, 2018, 50, 50-60.
[http://dx.doi.org/10.1016/j.phymed.2018.09.182] [PMID: 30466992]
[7]
Liu, X.; Wu, W.Y.; Jiang, B.H.; Yang, M.; Guo, D.A. Pharmacological tools for the development of traditional Chinese medicine. Trends Pharmacol. Sci., 2013, 34(11), 620-628.
[http://dx.doi.org/10.1016/j.tips.2013.09.004] [PMID: 24139610]
[8]
Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother., 2018, 101, 670-681.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[9]
Moloney, M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci., 2016, 37(8), 689-701.
[http://dx.doi.org/10.1016/j.tips.2016.05.001] [PMID: 27267698]
[10]
Zhang, Z.H.; Vaziri, N.D.; Wei, F.; Cheng, X.L.; Bai, X.; Zhao, Y.Y. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure. Sci. Rep., 2016, 6, 22151.
[http://dx.doi.org/10.1038/srep22151] [PMID: 26903149]
[11]
Sun, W.J. Crystal and molecular structure of rhaponticin from Rheum hotaoense. J. Chem. Crystallogr., 2011, 41(3), 409-414.
[http://dx.doi.org/10.1007/s10870-010-9897-1]
[12]
Zhang, Z.H.; Wei, F.; Vaziri, N.D.; Cheng, X.L.; Bai, X.; Lin, R.C.; Zhao, Y.Y. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci. Rep., 2015, 5(5), 14472.
[http://dx.doi.org/10.1038/srep14472] [PMID: 26412413]
[13]
Roupe, K.A.; Helms, G.L.; Halls, S.C.; Yáñez, J.A.; Davies, N.M. Preparative enzymatic synthesis and HPLC analysis of rhapontigenin: applications to metabolism, pharmacokinetics and anti-cancer studies. J. Pharm. Pharm. Sci., 2005, 8(3), 374-386.
[PMID: 16401387]
[14]
Sun, Y.; Ji, Z.; Liang, X.; Li, G.; Yang, S.; Wei, S.; Zhao, Y.; Hu, X.; Fan, J. Studies on the binding of rhaponticin with human serum albumin by molecular spectroscopy, modeling and equilibrium dialysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 87, 171-178.
[http://dx.doi.org/10.1016/j.saa.2011.11.033] [PMID: 22169567]
[15]
Liang, X.H.; Sun, Y.; Liu, L.S.; Zhao, Y.Y.; Hu, X.Y.; Fan, J. Regioselective synthesis and initial evaluation of a folate receptor targeted rhaponticin prodrug. Chin. Chem. Lett., 2012, 23(10), 1133-1136.
[http://dx.doi.org/10.1016/j.cclet.2012.08.006]
[16]
Liang, X.; Sun, Y.; Zeng, W.; Liu, L.; Ma, X.; Zhao, Y.; Fan, J. Synthesis and biological evaluation of a folate-targeted rhaponticin conjugate. Bioorg. Med. Chem., 2013, 21(1), 178-185.
[http://dx.doi.org/10.1016/j.bmc.2012.10.044] [PMID: 23177726]
[17]
Sun, Y.; Zhao, Y.Y. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin. J. Control. Release, 2013, 172(1), E82-E83.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.168]
[18]
Chen, J.; Ma, M.; Lu, Y.; Wang, L.; Wu, C.; Duan, H. Rhaponticin from rhubarb rhizomes alleviates liver steatosis and improves blood glucose and lipid profiles in KK/Ay diabetic mice. Planta Med., 2009, 75(5), 472-477.
[http://dx.doi.org/10.1055/s-0029-1185304] [PMID: 19235684]
[19]
Wober, J.; Möller, F.; Richter, T.; Unger, C.; Weigt, C.; Jandausch, A.; Zierau, O.; Rettenberger, R.; Kaszkin-Bettag, M.; Vollmer, G. Activation of estrogen receptor-beta by a special extract of Rheum rhaponticum (ERr 731), its aglycones and structurally related compounds. J. Steroid Biochem. Mol. Biol., 2007, 107(3-5), 191-201.
[http://dx.doi.org/10.1016/j.jsbmb.2007.04.002] [PMID: 17692514]
[20]
Misiti, F.; Sampaolese, B.; Mezzogori, D.; Orsini, F.; Pezzotti, M.; Giardina, B.; Clementi, M.E. Protective effect of rhubarb derivatives on amyloid beta (1-42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic. Brain Res. Bull., 2006, 71(1-3), 29-36.
[http://dx.doi.org/10.1016/j.brainresbull.2006.07.012] [PMID: 17113925]
[21]
Aburjai, T.A. Anti-platelet stilbenes from aerial parts of Rheum palaestinum. Phytochemistry, 2000, 55(5), 407-410.
[http://dx.doi.org/10.1016/S0031-9422(00)00341-1] [PMID: 11140601]
[22]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.Y.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[23]
Chun, Y.J.; Ryu, S.Y.; Jeong, T.C.; Kim, M.Y. Mechanism-based inhibition of human cytochrome P450 1A1 by rhapontigenin. Drug Metab. Dispos., 2001, 29(4 Pt 1), 389-393.
[PMID: 11259321]
[24]
Guengerich, F.P.; Chun, Y.J.; Kim, D.; Gillam, E.M.J.; Shimada, T. Cytochrome P4501B1: a target for inhibition in anticarcinogenesis strategies. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2003, 523-524, 173-182.
[http://dx.doi.org/10.1016/s0027-5107(02)00333-0] [PMID: 12628515]
[25]
Cieniak, C.; Liu, R.; Fottinger, A.; Smiley, S.A.M.; Guerrero-Analco, J.A.; Bennett, S.A.L.; Haddad, P.S.; Cuerrier, A.; Saleem, A.; Arnason, J.T.; Foster, B.C. In vitro inhibition of metabolism but not transport of gliclazide and repaglinide by Cree medicinal plant extracts. J. Ethnopharmacol., 2013, 150(3), 1087-1095.
[http://dx.doi.org/10.1016/j.jep.2013.10.029] [PMID: 24184081]
[26]
Kim, J.S.; Kang, C.G.; Kim, S.H.; Lee, E.O. Rhapontigenin suppresses cell migration and invasion by inhibiting the PI3K-dependent Rac1 signaling pathway in MDA-MB-231 human breast cancer cells. J. Nat. Prod., 2014, 77(5), 1135-1139.
[http://dx.doi.org/10.1021/np401078g] [PMID: 24828286]
[27]
Yeh, Y.H.; Wang, S.W.; Yeh, Y.C.; Hsiao, H.F.; Li, T.K. Rhapontigenin inhibits TGF-β-mediated epithelial-mesenchymal transition via the PI3K/AKT/mTOR pathway and is not associated with HIF-1α degradation. Oncol. Rep., 2016, 35(5), 2887-2895.
[http://dx.doi.org/10.3892/or.2016.4664] [PMID: 26986649]
[28]
Jung, D.B.; Lee, H.J.; Jeong, S.J.; Lee, E.O.; Kim, Y.C.; Ahn, K.S.; Chen, C.Y.; Kim, S.H. Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells. Biol. Pharm. Bull., 2011, 34(6), 850-855.
[http://dx.doi.org/10.1248/bpb.34.850] [PMID: 21628883]
[29]
Ngoc, T.M.; Minh, P.T.H.; Hung, T.M.; Thuong, P.T.; Lee, I.; Min, B.S.; Bae, K. Lipoxygenase inhibitory constituents from rhubarb. Arch. Pharm. Res., 2008, 31(5), 598-605.
[http://dx.doi.org/10.1007/s12272-001-1199-0] [PMID: 18481015]
[30]
Lee, H.S.; Kim, J.K.; Park, K.T.; Lim, Y.H. Rhapontigenin converted from rhapontin purified from Rheum undulatum enhances the inhibition of melanin synthesis. Biosci. Biotechnol. Biochem., 2012, 76(12), 2307-2309.
[http://dx.doi.org/10.1271/bbb.120229] [PMID: 23221688]
[31]
Kutil, Z.; Kvasnicova, M.; Temml, V.; Schuster, D.; Marsik, P.; Cusimamani, E.F.; Lou, J.D.; Vanek, T.; Landa, P. Effect of dietary stilbenes on 5-lipoxygenase and cyclooxygenases activities in vitro. Int. J. Food Prop., 2015, 18(7), 1471-1477.
[http://dx.doi.org/10.1080/10942912.2014.903416]
[32]
Zhang, R.; Kang, K.A.; Piao, M.J.; Lee, K.H.; Jang, H.S.; Park, M.J.; Kim, B.J.; Kim, J.S.; Kim, Y.S.; Ryu, S.Y.; Hyun, J.W. Rhapontigenin from Rheum undulatum protects against oxidative-stress-induced cell damage through antioxidant activity. J. Toxicol. Environ. Health A, 2007, 70(13-14), 1155-1166.
[http://dx.doi.org/10.1080/15287390701252766] [PMID: 17558811]
[33]
Kim, N.; Kim, J.K.; Hwang, D.; Lim, Y.H. The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans. Med. Mycol., 2013, 51(1), 45-52.
[http://dx.doi.org/10.3109/13693786.2012.689021] [PMID: 22662760]
[34]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[35]
Zhao, Y.Y.; Zhang, L.; Feng, Y.L.; Chen, D.Q.; Xi, Z.H.; Du, X.; Bai, X.; Lin, R.C. Pharmacokinetics of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J. Sep. Sci., 2013, 36(5), 863-871.
[http://dx.doi.org/10.1002/jssc.201200668] [PMID: 23371758]
[36]
Campos-Toimil, M.; Elíes, J.; Alvarez, E.; Verde, I.; Orallo, F. Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur. J. Pharmacol., 2007, 577(1-3), 91-99.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.003] [PMID: 17822692]
[37]
Hui, Y.; Li, X.; Chen, X. Assessment for the light-induced cis-trans isomerization of rhapontigenin and its glucoside rhaponticin by capillary electrophoresis and spectrometric methods. J. Chromatogr. A, 2011, 1218(34), 5858-5866.
[http://dx.doi.org/10.1016/j.chroma.2011.06.100] [PMID: 21782194]
[38]
Panigrahi, S.K.; Desiraju, G.R. Strong and weak hydrogen bonds in the protein-ligand interface. Proteins, 2007, 67(1), 128-141.
[http://dx.doi.org/10.1002/prot.21253] [PMID: 17206656]
[39]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[40]
Likhitwitayawuid, K.; Sritularak, B. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. J. Nat. Prod., 2001, 64(11), 1457-1459.
[http://dx.doi.org/10.1021/np0101806] [PMID: 11720533]
[41]
Rossi, M.; Caruso, F.; Opazo, C.; Salciccioli, J. Crystal and molecular structure of piceatannol; scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretin. J. Agric. Food Chem., 2008, 56(22), 10557-10566.
[http://dx.doi.org/10.1021/jf801923j] [PMID: 18959413]
[42]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[43]
Wen, H.; Fu, Z.; Wei, Y.; Zhang, X.; Ma, L.; Gu, L.; Li, J. Antioxidant activity and neuroprotective activity of stilbenoids in rat primary cortex neurons via the PI3K/Akt signalling pathway. Molecules, 2018, 23(9) E2328
[http://dx.doi.org/10.3390/molecules23092328] [PMID: 30213108]
[44]
Erasalo, H.; Hamalainen, M.; Leppanen, T.; Maki-Opas, I.; Eräsalo, H.; Hämäläinen, M.; Leppänen, T.; Mäki-Opas, I.; Laavola, M.; Haavikko, R.; Yli-Kauhaluoma, J.; Moilanen, E. Natural stilbenoids have anti-inflammatory properties in vivo and down-regulate the production of inflammatory mediators NO, IL6, and MCP1 possibly in a PI3K/Akt-dependent manner. J. Nat. Prod., 2018, 81(5), 1131-1142.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00384] [PMID: 29726680]
[45]
Zhao, Y.Y.; Su, Q.; Cheng, X.L.; Tan, X.J.; Bai, X.; Lin, R.C. Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC-Q-TOF/MS and UHPLC-DAD-MSn. Bioanalysis, 2012, 4(6), 713-723.
[http://dx.doi.org/10.4155/bio.12.24] [PMID: 22452262]
[46]
Dellinger, R.W.; Garcia, A.M.G.; Meyskens, F.L., Jr Differences in the glucuronidation of resveratrol and pterostilbene: altered enzyme specificity and potential gender differences. Drug Metab. Pharmacokinet., 2014, 29(2), 112-119.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-012] [PMID: 23965644]
[47]
Setoguchi, Y.; Oritani, Y.; Ito, R.; Inagaki, H.; Maruki-Uchida, H.; Ichiyanagi, T.; Ito, T. Absorption and metabolism of piceatannol in rats. J. Agric. Food Chem., 2014, 62(12), 2541-2548.
[http://dx.doi.org/10.1021/jf404694y] [PMID: 24625210]
[48]
Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther., 2002, 302(1), 369-373.
[http://dx.doi.org/10.1124/jpet.102.033340] [PMID: 12065739]
[49]
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[50]
Wang, D.; Hang, T.; Wu, C.; Liu, W. Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 829(1-2), 97-106.
[http://dx.doi.org/10.1016/j.jchromb.2005.09.040] [PMID: 16243591]
[51]
Urpi-Sarda, M.; Zamora-Ros, R.; Lamuela-Raventos, R.; Cherubini, A.; Jauregui, O.; de la Torre, R.; Covas, M.I.; Estruch, R.; Jaeger, W.; Andres-Lacueva, C. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clin. Chem., 2007, 53(2), 292-299.
[http://dx.doi.org/10.1373/clinchem.2006.071936] [PMID: 17170057]
[52]
Roupe, K.A.; Yáñez, J.A.; Teng, X.W.; Davies, N.M. Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats. J. Pharm. Pharmacol., 2006, 58(11), 1443-1450.
[http://dx.doi.org/10.1211/jpp.58.11.0004] [PMID: 17132206]
[53]
Kim, D.H.; Park, E.K.; Bae, E.A.; Han, M.J. Metabolism of rhaponticin and chrysophanol 8-o-beta-D-glucopyranoside from the rhizome of Rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol. Pharm. Bull., 2000, 23(7), 830-833.
[http://dx.doi.org/10.1248/bpb.23.830] [PMID: 10919361]
[54]
Grès, M.C.; Julian, B.; Bourrié, M.; Meunier, V.; Roques, C.; Berger, M.; Boulenc, X.; Berger, Y.; Fabre, G. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharm. Res., 1998, 15(5), 726-733.
[http://dx.doi.org/10.1023/A:1011919003030] [PMID: 9619781]
[55]
Kim, S.; Ahn, J.; Shon, D.W.; Kim, J.S.; Kim, M.H.; Ha, T.Y. Comparison of the permeability of stilbene analogues in caco-2 cells. Food Sci. Biotechnol., 2008, 17(3), 675-678.
[56]
Sale, S.; Verschoyle, R.D.; Boocock, D.; Jones, D.J.L.; Wilsher, N.; Ruparelia, K.C.; Potter, G.A.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br. J. Cancer, 2004, 90(3), 736-744.
[http://dx.doi.org/10.1038/sj.bjc.6601568] [PMID: 14760392]
[57]
Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem., 2003, 46(16), 3546-3554.
[http://dx.doi.org/10.1021/jm030785u] [PMID: 12877593]
[58]
Pettit, G.R.; Grealish, M.P.; Jung, M.K.; Hamel, E.; Pettit, R.K.; Chapuis, J.C.; Schmidt, J.M. Antineoplastic agents. 465. Structural modification of resveratrol: sodium resverastatin phosphate. J. Med. Chem., 2002, 45(12), 2534-2542.
[http://dx.doi.org/10.1021/jm010119y] [PMID: 12036362]
[59]
Liu, H.; Dong, A.; Gao, C.; Tan, C.; Liu, H.; Zu, X.; Jiang, Y. The design, synthesis, and anti-tumor mechanism study of N-phosphoryl amino acid modified resveratrol analogues. Bioorg. Med. Chem., 2008, 16(23), 10013-10021.
[http://dx.doi.org/10.1016/j.bmc.2008.10.022] [PMID: 18952444]
[60]
Zhang, W.; Oya, S.; Kung, M.P.; Hou, C.; Maier, D.L.; Kung, H.F. F-18 polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl. Med. Biol., 2005, 32(8), 799-809.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.06.001] [PMID: 16253804]
[61]
Neves, A.R.; Martins, S.; Segundo, M.A.; Reis, S. Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals. Nutrients, 2016, 8(3), 131.
[http://dx.doi.org/10.3390/nu8030131] [PMID: 26950147]
[62]
Summerlin, N.; Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Popat, A. Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm., 2015, 479(2), 282-290.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.003] [PMID: 25572692]
[63]
Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond.), 2016, 11(9), 1169-1185.
[http://dx.doi.org/10.2217/nnm.16.9] [PMID: 27074098]
[64]
Xu, L.; Bai, Q.; Zhang, X.; Yang, H. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J. Control. Release, 2017, 252, 73-82.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.023] [PMID: 28235591]
[65]
Liang, X.; Sun, Y.; Liu, L.; Ma, X.; Hu, X.; Fan, J. Folate functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery. J. Control. Release, 2013, 172(1), E80-E80.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.163]
[66]
Shimada, T.; Iwasaki, M.; Martin, M.V.; Guengerich, F.P. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002. Cancer Res., 1989, 49(12), 3218-3228.
[PMID: 2655891]
[67]
Shimada, T.; Yamazaki, H.; Foroozesh, M.; Hopkins, N.E.; Alworth, W.L.; Guengerich, F.P. Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chem. Res. Toxicol., 1998, 11(9), 1048-1056.
[http://dx.doi.org/10.1021/tx980090+] [PMID: 9760279]
[68]
Chun, Y.J.; Kim, M.Y.; Guengerich, F.P. Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem. Biophys. Res. Commun., 1999, 262(1), 20-24.
[http://dx.doi.org/10.1006/bbrc.1999.1152] [PMID: 10448061]
[69]
Casper, R.F.; Quesne, M.; Rogers, I.M.; Shirota, T.; Jolivet, A.; Milgrom, E.; Savouret, J.F. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol. Pharmacol., 1999, 56(4), 784-790.
[PMID: 10496962]
[70]
Guengerich, F.P.; Shimada, T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol., 1991, 4(4), 391-407.
[http://dx.doi.org/10.1021/tx00022a001] [PMID: 1912325]
[71]
Detampel, P.; Beck, M.; Krähenbühl, S.; Huwyler, J. Drug interaction potential of resveratrol. Drug Metab. Rev., 2012, 44(3), 253-265.
[http://dx.doi.org/10.3109/03602532.2012.700715] [PMID: 22788578]
[72]
Matés, J.M.; Sánchez-Jiménez, F.M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol., 2000, 32(2), 157-170.
[http://dx.doi.org/10.1016/S1357-2725(99)00088-6] [PMID: 10687951]
[73]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[74]
Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594.
[http://dx.doi.org/10.1074/jbc.M101846200] [PMID: 11316812]
[75]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[76]
Tsan, M.F.; White, J.E.; Maheshwari, J.G.; Chikkappa, G. Anti-leukemia effect of resveratrol. Leuk. Lymphoma, 2002, 43(5), 983-987.
[http://dx.doi.org/10.1080/10428190290021669] [PMID: 12148909]
[77]
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Roberti, M.; Pizzirani, D.; Meli, M.; Dusonchet, L.; Gebbia, N.; Abbadessa, V.; Crosta, L.; Barucchello, R.; Grisolia, G.; Invidiata, F.; Simoni, D. Pterostilbene and 3′-hydroxy-pterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int. J. Biochem. Cell Biol., 2005, 37(8), 1709-1726.
[http://dx.doi.org/10.1016/j.biocel.2005.03.004] [PMID: 15878840]
[78]
Siedlecka-Kroplewska, K.; Jozwik, A.; Boguslawski, W.; Wozniak, M.; Zauszkiewicz-Pawlak, A.; Spodnik, J.H.; Rychlowski, M.; Kmiec, Z. Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells. J. Physiol. Pharmacol., 2013, 64(5), 545-556.
[PMID: 24304568]
[79]
Pettit, G.R.; Singh, S.B.; Niven, M.L.; Hamel, E.; Schmidt, J.M. Isolation, structure, and synthesis of combretastatin A-1 and combretasatin B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J. Nat. Prod., 1987, 50(1), 119-131.
[http://dx.doi.org/10.1021/np50049a016] [PMID: 3598594]
[80]
Park, S.; Kim, Y.N.; Kwak, H.J.; Jeong, E.J.; Kim, S.H. Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné. Bioorg. Med. Chem. Lett., 2018, 28(4), 552-557.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.063] [PMID: 29402747+]
[81]
Kaszkin-Bettag, M.; Richardson, A.; Rettenberger, R.; Heger, P.W. Long-term toxicity studies in dogs support the safety of the special extract ERr 731 from the roots of Rheum rhaponticum. Food Chem. Toxicol., 2008, 46(5), 1608-1618.
[http://dx.doi.org/10.1016/j.fct.2007.12.026] [PMID: 18267351]
[82]
Chae, Y.S.; Kim, J.G.; Jung, H.J.; Yang, J.D.; Jung, J.H.; Aiyar, S.E.; Kim, S.; Park, H. Anticancer effect of (E)-2-hydroxy-3 ',4,5 '-trimethoxystilbene on breast cancer cells by mitochondrial depolarization. Cancer Chemother. Pharmacol., 2011, 68(2), 349-358.
[http://dx.doi.org/10.1007/s00280-010-1464-0] [PMID: 20978764]
[83]
Cho, S.G.; Choi, H.N.; Jeong, H.S.; Lee, E.R.; Kim, J.K.; Choi, H.Y. Pharmaceutical composition useful for preventing or treating cancer, preferably breast cancer by inducing apoptosis, comprises rhapontigenin compound. KR20110- 55176-A; KR1114438-B1, (Accessed: 19 Nov, 2009).
[84]
Yeh, Y.H.; Wang, S.W.; Yeh, Y.C.; Hsiao, H.F.; Li, T.K. Rhapo-TOR pathway and is not associated with HIF-1α degradation. Oncol. Rep., 2016, 35(5), 2887-2895.
[http://dx.doi.org/10.3892/or.2016.4664] [PMID: 26986649]
[85]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[86]
Burridge, K.; Wennerberg, K. Rho and Rac take center stage. Cell, 2004, 116(2), 167-179.
[http://dx.doi.org/10.1016/S0092-8674(04)00003-0] [PMID: 14744429]
[87]
Welch, H.C.E.; Coadwell, W.J.; Stephens, L.R.; Hawkins, P.T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett., 2003, 546(1), 93-97.
[http://dx.doi.org/10.1016/S0014-5793(03)00454-X] [PMID: 12829242]
[88]
Lee, D.; Park, S.; Choi, S.; Kim, S.H.; Kang, K.S. In vitro estrogenic and breast cancer inhibitory activities of chemical constituents isolated from Rheum undulatum L. Molecules, 2018, 23(5) E1215
[http://dx.doi.org/10.3390/molecules23051215] [PMID: 29783719]
[89]
Kim, A.; Ma, J.Y. Rhaponticin decreases the metastatic and angiogenic abilities of cancer cells via suppression of the HIF1α pathway. Int. J. Oncol., 2018, 53(3), 1160-1170.
[http://dx.doi.org/10.3892/ijo.2018.4479] [PMID: 30015877]
[90]
Sporn, M.B. Carcinogenesis and cancer: different perspectives on the same disease. Cancer Res., 1991, 51(23 Pt 1), 6215-6218.
[PMID: 1933881]
[91]
Sun, Y.; Ji, Z.; Zhao, Y.; Liang, X.; Hu, X.; Fan, J. Enhanced distribution and anti-tumor activity of ergosta-4,6,8(14),22-tetraen-3-one by polyethylene glycol liposomalization. J. Nanosci. Nanotechnol., 2013, 13(2), 1435-1439.
[http://dx.doi.org/10.1166/jnn.2013.6009] [PMID: 23646655]
[92]
Sun, Y.; Zhao, Y.; Li, G.; Yang, S.; Hu, X.; Fan, J. Studies of interaction between ergosta-4,6,8(14),22-tetraen-3-one (ergone) and human serum albumin by molecular spectroscopy and modeling. J. Chin. Chem. Soc. (Taipei), 2011, 58(5), 602-610.
[http://dx.doi.org/10.1002/jccs.201190094]
[93]
Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine. Free Radic. Biol. Med., 1985, i-xii, 1-346.
[http://dx.doi.org/10.1016/0748-5514(85)90140-0]
[94]
Griendling, K.K.; FitzGerald, G.A. Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 2003, 108(16), 1912-1916.
[http://dx.doi.org/10.1161/01.CIR.0000093660.86242.BB] [PMID: 14568884]
[95]
Gresele, P.; Cerletti, C.; Guglielmini, G.; Pignatelli, P.; de Gaetano, G.; Violi, F. Effects of resveratrol and other wine polyphenols on vascular function: an update. J. Nutr. Biochem., 2011, 22(3), 201-211.
[http://dx.doi.org/10.1016/j.jnutbio.2010.07.004] [PMID: 21111592]
[96]
Rimando, A.M.; Nagmani, R.; Feller, D.R.; Yokoyama, W. Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J. Agric. Food Chem., 2005, 53(9), 3403-3407.
[http://dx.doi.org/10.1021/jf0580364] [PMID: 15853379]
[97]
Chai, Y.Y.; Wang, F.; Li, Y.L.; Liu, K.; Xu, H. Antioxidant activities of stilbenoids from Rheum emodi wall. Evid. Based Complement. Alternat. Med., 2012, 2012 603678
[http://dx.doi.org/10.1155/2012/603678] [PMID: 23193425]
[98]
Iliya, I.; Tanaka, T.; Iinuma, M.; Ali, Z.; Furasawa, M.; Nakaya, K.; Matsuura, N.; Ubukata, M. Four dimeric stilbenes in stem lianas of Gnetum africanum. Heterocycles, 2002, 57(8), 1507-1512.
[http://dx.doi.org/10.3987/COM-02-9527]
[99]
Stojanovic, S.; Brede, O. Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene. Phys. Chem. Chem. Phys., 2002, 4(5), 757-764.
[http://dx.doi.org/10.1039/b109063c]
[100]
Mikulski, D.; Górniak, R.; Molski, M. A theoretical study of the structure-radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. Eur. J. Med. Chem., 2010, 45(3), 1015-1027.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.044] [PMID: 20004046]
[101]
Widmann, C.; Gibson, S.; Jarpe, M.B.; Johnson, G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev., 1999, 79(1), 143-180.
[http://dx.doi.org/10.1152/physrev.1999.79.1.143] [PMID: 9922370]
[102]
Karin, M.; Takahashi, T.; Kapahi, P.; Delhase, M.; Chen, Y.; Makris, C.; Rothwarf, D.; Baud, V.; Natoli, G.; Guido, F.; Li, N. Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors, 2001, 15(2-4), 87-89.
[http://dx.doi.org/10.1002/biof.5520150207] [PMID: 12016332]
[103]
Li, G.; Luan, G.; He, Y.; Tie, F.; Wang, Z.; Suo, Y.; Ma, C.; Wang, H. Polyphenol stilbenes from fenugreek (Trigonella foenum-graecum L.) seeds improve insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Oxid. Med. Cell. Longev., 2018, 2018 7634362
[http://dx.doi.org/10.1155/2018/7634362] [PMID: 29967664]
[104]
Sun, Y.; Liang, X.; Zhao, Y.; Fan, J. Solvent effects on the absorption and fluorescence spectra of rhaponticin: experimental and theoretical studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 194-199.
[105]
Tang, J.J.; Fan, G.J.; Dai, F.; Ding, D.J.; Wang, Q.; Lu, D.L.; Li, R.R.; Li, X.Z.; Hu, L.M.; Jin, X.L.; Zhou, B. Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic. Biol. Med., 2011, 50(10), 1447-1457.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.028] [PMID: 21376113]
[106]
Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet, 2002, 360(9326), 7-22.
[http://dx.doi.org/10.1016/S0140-6736(02)09327-3] [PMID: 12114036]
[107]
Park, K.T.; Kim, J.K.; Lim, Y.H. Deglycosylation of stilbene glucoside compounds improves inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase and squalene synthase activities. Food Sci. Biotechnol., 2014, 23(2), 647-651.
[http://dx.doi.org/10.1007/s10068-014-0088-2]
[108]
Jo, S.P.; Kim, J.K.; Lim, Y.H. Antihyperlipidemic effects of rhapontin and rhapontigenin from Rheum undulatum in rats fed a high-cholesterol diet. Planta Med., 2014, 80(13), 1067-1071.
[http://dx.doi.org/10.1055/s-0034-1382999] [PMID: 25127020]
[109]
Chen, Q.; Wang, E.; Ma, L.; Zhai, P. Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids Health Dis., 2012, 11, 56.
[http://dx.doi.org/10.1186/1476-511X-11-56] [PMID: 22607622]
[110]
Fumery, M.; Xiaocang, C.; Dauchet, L.; Gower-Rousseau, C.; Peyrin-Biroulet, L.; Colombel, J.F. Thromboembolic events and cardiovascular mortality in inflammatory bowel diseases: a meta-analysis of observational studies. J. Crohn’s Colitis, 2014, 8(6), 469-479.
[http://dx.doi.org/10.1016/j.crohns.2013.09.021] [PMID: 24183231]
[111]
Park, E.K.; Choo, M.K.; Yoon, H.K.; Kim, D.H. Antithrombotic and antiallergic activities of rhaponticin from Rhei rhizoma are activated by human intestinal bacteria. Arch. Pharm. Res., 2002, 25(4), 528-533.
[http://dx.doi.org/10.1007/BF02976613] [PMID: 12214867]
[112]
Demierre, M.F.; Higgins, P.D.; Gruber, S.B.; Hawk, E.; Lippman, S.M. Statins and cancer prevention. Nat. Rev. Cancer, 2005, 5(12), 930-942.
[http://dx.doi.org/10.1038/nrc1751] [PMID: 16341084]
[113]
de Fougerolles, A.R.; Springer, T.A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med., 1992, 175(1), 185-190.
[http://dx.doi.org/10.1084/jem.175.1.185] [PMID: 1730916]
[114]
Lee, S.W.; Hwang, B.S.; Kim, M.H.; Park, C.S.; Lee, W.S.; Oh, H.M.; Rho, M.C. Inhibition of LFA-1/ICAM-1-mediated cell adhesion by stilbene derivatives from Rheum undulatum. Arch. Pharm. Res., 2012, 35(10), 1763-1770.
[http://dx.doi.org/10.1007/s12272-012-1008-8] [PMID: 23139127]
[115]
Chiva-Blanch, G.; Urpi-Sarda, M.; Llorach, R.; Rotches-Ribalta, M.; Guillén, M.; Casas, R.; Arranz, S.; Valderas-Martinez, P.; Portoles, O.; Corella, D.; Tinahones, F.; Lamuela-Raventos, R.M.; Andres-Lacueva, C.; Estruch, R. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am. J. Clin. Nutr., 2012, 95(2), 326-334.
[http://dx.doi.org/10.3945/ajcn.111.022889] [PMID: 22205309]
[116]
Sirerol, J.A.; Rodriguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenesin the prevention of cancer. Oxid. Med. Cell. Longev., 2016, 2016 3128951
[http://dx.doi.org/10.1155/2016/3128951] [PMID: 26798416]
[117]
Sun, Y.; Zhao, Y.; Yang, X. A simple and rapid spectrofluorimetric method for determining the pharmacokinetics and metabolism of rhaponticin in rat plasma, feces and urine using a cerium probe. Luminescence, 2013, 28(4), 523-529.
[http://dx.doi.org/10.1002/bio.2488] [PMID: 23364836]
[118]
Mikstacka, R.; Przybylska, D.; Rimando, A.M.; Baer-Dubowska, W. Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers. Mol. Nutr. Food Res., 2007, 51(5), 517-524.
[http://dx.doi.org/10.1002/mnfr.200600135] [PMID: 17440990]
[119]
Chang, T.K.H.; Lee, W.B.K.; Ko, H.H. Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1. Can. J. Physiol. Pharmacol., 2000, 78(11), 874-881.
[http://dx.doi.org/10.1139/y00-067] [PMID: 11100935]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 19
Year: 2020
Published on: 05 June, 2020
Page: [3168 - 3186]
Pages: 19
DOI: 10.2174/0929867326666190121143252
Price: $65

Article Metrics

PDF: 24
HTML: 1