Endothelium as a Therapeutic Target in Diabetes Mellitus: From Basic Mechanisms to Clinical Practice

Author(s): Anastasios Tentolouris, Ioanna Eleftheriadou, Evangelia Tzeravini, Dimitrios Tsilingiris, Stavroula A. Paschou, Gerasimos Siasos, Nikolaos Tentolouris*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 7 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Endothelium plays an essential role in human homeostasis by regulating arterial blood pressure, distributing nutrients and hormones as well as providing a smooth surface that modulates coagulation, fibrinolysis and inflammation. Endothelial dysfunction is present in Diabetes Mellitus (DM) and contributes to the development and progression of macrovascular disease, while it is also associated with most of the microvascular complications such as diabetic retinopathy, nephropathy and neuropathy. Hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia are the main factors involved in the pathogenesis of endothelial dysfunction. Regarding antidiabetic medication, metformin, gliclazide, pioglitazone, exenatide and dapagliflozin exert a beneficial effect on Endothelial Function (EF); glimepiride and glibenclamide, dipeptidyl peptidase-4 inhibitors and liraglutide have a neutral effect, while studies examining the effect of insulin analogues, empagliflozin and canagliflozin on EF are limited. In terms of lipid-lowering medication, statins improve EF in subjects with DM, while data from short-term trials suggest that fenofibrate improves EF; ezetimibe also improves EF but further studies are required in people with DM. The effect of acetylsalicylic acid on EF is dose-dependent and lower doses improve EF while higher ones do not. Clopidogrel improves EF, but more studies in subjects with DM are required. Furthermore, angiotensin- converting-enzyme inhibitors /angiotensin II receptor blockers improve EF. Phosphodiesterase type 5 inhibitors improve EF locally in the corpus cavernosum. Finally, cilostazol exerts favorable effect on EF, nevertheless, more data in people with DM are required.

Keywords: Endothelium, diabetes mellitus, diabetic complications, antidiabetic medication, lipid-lowering medication, antiplatelet medication, antihypertensive medication.

[1]
Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci., 2013, 9(10), 1057-1069.
[http://dx.doi.org/10.7150/ijbs.7502] [PMID: 24250251 ]
[2]
Potenza, M.A.; Gagliardi, S.; Nacci, C.; Carratu’, M.R.; Montagnani, M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr. Med. Chem., 2009, 16(1), 94-112.
[http://dx.doi.org/10.2174/092986709787002853] [PMID: 19149564 ]
[3]
Roberts, A.C.; Porter, K.E. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab. Vasc. Dis. Res., 2013, 10(6), 472-482.
[http://dx.doi.org/10.1177/1479164113500680] [PMID: 24002671 ]
[4]
Michiels, C. Endothelial cell functions. J. Cell. Physiol., 2003, 196(3), 430-443.
[http://dx.doi.org/10.1002/jcp.10333] [PMID: 12891700 ]
[5]
Jia, G.; Durante, W.; Sowers, J.R. Endothelium-derived hyperpolarizing factors: a potential therapeutic target for vascular dysfunction in obesity and insulin resistance. Diabetes, 2016, 65(8), 2118-2120.
[http://dx.doi.org/10.2337/dbi16-0026] [PMID: 27456617 ]
[6]
Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol., 2012, 10(1), 4-18.
[http://dx.doi.org/10.2174/157016112798829760] [PMID: 22112350 ]
[7]
Palmer, R.M.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 1988, 333(6174), 664-666.
[http://dx.doi.org/10.1038/333664a0] [PMID: 3131684 ]
[8]
Joannides, R.; Haefeli, W.E.; Linder, L.; Richard, V.; Bak-kali, E.H.; Thuillez, C.; Lüscher, T.F. Nitric oxide is respon-sible for flow-dependent dilatation of human peripheral con-duit arteries in vivo. Circulation, 1995, 91(5), 1314-1319.
[http://dx.doi.org/10.1161/01.CIR.91.5.1314] [PMID: 7867167 ]
[9]
Münzel, T.; Feil, R.; Mülsch, A.; Lohmann, S.M.; Hofmann, F.; Walter, U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3′,5′-cyclic monophosphate-dependent protein kinase. Circulation, 2003, 108(18), 2172-2183.
[http://dx.doi.org/10.1161/01.CIR.0000094403.78467.C3] [PMID: 14597579 ]
[10]
Mitchell, J.A.; Ali, F.; Bailey, L.; Moreno, L.; Harrington, L.S. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp. Physiol., 2008, 93(1), 141-147.
[http://dx.doi.org/10.1113/expphysiol.2007.038588] [PMID: 17965142 ]
[11]
Haynes, W.G.; Webb, D.J. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet, 1994, 344(8926), 852-854.
[http://dx.doi.org/10.1016/S0140-6736(94)92827-4] [PMID: 7916401 ]
[12]
Masaki, T.; Sawamura, T. Endothelin and endothelial dysfunction. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2006, 82(1), 17-24.
[http://dx.doi.org/10.2183/pjab.82.17] [PMID: 25792766 ]
[13]
Sampaio Storch, A.; Mattos, J.D.; Galdino, S.; Miguens Rocha, H.N. Methods of endothelial function assessment: description and applications. Int. J. Cardiovasc. Sci., 2017, 30(3), 262-273.
[14]
Lekakis, J.; Abraham, P.; Balbarini, A.; Blann, A.; Boulanger, C.M.; Cockcroft, J.; Cosentino, F.; Deanfield, J.; Gallino, A.; Ikonomidis, I.; Kremastinos, D.; Landmesser, U.; Protogerou, A.; Stefanadis, C.; Tousoulis, D.; Vassalli, G.; Vink, H.; Werner, N.; Wilkinson, I.; Vlachopoulos, C. Methods for evaluating endothelial function: a position statement from the European society of cardiology working group on peripheral circulation. Eur. J. Cardiovasc. Prev. Rehabil., 2011, 18(6), 775-789.
[http://dx.doi.org/10.1177/1741826711398179] [PMID: 21450600 ]
[15]
Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; Vita, J.A.; Lerman, A. The assessment of endothelial function: from research into clinical practice. Circulation, 2012, 126(6), 753-767.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.093245] [PMID: 22869857 ]
[16]
Tousoulis, D.; Papageorgiou, N.; Androulakis, E.; Siasos, G.; Latsios, G.; Tentolouris, K.; Stefanadis, C. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J. Am. Coll. Cardiol., 2013, 62(8), 667-676.
[http://dx.doi.org/10.1016/j.jacc.2013.03.089] [PMID: 23948511 ]
[17]
Tousoulis, D.; Androulakis, E.; Papageorgiou, N.; Siasos, G.; Latsios, G.; Charakida, M.; Kampoli, A.M.; Oikonomou, E.; Stefanadis, C. Novel biomarkers assessing endothelial dysfunction: role of microRNAs. Curr. Top. Med. Chem., 2013, 13(13), 1518-1526.
[http://dx.doi.org/10.2174/15680266113139990100] [PMID: 23745803 ]
[18]
Tabit, C.E.; Chung, W.B.; Hamburg, N.M.; Vita, J.A. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev. Endocr. Metab. Disord., 2010, 11(1), 61-74.
[http://dx.doi.org/10.1007/s11154-010-9134-4] [PMID: 20186491 ]
[19]
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 1998, 352(9131), 854-865.
[http://dx.doi.org/10.1016/S0140-6736(98)07037-8] [PMID: 9742977 ]
[20]
Bakker, W.; Eringa, E.C.; Sipkema, P.; van Hinsbergh, V.W. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res., 2009, 335(1), 165-189.
[http://dx.doi.org/10.1007/s00441-008-0685-6] [PMID: 18941783 ]
[21]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781 ]
[22]
Greene, D.A.; Lattimer, S.A.; Sima, A.A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N. Engl. J. Med., 1987, 316(10), 599-606.
[http://dx.doi.org/10.1056/NEJM198703053161007] [PMID: 3027558 ]
[23]
Barnett, P.A.; González, R.G.; Chylack, L.T. Jr.; Cheng, H.M. The effect of oxidation on sorbitol pathway kinetics. Diabetes, 1986, 35(4), 426-432.
[http://dx.doi.org/10.2337/diab.35.4.426] [PMID: 3956880 ]
[24]
Oyama, T.; Miyasita, Y.; Watanabe, H.; Shirai, K. The role of polyol pathway in high glucose-induced endothelial cell damages. Diabetes Res. Clin. Pract., 2006, 73(3), 227-234.
[http://dx.doi.org/10.1016/j.diabres.2006.02.010] [PMID: 16624439 ]
[25]
Chilelli, N.C.; Burlina, S.; Lapolla, A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a “glycoxidation-centric” point of view. Nutr. Metab. Cardiovasc. Dis., 2013, 23(10), 913-919.
[http://dx.doi.org/10.1016/j.numecd.2013.04.004] [PMID: 23786818 ]
[26]
Stirban, A.; Gawlowski, T.; Roden, M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol. Metab., 2013, 3(2), 94-108.
[http://dx.doi.org/10.1016/j.molmet.2013.11.006] [PMID: 24634815 ]
[27]
Schmidt, A.M.; Hori, O.; Chen, J.X.; Li, J.F.; Crandall, J.; Zhang, J.; Cao, R.; Yan, S.D.; Brett, J.; Stern, D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest., 1995, 96(3), 1395-1403.
[http://dx.doi.org/10.1172/JCI118175] [PMID: 7544803 ]
[28]
Chakravarthy, U.; Hayes, R.G.; Stitt, A.W.; McAuley, E.; Archer, D.B. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes, 1998, 47(6), 945-952.
[http://dx.doi.org/10.2337/diabetes.47.6.945] [PMID: 9604873 ]
[29]
Quehenberger, P.; Bierhaus, A.; Fasching, P.; Muellner, C.; Klevesath, M.; Hong, M.; Stier, G.; Sattler, M.; Schleicher, E.; Speiser, W.; Nawroth, P.P. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes, 2000, 49(9), 1561-1570.
[http://dx.doi.org/10.2337/diabetes.49.9.1561] [PMID: 10969841 ]
[30]
Matsubara, M.; Hayashi, N.; Jing, T.; Titani, K. Regulation of endothelial nitric oxide synthase by protein kinase C. J. Biochem., 2003, 133(6), 773-781.
[http://dx.doi.org/10.1093/jb/mvg099] [PMID: 12869534 ]
[31]
Inoguchi, T.; Li, P.; Umeda, F.; Yu, H.Y.; Kakimoto, M.; Imamura, M.; Aoki, T.; Etoh, T.; Hashimoto, T.; Naruse, M.; Sano, H.; Utsumi, H.; Nawata, H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes, 2000, 49(11), 1939-1945.
[http://dx.doi.org/10.2337/diabetes.49.11.1939] [PMID: 11078463 ]
[32]
Ogita, H.; Liao, J. Endothelial function and oxidative stress. Endothelium, 2004, 11(2), 123-132.
[http://dx.doi.org/10.1080/10623320490482664] [PMID: 15370071 ]
[33]
Bauersachs, J.; Widder, J.D. Tetrahydrobiopterin, endothelial nitric oxide synthase, and mitochondrial function in the heart. Hypertension, 2009, 53(6), 907-908.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.130435] [PMID: 19398653 ]
[34]
Rubio-Guerra, A.F.; Vargas-Robles, H.; Ramos-Brizuela, L.M.; Escalante-Acosta, B.A. Is tetrahydrobiopterin a therapeutic option in diabetic hypertensive patients? Integr. Blood Press. Control, 2010, 3, 125-132.
[http://dx.doi.org/10.2147/IBPC.S7479] [PMID: 21949628 ]
[35]
Loader, J.; Montero, D.; Lorenzen, C.; Watts, R.; Méziat, C.; Reboul, C.; Stewart, S.; Walther, G. Acute hyperglycemia impairs vascular function in healthy and cardiometabolic diseased subjects: systematic review and meta-analysis. Arterioscler. Thromb. Vasc. Biol., 2015, 35(9), 2060-2072.
[http://dx.doi.org/10.1161/ATVBAHA.115.305530] [PMID: 26112007 ]
[36]
Joy, N.G.; Perkins, J.M.; Mikeladze, M.; Younk, L.; Tate, D.B.; Davis, S.N. Comparative effects of acute hypoglycemia and hyperglycemia on pro-atherothrombotic biomarkers and endothelial function in non-diabetic humans. J. Diabetes Complications, 2016, 30(7), 1275-1281.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.06.030] [PMID: 27445005 ]
[37]
Fonseca, V.A. The effects of insulin on the endothelium. Endocrinol. Metab. Clin. North Am., 2007, 36(Suppl. 2), 20-26.
[http://dx.doi.org/10.1016/S0889-8529(07)80009-0] [PMID: 18407031 ]
[38]
King, G.L.; Park, K.; Li, Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: The 2015 Edwin Bierman award lecture. Diabetes, 2016, 65(6), 1462-1471.
[http://dx.doi.org/10.2337/db16-0152] [PMID: 27222390 ]
[39]
Ward, C.W.; Gough, K.H.; Rashke, M.; Wan, S.S.; Tribbick, G.; Wang, J. Systematic mapping of potential binding sites for Shc and Grb2 SH2 domains on insulin receptor substrate-1 and the receptors for insulin, epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor. J. Biol. Chem., 1996, 271(10), 5603-5609.
[http://dx.doi.org/10.1074/jbc.271.10.5603] [PMID: 8621421 ]
[40]
Cusi, K.; Maezono, K.; Osman, A.; Pendergrass, M.; Patti, M.E.; Pratipanawatr, T.; DeFronzo, R.A.; Kahn, C.R.; Mandarino, L.J. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest., 2000, 105(3), 311-320.
[http://dx.doi.org/10.1172/JCI7535] [PMID: 10675357 ]
[41]
Kim, Y.B.; Nikoulina, S.E.; Ciaraldi, T.P.; Henry, R.R.; Kahn, B.B. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest., 1999, 104(6), 733-741.
[http://dx.doi.org/10.1172/JCI6928] [PMID: 10491408]
[42]
Jiang, Z.Y.; Lin, Y.W.; Clemont, A.; Feener, E.P.; Hein, K.D.; Igarashi, M.; Yamauchi, T.; White, M.F.; King, G.L. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J. Clin. Invest., 1999, 104(4), 447-457.
[http://dx.doi.org/10.1172/JCI5971] [PMID: 10449437]
[43]
Janus, A.; Szahidewicz-Krupska, E.; Mazur, G.; Doroszko, A. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm., 2016, 20163634948
[http://dx.doi.org/10.1155/2016/3634948] [PMID: 27413253]
[44]
Engin, A.B. What Is Lipotoxicity? Adv. Exp. Med. Biol., 2017, 960, 197-220.
[http://dx.doi.org/10.1007/978-3-319-48382-5_8] [PMID: 28585200]
[45]
Ghosh, A.; Gao, L.; Thakur, A.; Siu, P.M.; Lai, C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci., 2017, 24(1), 50.
[http://dx.doi.org/10.1186/s12929-017-0357-5] [PMID: 28750629 ]
[46]
Symons, J.D.; Abel, E.D. Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide. Rev. Endocr. Metab. Disord., 2013, 14(1), 59-68.
[http://dx.doi.org/10.1007/s11154-012-9235-3] [PMID: 23292334 ]
[47]
Tang, Y.; Li, G. Chronic exposure to high fatty acids impedes receptor agonist-induced nitric oxide production and increments of cytosolic Ca2+ levels in endothelial cells. J. Mol. Endocrinol., 2011, 47(3), 315-326.
[http://dx.doi.org/10.1530/JME-11-0082] [PMID: 21994216]
[48]
Sena, C.M.; Pereira, A.M.; Seiça, R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim. Biophys. Acta, 2013, 1832(12), 2216-2231.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.006] [PMID: 23994612 ]
[49]
Wu, M.Y.; Yiang, G.T.; Lai, T.T.; Li, C.J. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid. Med. Cell. Longev., 2018, 20183420187
[http://dx.doi.org/10.1155/2018/3420187] [PMID: 30254714 ]
[50]
Siasos, G.; Gouliopoulos, N.; Moschos, M.M.; Oikonomou, E.; Kollia, C.; Konsola, T.; Athanasiou, D.; Siasou, G.; Mourouzis, K.; Zisimos, K.; Papavassiliou, A.G.; Stefanadis, C.; Tousoulis, D. Role of endothelial dysfunction and arterial stiffness in the development of diabetic retinopathy. Diabetes Care, 2015, 38(1), e9-e10.
[http://dx.doi.org/10.2337/dc14-1741] [PMID: 25538324 ]
[51]
Yun, J.S.; Ko, S.H.; Kim, J.H.; Moon, K.W.; Park, Y.M.; Yoo, K.D.; Ahn, Y.B. Diabetic retinopathy and endothelial dysfunction in patients with type 2 diabetes mellitus. Diabetes Metab. J., 2013, 37(4), 262-269.
[http://dx.doi.org/10.4093/dmj.2013.37.4.262] [PMID: 23991404]
[52]
Malecki, M.T.; Osmenda, G.; Walus-Miarka, M.; Skupien, J.; Cyganek, K.; Mirkiewicz-Sieradzka, B. damek-Guzik, T.A.; Guzik, T.J.; Sieradzki, J. Retinopathy in type 2 diabetes mellitus is associated with increased intima-media thickness and endothelial dysfunction. Eur. J. Clin. Invest., 2008, 38(12), 925-930.
[http://dx.doi.org/10.1111/j.1365-2362.2008.02051.x] [PMID: 19021717 ]
[53]
Nguyen, T.T.; Shaw, J.E.; Robinson, C.; Kawasaki, R.; Wang, J.J.; Kreis, A.J.; Wong, T.Y. Diabetic retinopathy is related to both endothelium-dependent and -independent responses of skin microvascular flow. Diabetes Care, 2011, 34(6), 1389-1393.
[http://dx.doi.org/10.2337/dc10-1985] [PMID: 21515845 ]
[54]
Sogawa, K.; Nagaoka, T.; Tanano, I.; Tani, T.; Omae, T.; Nakabayashi, S.; Ishibazawa, A.; Takahashi, A.; Yoshida, A. Association between diabetic retinopathy and flow-mediated vasodilation in type 2 DM. Curr. Eye Res., 2012, 37(5), 446-451.
[http://dx.doi.org/10.3109/02713683.2012.654883] [PMID: 22510012 ]
[55]
Lim, L.S.; Ling, L.H.; Cheung, C.M.; Ong, P.G.; Gong, L.; Tai, E.S.; Mathur, R.; Wong, D.; Foulds, W.; Wong, T.Y. Relationship of systemic endothelial function and peripheral arterial stiffness with diabetic retinopathy. Br. J. Ophthalmol., 2015, 99(6), 837-841.
[http://dx.doi.org/10.1136/bjophthalmol-2014-306075] [PMID: 25488949 ]
[56]
Olson, J.A.; Whitelaw, C.M.; McHardy, K.C.; Pearson, D.W.; Forrester, J.V. Soluble leucocyte adhesion molecules in diabetic retinopathy stimulate retinal capillary endothelial cell migration. Diabetologia, 1997, 40(10), 1166-1171.
[http://dx.doi.org/10.1007/s001250050802] [PMID: 9349597 ]
[57]
van Hecke, M.V.; Dekker, J.M.; Nijpels, G.; Moll, A.C.; Heine, R.J.; Bouter, L.M.; Polak, B.C.; Stehouwer, C.D. Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study. Diabetologia, 2005, 48(7), 1300-1306.
[http://dx.doi.org/10.1007/s00125-005-1799-y] [PMID: 15918015 ]
[58]
Oku, H.; Kida, T.; Sugiyama, T.; Hamada, J.; Sato, B.; Ikeda, T. Possible involvement of endothelin-1 and nitric oxide in the pathogenesis of proliferative diabetic retinopathy. Retina, 2001, 21(6), 647-651.
[http://dx.doi.org/10.1097/00006982-200112000-00013] [PMID: 11756889 ]
[59]
Sorrentino, F.S.; Matteini, S.; Bonifazzi, C.; Sebastiani, A.; Parmeggiani, F. Diabetic retinopathy and endothelin system: microangiopathy versus endothelial dysfunction. Eye (Lond.), 2018, 32(7), 1157-1163.
[http://dx.doi.org/10.1038/s41433-018-0032-4] [PMID: 29520046 ]
[60]
Spijkerman, A.M.; Gall, M.A.; Tarnow, L.; Twisk, J.W.; Lauritzen, E.; Lund-Andersen, H.; Emeis, J.; Parving, H.H.; Stehouwer, C.D. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in Type 2 diabetes. Diabet. Med., 2007, 24(9), 969-976.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02217.x] [PMID: 17593241 ]
[61]
Sasongko, M.B.; Wong, T.Y.; Jenkins, A.J.; Nguyen, T.T.; Shaw, J.E.; Wang, J.J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet. Med., 2015, 32(5), 686-691.
[http://dx.doi.org/10.1111/dme.12640] [PMID: 25407692 ]
[62]
Uğurlu, N.; Gerceker, S.; Yülek, F.; Ugurlu, B.; Sarı, C.; Baran, P.; Çağil, N. The levels of the circulating cellular adhesion molecules ICAM-1, VCAM-1 and endothelin-1 and the flow-mediated vasodilatation values in patients with type 1 diabetes mellitus with early-stage diabetic retinopathy. Intern. Med., 2013, 52(19), 2173-2178.
[http://dx.doi.org/10.2169/internalmedicine.52.8572] [PMID: 24088748 ]
[63]
Rajab, H.A.; Baker, N.L.; Hunt, K.J.; Klein, R.; Cleary, P.A.; Lachin, J.; Virella, G.; Lopes-Virella, M.F. DCCT/EDIC Group of Investigators. The predictive role of markers of Inflammation and endothelial dysfunction on the course of diabetic retinopathy in type 1 diabetes. J. Diabetes Complications, 2015, 29(1), 108-114.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.08.004] [PMID: 25441222 ]
[64]
Lois, N.; McCarter, R.V.; O’Neill, C.; Medina, R.J.; Stitt, A.W. Endothelial progenitor cells in diabetic retinopathy. Front. Endocrinol. (Lausanne), 2014, 5, 44.
[http://dx.doi.org/10.3389/fendo.2014.00044] [PMID: 24782825 ]
[65]
Yu, C.G.; Zhang, N.; Yuan, S.S.; Ma, Y.; Yang, L.Y.; Feng, Y.M.; Zhao, D. Endothelial progenitor cells in diabetic microvascular complications: friends or foes? Stem Cells Int., 2016, 20161803989
[http://dx.doi.org/10.1155/2016/1803989] [PMID: 27313624]
[66]
Gilbert, R.E. The endothelium in diabetic nephropathy. Curr. Atheroscler. Rep., 2014, 16(5), 410.
[http://dx.doi.org/10.1007/s11883-014-0410-8] [PMID: 24623181 ]
[67]
Leung, W.K.; Gao, L.; Siu, P.M.; Lai, C.W. Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study. Life Sci., 2016, 166, 121-130.
[http://dx.doi.org/10.1016/j.lfs.2016.10.015] [PMID: 27765534 ]
[68]
El-Din Bessa, S.S.; Hamdy, S.M. Impact of nitric oxide synthase Glu298Asp polymorphism on the development of end-stage renal disease in type 2 diabetic Egyptian patients. Ren. Fail., 2011, 33(9), 878-884.
[http://dx.doi.org/10.3109/0886022X.2011.605978] [PMID: 21854353 ]
[69]
Yokoyama, H.; Sone, H.; Saito, K.; Yamada, D.; Honjo, J.; Haneda, M. Flow-mediated dilation is associated with microalbuminuria independent of cardiovascular risk factors in type 2 diabetes - interrelations with arterial thickness and stiffness. J. Atheroscler. Thromb., 2011, 18(9), 744-752.
[http://dx.doi.org/10.5551/jat.7526] [PMID: 21597231 ]
[70]
Stehouwer, C.D.; Henry, R.M.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Bouter, L.M. Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction--the Hoorn Study. Kidney Int. Suppl., 2004, (92), S42-S44.
[http://dx.doi.org/10.1111/j.1523-1755.2004.09211.x] [PMID: 15485416 ]
[71]
Silva, A.M.; Schaan, B.D.; Signori, L.U.; Plentz, R.D.; Moreno, H., Jr; Bertoluci, M.C.; Irigoyen, M.C. Microalbuminuria is associated with impaired arterial and venous endothelium-dependent vasodilation in patients with Type 2 diabetes. J. Endocrinol. Invest., 2010, 33(10), 696-700.
[http://dx.doi.org/10.1007/BF03346672] [PMID: 20354354 ]
[72]
Ito, H.; Nakashima, M.; Meguro, K.; Furukawa, H.; Yamashita, H.; Takaki, A.; Yukawa, C.; Omoto, T.; Shinozaki, M.; Nishio, S.; Abe, M.; Antoku, S.; Mifune, M.; Togane, M. Flow mediated dilatation is reduced with the progressive stages of glomerular filtration rate and albuminuria in type 2 diabetic patients without coronary heart disease. J. Diabetes Res., 2015, 2015728127
[http://dx.doi.org/10.1155/2015/728127] [PMID: 26064988 ]
[73]
Naka, K.K.; Papathanassiou, K.; Bechlioulis, A.; Kazakos, N.; Pappas, K.; Tigas, S.; Makriyiannis, D.; Tsatsoulis, A.; Michalis, L.K. Determinants of vascular function in patients with type 2 diabetes. Cardiovasc. Diabetol., 2012, 11, 127.
[http://dx.doi.org/10.1186/1475-2840-11-127] [PMID: 23062182 ]
[74]
Marra, M.; Marchegiani, F.; Ceriello, A.; Sirolla, C.; Boemi, M.; Franceschi, C.; Spazzafumo, L.; Testa, I.; Bonfigli, A.R.; Cucchi, M.; Testa, R. Chronic renal impairment and DDAH2-1151 A/C polymorphism determine ADMA levels in type 2 diabetic subjects. Nephrol. Dial. Transplant., 2013, 28(4), 964-971.
[http://dx.doi.org/10.1093/ndt/gfs516] [PMID: 23129820]
[75]
Stehouwer, C.D.; Gall, M.A.; Twisk, J.W.; Knudsen, E.; Emeis, J.J.; Parving, H.H. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes, 2002, 51(4), 1157-1165.
[http://dx.doi.org/10.2337/diabetes.51.4.1157] [PMID: 11916939 ]
[76]
Zanatta, C.M.; Gerchman, F.; Burttet, L.; Nabinger, G.; Jacques-Silva, M.C.; Canani, L.H.; Gross, J.L. Endothelin-1 levels and albuminuria in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2008, 80(2), 299-304.
[http://dx.doi.org/10.1016/j.diabres.2007.12.024] [PMID: 18346810 ]
[77]
Bruno, C.M.; Meli, S.; Marcinno, M.; Ierna, D.; Sciacca, C.; Neri, S. Plasma endothelin-1 levels and albumin excretion rate in normotensive, microalbuminuric type 2 diabetic patients. J. Biol. Regul. Homeost. Agents, 2002, 16(2), 114-117.
[PMID: 12144123 ]
[78]
Zeravica, R.; Ilincic, B.; Cabarkapa, V.; Sakac, V.; Crnobrnja, V.; Stosic, Z. Plasma endothelin- 1 levels and albuminuria in patients with type 2 diabetes mellitus. Med. Pregl., 2016, 69(5-6), 140-145.
[http://dx.doi.org/10.2298/MPNS1606140Z] [PMID: 29693840 ]
[79]
Bahlmann, F.H.; De Groot, K.; Spandau, J.M.; Landry, A.L.; Hertel, B.; Duckert, T.; Boehm, S.M.; Menne, J.; Haller, H.; Fliser, D. Erythropoietin regulates endothelial progenitor cells. Blood, 2004, 103(3), 921-926.
[http://dx.doi.org/10.1182/blood-2003-04-1284] [PMID: 14525788 ]
[80]
Makino, H.; Okada, S.; Nagumo, A.; Sugisawa, T.; Miyamoto, Y.; Kishimoto, I.; Kikuchi-Taura, A.; Soma, T.; Taguchi, A.; Yoshimasa, Y. Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet. Med., 2009, 26(2), 171-173.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02638.x] [PMID: 19236621 ]
[81]
Harmer, J.A.; Keech, A.C.; Veillard, A.S.; Skilton, M.R.; Marwick, T.H.; Watts, G.F.; Meredith, I.T.; Celermajer, D.S.; Investigators, F.V.S. FIELD Vascular Study Investigators. Cigarette smoking and albuminuria are associated with impaired arterial smooth muscle function in patients with type 2 diabetes mellitus: a FIELD substudy. Diabetes Res. Clin. Pract., 2014, 106(2), 328-336.
[http://dx.doi.org/10.1016/j.diabres.2014.08.029] [PMID: 25301035 ]
[82]
Roustit, M.; Loader, J.; Deusenbery, C.; Baltzis, D.; Veves, A. Endothelial dysfunction as a link between cardiovascular risk factors and peripheral neuropathy in diabetes. J. Clin. Endocrinol. Metab., 2016, 101(9), 3401-3408.
[http://dx.doi.org/10.1210/jc.2016-2030] [PMID: 27399351 ]
[83]
Hafer-Macko, C.E.; Ivey, F.M.; Sorkin, J.D.; Macko, R.F. Microvascular tissue plasminogen activator is reduced in diabetic neuropathy. Neurology, 2007, 69(3), 268-274.
[http://dx.doi.org/10.1212/01.wnl.0000266391.20707.83] [PMID: 17636064 ]
[84]
Eleftheriadou, I.; Tentolouris, A.; Grigoropoulou, P.; Tsilingiris, D.; Anastasiou, I.; Kokkinos, A.; Perrea, D.; Katsilambros, N.; Tentolouris, N. The association of diabetic microvascular and macrovascular disease with cutaneous circulation in patients with type 2 diabetes mellitus. J. Diabetes Complications, 2018.
[PMID: 30446479 ]
[85]
Fakhrzadeh, H.; Yamini-Sharif, A.; Sharifi, F.; Tajalizadekhoob, Y.; Mirarefin, M.; Mohammadzadeh, M.; Sadeghian, S.; Badamchizadeh, Z.; Larijani, B. Cardiac autonomic neuropathy measured by heart rate variability and markers of subclinical atherosclerosis in early type 2 diabetes. ISRN Endocrinol., 2012, 2012168264
[http://dx.doi.org/10.5402/2012/168264] [PMID: 23259073 ]
[86]
Tiftikcioglu, B.I.; Bilgin, S.; Duksal, T.; Kose, S.; Zorlu, Y. Autonomic neuropathy and endothelial dysfunction in patients with impaired glucose tolerance or type 2 diabetes mellitus. Medicine (Baltimore), 2016, 95(14)e3340
[http://dx.doi.org/10.1097/MD.0000000000003340] [PMID: 27057914 ]
[87]
Antonopoulos, A.S.; Siasos, G.; Konsola, T.; Oikonomou, E.; Tentolouris, N.; Kollia, C.; Gouliopoulos, N.; Zografos, T.; Papavassiliou, A.G.; Tousoulis, D. Arterial wall elastic properties and endothelial dysfunction in the diabetic foot syndrome in patients with type 2 diabetes. Diabetes Care, 2015, 38(11), e180-e181.
[http://dx.doi.org/10.2337/dc15-1042] [PMID: 26294663 ]
[88]
Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther., 2014, 31(8), 817-836.
[http://dx.doi.org/10.1007/s12325-014-0140-x] [PMID: 25069580 ]
[89]
Edmonds, M.E.; Bodansky, H.J.; Boulton, A.J.M.; Chadwick, P.J.; Dang, C.N.; D’Costa, R.; Johnston, A.; Kennon, B.; Leese, G.; Rajbhandari, S.M.; Serena, T.E.; Young, M.J.; Stewart, J.E.; Tucker, A.T.; Carter, M.J. Multicenter, randomized controlled, observer-blinded study of a nitric oxide generating treatment in foot ulcers of patients with diabetes-ProNOx1 study. Wound Repair Regen., 2018, 26(2), 228-237.
[http://dx.doi.org/10.1111/wrr.12630] [PMID: 29617058 ]
[90]
Castela, Â.; Costa, C. Molecular mechanisms associated with diabetic endothelial-erectile dysfunction. Nat. Rev. Urol., 2016, 13(5), 266-274.
[http://dx.doi.org/10.1038/nrurol.2016.23] [PMID: 26878803 ]
[91]
Murata, M.; Tamemoto, H.; Otani, T.; Jinbo, S.; Ikeda, N.; Kawakami, M.; Ishikawa, S.E. Endothelial impairment and bone marrow-derived CD34(+)/133(+) cells in diabetic patients with erectile dysfunction. J. Diabetes Investig., 2012, 3(6), 526-533.
[http://dx.doi.org/10.1111/j.2040-1124.2012.00230.x] [PMID: 24843618 ]
[92]
Araña, Rosaínz. Mde.J.; Ojeda, M.O.; Acosta, J.R.; Elías-Calles, L.C.; González, N.O.; Herrera, O.T.; García Álvarez, C.T.; Rodríguez, E.M.; Báez, M.E.; Seijas, E.A.; Valdés, R.F. Imbalanced low-grade inflammation and endothelial activation in patients with type 2 diabetes mellitus and erectile dysfunction. J. Sex. Med., 2011, 8(7), 2017-2030.
[http://dx.doi.org/10.1111/j.1743-6109.2011.02277.x] [PMID: 21554550 ]
[93]
Maiorino, M.I.; Bellastella, G.; Petrizzo, M.; Della Volpe, E.; Orlando, R.; Giugliano, D.; Esposito, K. Circulating endothelial progenitor cells in type 1 diabetic patients with erectile dysfunction. Endocrine, 2015, 49(2), 415-421.
[http://dx.doi.org/10.1007/s12020-014-0478-5] [PMID: 25411101 ]
[94]
Osondu, C.U.; Vo, B.; Oni, E.T.; Blaha, M.J.; Veledar, E.; Feldman, T.; Agatston, A.S.; Nasir, K.; Aneni, E.C. The relationship of erectile dysfunction and subclinical cardiovascular disease: A systematic review and meta-analysis. Vasc. Med., 2018, 23(1), 9-20.
[http://dx.doi.org/10.1177/1358863X17725809] [PMID: 29243995 ]
[95]
Tentolouris, A.; Eleftheriadou, I.; Athanasakis, K.; Kyriopoulos, J.; Tsilimigras, D.I.; Grigoropoulou, P.; Doupis, J.; Tentolouris, N. Prevalence of diabetes mellitus as well as cardiac and other main comorbidities in a representative sample of the adult Greek population in comparison with the general population. Hellenic J. Cardiol., 2018, S1109- 9666(18)30038-1 Epub ahead of print.
[http://dx.doi.org/10.1016/j.hjc.2018.04.008] [PMID: 29729413 ]
[96]
Gu, K.; Cowie, C.C.; Harris, M.I. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care, 1998, 21(7), 1138-1145.
[http://dx.doi.org/10.2337/diacare.21.7.1138] [PMID: 9653609 ]
[97]
Gimbrone, M.A. Jr.; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962 ]
[98]
Ylä-Herttuala, S.; Bentzon, J.F.; Daemen, M.; Falk, E.; Garcia-Garcia, H.M.; Herrmann, J.; Hoefer, I.; Jauhiainen, S.; Jukema, J.W.; Krams, R.; Kwak, B.R.; Marx, N.; Naruszewicz, M.; Newby, A.; Pasterkamp, G.; Serruys, P.W.; Waltenberger, J.; Weber, C.; Tokgözoglu, L.; Atherosclerosis, E.S.C.W.G.; Vascular, B. ESC working group of atherosclerosis and vascular biology. stabilization of atherosclerotic plaques: an update. Eur. Heart J., 2013, 34(42), 3251-3258.
[http://dx.doi.org/10.1093/eurheartj/eht301] [PMID: 23966311 ]
[99]
Reyes-Soffer, G.; Holleran, S.; Di Tullio, M.R.; Homma, S.; Boden-Albala, B.; Ramakrishnan, R.; Elkind, M.S.; Sacco, R.L.; Ginsberg, H.N. Endothelial function in individuals with coronary artery disease with and without type 2 diabetes mellitus. Metabolism, 2010, 59(9), 1365-1371.
[http://dx.doi.org/10.1016/j.metabol.2009.12.023] [PMID: 20102776 ]
[100]
Simova, I.I.; Denchev, S.V.; Dimitrov, S.I.; Ivanova, R. Endothelial function in patients with and without diabetes mellitus with different degrees of coronary artery stenosis. J. Clin. Ultrasound, 2009, 37(1), 35-39.
[http://dx.doi.org/10.1002/jcu.20532] [PMID: 18819073 ]
[101]
Djaberi, R.; Roodt, Jo.; Schuijf, J.D.; Rabelink, T.J.; de Koning, E.J.; Pereira, A.M.; Stokkel, M.P.; Smit, J.W.; Bax, J.J.; Jukema, J.W. Endothelial dysfunction in diabetic patients with abnormal myocardial perfusion in the absence of epicardial obstructive coronary artery disease. J. Nucl. Med., 2009, 50(12), 1980-1986.
[http://dx.doi.org/10.2967/jnumed.109.065193] [PMID: 19910438 ]
[102]
Natarajan, A.; Marshall, S.M.; Kesteven, P.J.; McComb, J.M.; Rutter, M.K. Impact of biomarkers for endothelial dysfunction and procoagulant state on 10-year cardiovascular risk in Type 2 diabetes. Diabet. Med., 2011, 28(10), 1201-1205.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03311.x] [PMID: 21480978 ]
[103]
von Scholten, B.J.; Reinhard, H.; Hansen, T.W.; Schalkwijk, C.G.; Stehouwer, C.; Parving, H.H.; Jacobsen, P.K.; Rossing, P. Markers of inflammation and endothelial dysfunction are associated with incident cardiovascular disease, all-cause mortality, and progression of coronary calcification in type 2 diabetic patients with microalbuminuria. J. Diabetes Complications, 2016, 30(2), 248-255.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.11.005] [PMID: 26651261 ]
[104]
Fadini, G.P.; Sartore, S.; Albiero, M.; Baesso, I.; Murphy, E.; Menegolo, M.; Grego, F.; Vigili de Kreutzenberg, S.; Tiengo, A.; Agostini, C.; Avogaro, A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9), 2140-2146.
[http://dx.doi.org/10.1161/01.ATV.0000237750.44469.88] [PMID: 16857948 ]
[105]
Matsuzawa, Y.; Kwon, T.G.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis. J. Am. Heart Assoc., 2015, 4(11)e002270
[http://dx.doi.org/10.1161/JAHA.115.002270] [PMID: 26567372 ]
[106]
Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2018, 41(12), 2669-2701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106 ]
[107]
Eleftheriadou, I.; Grigoropoulou, P.; Liberopoulos, E.; Liatis, S.; Kokkinos, A.; Tentolouris, N. Update on cardiovascular effects of older and newer anti-diabetic medications. Curr. Med. Chem., 2018, 25(13), 1549-1566.
[http://dx.doi.org/10.2174/0929867324666170530075533] [PMID: 28554326 ]
[108]
Shigiyama, F.; Kumashiro, N.; Miyagi, M.; Ikehara, K.; Kanda, E.; Uchino, H.; Hirose, T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc. Diabetol., 2017, 16(1), 84.
[http://dx.doi.org/10.1186/s12933-017-0564-0] [PMID: 28683796 ]
[109]
Li, F.; Chen, J.; Leng, F.; Lu, Z.; Ling, Y. Effect of saxagliptin on circulating endothelial progenitor cells and endothelial function in newly diagnosed type 2 diabetic patients. Exp. Clin. Endocrinol. Diabetes, 2017, 125(6), 400-407.
[http://dx.doi.org/10.1055/s-0042-124421] [PMID: 28407661 ]
[110]
Pitocco, D.; Zaccardi, F.; Tarzia, P.; Milo, M.; Scavone, G.; Rizzo, P.; Pagliaccia, F.; Nerla, R.; Di Franco, A.; Manto, A.; Rocca, B.; Lanza, G.A.; Crea, F.; Ghirlanda, G. Metformin improves endothelial function in type 1 diabetic subjects: a pilot, placebo-controlled randomized study. Diabetes Obes. Metab., 2013, 15(5), 427-431.
[http://dx.doi.org/10.1111/dom.12041] [PMID: 23167274 ]
[111]
Naka, K.K.; Papathanassiou, K.; Bechlioulis, A.; Pappas, K.; Kazakos, N.; Kanioglou, C.; Kostoula, A.; Vezyraki, P.; Makriyiannis, D.; Tsatsoulis, A.; Michalis, L.K. Effects of pioglitazone and metformin on vascular endothelial function in patients with type 2 diabetes treated with sulfonylureas. Diab. Vasc. Dis. Res., 2012, 9(1), 52-58.
[http://dx.doi.org/10.1177/1479164111424515] [PMID: 22049096 ]
[112]
Kitao, N.; Miyoshi, H.; Furumoto, T.; Ono, K.; Nomoto, H.; Miya, A.; Yamamoto, C.; Inoue, A.; Tsuchida, K.; Manda, N.; Kurihara, Y.; Aoki, S.; Nakamura, A.; Atsumi, T.; Group, S.S. SAIS Study Group. The effects of vildagliptin compared with metformin on vascular endothelial function and metabolic parameters: a randomized, controlled trial (Sapporo Athero-Incretin Study 3). Cardiovasc. Diabetol., 2017, 16(1), 125.
[http://dx.doi.org/10.1186/s12933-017-0607-6] [PMID: 29017497]
[113]
Lambadiari, V.; Pavlidis, G.; Kousathana, F.; Varoudi, M.; Vlastos, D.; Maratou, E.; Georgiou, D.; Andreadou, I.; Parissis, J.; Triantafyllidi, H.; Lekakis, J.; Iliodromitis, E.; Dimitriadis, G.; Ikonomidis, I. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc. Diabetol., 2018, 17(1), 8.
[http://dx.doi.org/10.1186/s12933-017-0646-z] [PMID: 29310645 ]
[114]
Shigiyama, F.; Kumashiro, N.; Miyagi, M.; Iga, R.; Kobayashi, Y.; Kanda, E.; Uchino, H.; Hirose, T. Linagliptin improves endothelial function in patients with type 2 diabetes: A randomized study of linagliptin effectiveness on endothelial function. J. Diabetes Investig., 2017, 8(3), 330-340.
[http://dx.doi.org/10.1111/jdi.12587] [PMID: 27868359]
[115]
de Jager, J.; Kooy, A.; Schalkwijk, C.; van der Kolk, J.; Lehert, P.; Bets, D.; Wulffelé, M.G.; Donker, A.J.; Stehouwer, C.D. Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J. Intern. Med., 2014, 275(1), 59-70.
[http://dx.doi.org/10.1111/joim.12128] [PMID: 23981104 ]
[116]
Erem, C.; Ozbas, H.M.; Nuhoglu, I.; Deger, O.; Civan, N.; Ersoz, H.O. Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2014, 122(5), 295-302.
[http://dx.doi.org/10.1055/s-0034-1370989] [PMID: 24710641 ]
[117]
Fidan, E.; Onder Ersoz, H.; Yilmaz, M.; Yilmaz, H.; Kocak, M.; Karahan, C.; Erem, C. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol., 2011, 48(4), 297-302.
[http://dx.doi.org/10.1007/s00592-011-0276-y] [PMID: 21424914 ]
[118]
Lund, S.S.; Tarnow, L.; Stehouwer, C.D.; Schalkwijk, C.G.; Teerlink, T.; Gram, J.; Winther, K.; Frandsen, M.; Smidt, U.M.; Pedersen, O.; Parving, H.H.; Vaag, A.A. Impact of metformin versus repaglinide on non-glycaemic cardiovascular risk markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes. Eur. J. Endocrinol., 2008, 158(5), 631-641.
[http://dx.doi.org/10.1530/EJE-07-0815] [PMID: 18426821 ]
[119]
Skrha, J.; Prázný, M.; Hilgertová, J.; Kvasnicka, J.; Kalousová, M.; Zima, T. Oxidative stress and endothelium influenced by metformin in type 2 diabetes mellitus. Eur. J. Clin. Pharmacol., 2007, 63(12), 1107-1114.
[http://dx.doi.org/10.1007/s00228-007-0378-1] [PMID: 17874238 ]
[120]
Arunachalam, G.; Samuel, S.M.; Marei, I.; Ding, H.; Triggle, C.R. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br. J. Pharmacol., 2014, 171(2), 523-535.
[http://dx.doi.org/10.1111/bph.12496] [PMID: 24372553 ]
[121]
Kinaan, M.; Ding, H.; Triggle, C.R. Metformin: an old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med. Princ. Pract., 2015, 24(5), 401-415.
[http://dx.doi.org/10.1159/000381643] [PMID: 26021280 ]
[122]
Hattori, Y.; Suzuki, K.; Hattori, S.; Kasai, K. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension, 2006, 47(6), 1183-1188.
[http://dx.doi.org/10.1161/01.HYP.0000221429.94591.72] [PMID: 16636195 ]
[123]
Chen, L.L.; Yu, F.; Zeng, T.S.; Liao, Y.F.; Li, Y.M.; Ding, H.C. Effects of gliclazide on endothelial function in patients with newly diagnosed type 2 diabetes. Eur. J. Pharmacol., 2011, 659(2-3), 296-301.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.044] [PMID: 16636195 ]
[124]
Irace, C.; De Luca, S.; Shehaj, E.; Carallo, C.; Loprete, A.; Scavelli, F.; Gnasso, A. Exenatide improves endothelial function assessed by flow mediated dilation technique in subjects with type 2 diabetes: results from an observational research. Diab. Vasc. Dis. Res., 2013, 10(1), 72-77.
[http://dx.doi.org/10.1177/1479164112449562] [PMID: 22732108 ]
[125]
Papathanassiou, K.; Naka, K.K.; Kazakos, N.; Kanioglou, C.; Makriyiannis, D.; Pappas, K.; Katsouras, C.S.; Liveris, K.; Kolettis, T.; Tsatsoulis, A.; Michalis, L.K. Pioglitazone vs glimepiride: Differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis, 2009, 205(1), 221-226.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.11.027] [PMID: 19135671 ]
[126]
Nomoto, H.; Miyoshi, H.; Furumoto, T.; Oba, K.; Tsutsui, H.; Inoue, A.; Atsumi, T.; Manda, N.; Kurihara, Y.; Aoki, S.; Group, S.S. SAIS Study Group. A randomized controlled trial comparing the effects of sitagliptin and glimepiride on endothelial function and metabolic parameters: Sapporo Athero-Incretin Study 1 (SAIS1). PLoS One, 2016, 11(10)e0164255
[http://dx.doi.org/10.1371/journal.pone.0164255] [PMID: 27711199 ]
[127]
Jax, T.; Stirban, A.; Terjung, A.; Esmaeili, H.; Berk, A.; Thiemann, S.; Chilton, R.; von Eynatten, M.; Marx, N. A randomised, active- and placebo-controlled, three-period crossover trial to investigate short-term effects of the dipeptidyl peptidase-4 inhibitor linagliptin on macro- and microvascular endothelial function in type 2 diabetes. Cardiovasc. Diabetol., 2017, 16(1), 13.
[http://dx.doi.org/10.1186/s12933-016-0493-3] [PMID: 28109295 ]
[128]
Nandy, D.; Johnson, C.; Basu, R.; Joyner, M.; Brett, J.; Svendsen, C.B.; Basu, A. The effect of liraglutide on endothelial function in patients with type 2 diabetes. Diab. Vasc. Dis. Res., 2014, 11(6), 419-430.
[http://dx.doi.org/10.1177/1479164114547358] [PMID: 25212693 ]
[129]
Cosenso-Martin, L.N.; Giollo-Júnior, L.T.; Fernandes, L.A.B.; Cesarino, C.B.; Nakazone, M.A.; Machado, M.N.; Yugar-Toledo, J.C.; Vilela-Martin, J.F. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: a randomized controlled trial. Acta Diabetol., 2018, 55(12), 1237-1245. Epub ahead of print
[http://dx.doi.org/10.1007/s00592-018-1204-1] [PMID: 30094725 ]
[130]
Dei Cas, A.; Spigoni, V.; Cito, M.; Aldigeri, R.; Ridolfi, V.; Marchesi, E.; Marina, M.; Derlindati, E.; Aloe, R.; Bonadonna, R.C.; Zavaroni, I. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes. Cardiovasc. Diabetol., 2017, 16(1), 27.
[http://dx.doi.org/10.1186/s12933-017-0503-0] [PMID: 28231835 ]
[131]
Abbink, E.J.; Pickkers, P.; Jansen van Rosendaal, A.; Lutterman, J.A.; Tack, C.J.; Russel, F.G.; Smits, P. Vascular effects of glibenclamide vs. glimepiride and metformin in Type 2 diabetic patients. Diabet. Med., 2002, 19(2), 136-143.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00663.x] [PMID: 11874430 ]
[132]
Jojima, T.; Suzuki, K.; Hirama, N.; Uchida, K.; Hattori, Y. Glimepiride upregulates eNOS activity and inhibits cytokine-induced NF-kappaB activation through a phosphoinoside 3-kinase-Akt-dependent pathway. Diabetes Obes. Metab., 2009, 11(2), 143-149.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00923.x] [PMID: 18564176 ]
[133]
Scott, N.A.; Jennings, P.E.; Brown, J.; Belch, J.J. Gliclazide: a general free radical scavenger. Eur. J. Pharmacol., 1991, 208(2), 175-177.
[http://dx.doi.org/10.1016/0922-4106(91)90069-T] [PMID: 1800127 ]
[134]
Noda, Y.; Mori, A.; Packer, L. Gliclazide scavenges hydroxyl, superoxide and nitric oxide radicals: an ESR study. Res. Commun. Mol. Pathol. Pharmacol., 1997, 96(2), 115-124.
[PMID: 9226746 ]
[135]
Corgnali, M.; Piconi, L.; Ihnat, M.; Ceriello, A. Evaluation of gliclazide ability to attenuate the hyperglycaemic ‘memory’ induced by high glucose in isolated human endothelial cells. Diabetes Metab. Res. Rev., 2008, 24(4), 301-309.
[http://dx.doi.org/10.1002/dmrr.804] [PMID: 18088078]
[136]
Eriksson, L.; Nyström, T. Antidiabetic agents and endothelial dysfunction - beyond glucose control. Basic Clin. Pharmacol. Toxicol., 2015, 117(1), 15-25.
[http://dx.doi.org/10.1111/bcpt.12402] [PMID: 25827165]
[137]
Tsuchiya, K.; Akaza, I.; Yoshimoto, T.; Hirata, Y. Pioglitazone improves endothelial function with increased adiponectin and high-density lipoprotein cholesterol levels in type 2 diabetes. Endocr. J., 2009, 56(5), 691-698.
[http://dx.doi.org/10.1507/endocrj.K08E-308] [PMID: 19506330]
[138]
Kampoli, A.M.; Tousoulis, D.; Pallantza, Z.; Paterakis, G.; Papageorgiou, N.; Oikonomou, E.; Miliou, A.; Vlachopoulou, A.; Stefanadis, C. Comparable effects of pioglitazone and perindopril on circulating endothelial progenitor cells, inflammatory process and oxidative stress in patients with diabetes mellitus. Int. J. Cardiol., 2012, 157(3), 413-415.
[http://dx.doi.org/10.1016/j.ijcard.2012.03.159] [PMID: 22494865 ]
[139]
Fernandez, M.; Triplitt, C.; Wajcberg, E.; Sriwijilkamol, A.A.; Musi, N.; Cusi, K.; DeFronzo, R.; Cersosimo, E. Addition of pioglitazone and ramipril to intensive insulin therapy in type 2 diabetic patients improves vascular dysfunction by different mechanisms. Diabetes Care, 2008, 31(1), 121-127.
[http://dx.doi.org/10.2337/dc07-0711] [PMID: 17909084 ]
[140]
Maegawa, H.; Nishio, Y.; Nakao, K.; Ugi, S.; Maeda, K.; Uzu, T.; Kashiwagi, A. Short-term low-dosage pioglitazone treatment improves vascular dysfunction in patients with type 2 diabetes. Endocr. J., 2007, 54(4), 613-618.
[http://dx.doi.org/10.1507/endocrj.K06-203] [PMID: 17641441 ]
[141]
Kelly, A.S.; Thelen, A.M.; Kaiser, D.R.; Gonzalez-Campoy, J.M.; Bank, A.J. Rosiglitazone improves endothelial function and inflammation but not asymmetric dimethylarginine or oxidative stress in patients with type 2 diabetes mellitus. Vasc. Med., 2007, 12(4), 311-318.
[http://dx.doi.org/10.1177/1358863X07084200] [PMID: 18048467 ]
[142]
Stojanović, M.; Prostran, M.; Radenković, M. Thiazolidinediones improve flow-mediated dilation: a meta-analysis of randomized clinical trials. Eur. J. Clin. Pharmacol., 2016, 72(4), 385-398.
[http://dx.doi.org/10.1007/s00228-015-1999-4] [PMID: 26690770 ]
[143]
Radenković, M. Pioglitazone and endothelial dysfunction: pleiotropic effects and possible therapeutic implications. Sci. Pharm., 2014, 82(4), 709-721.
[http://dx.doi.org/10.3797/scipharm.1407-16] [PMID: 26171320 ]
[144]
Boyle, J.G.; Logan, P.J.; Ewart, M.A.; Reihill, J.A.; Ritchie, S.A.; Connell, J.M.; Cleland, S.J.; Salt, I.P. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J. Biol. Chem., 2008, 283(17), 11210-11217.
[http://dx.doi.org/10.1074/jbc.M710048200] [PMID: 18303014 ]
[145]
Chen, C.; Peng, S.; Chen, F.; Liu, L.; Li, Z.; Zeng, G.; Huang, Q. Protective effects of pioglitazone on vascular endothelial cell dysfunction induced by high glucose via inhibition of IKKα/β-NFκB signaling mediated by PPARγ in vitro. Can. J. Physiol. Pharmacol., 2017, 95(12), 1480-1487.
[http://dx.doi.org/10.1139/cjpp-2016-0574] [PMID: 28787583 ]
[146]
Werner, C.; Gensch, C.; Pöss, J.; Haendeler, J.; Böhm, M.; Laufs, U. Pioglitazone activates aortic telomerase and prevents stress-induced endothelial apoptosis. Atherosclerosis, 2011, 216(1), 23-34.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.011] [PMID: 21396644 ]
[147]
van Poppel, P.C.; Netea, M.G.; Smits, P.; Tack, C.J. Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care, 2011, 34(9), 2072-2077.
[http://dx.doi.org/10.2337/dc10-2421] [PMID: 21788633 ]
[148]
Dell’Oro, R.; Maloberti, A.; Nicoli, F.; Villa, P.; Gamba, P.; Bombelli, M.; Mancia, G.; Grassi, G. Long-term saxagliptin treatment improves endothelial function but not pulse wave velocity and intima-media thickness in type 2 diabetic patients. High Blood Press. Cardiovasc. Prev., 2017, 24(4), 393-400.
[http://dx.doi.org/10.1007/s40292-017-0215-2] [PMID: 28608024 ]
[149]
Dore, F.J.; Domingues, C.C.; Ahmadi, N.; Kundu, N.; Kropotova, Y.; Houston, S.; Rouphael, C.; Mammadova, A.; Witkin, L.; Khiyami, A.; Amdur, R.L.; Sen, S. The synergistic effects of saxagliptin and metformin on CD34+ endothelial progenitor cells in early type 2 diabetes patients: a randomized clinical trial. Cardiovasc. Diabetol., 2018, 17(1), 65.
[http://dx.doi.org/10.1186/s12933-018-0709-9] [PMID: 29724198 ]
[150]
Nakamura, K.; Oe, H.; Kihara, H.; Shimada, K.; Fukuda, S.; Watanabe, K.; Takagi, T.; Yunoki, K.; Miyoshi, T.; Hirata, K.; Yoshikawa, J.; Ito, H. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc. Diabetol., 2014, 13, 110.
[http://dx.doi.org/10.1186/s12933-014-0110-2] [PMID: 25074318 ]
[151]
Kubota, Y.; Miyamoto, M.; Takagi, G.; Ikeda, T.; Kirinoki-Ichikawa, S.; Tanaka, K.; Mizuno, K. The dipeptidyl peptidase-4 inhibitor sitagliptin improves vascular endothelial function in type 2 diabetes. J. Korean Med. Sci., 2012, 27(11), 1364-1370.
[http://dx.doi.org/10.3346/jkms.2012.27.11.1364] [PMID: 23166419 ]
[152]
Matsubara, J.; Sugiyama, S.; Sugamura, K.; Nakamura, T.; Fujiwara, Y.; Akiyama, E.; Kurokawa, H.; Nozaki, T.; Ohba, K.; Konishi, M.; Maeda, H.; Izumiya, Y.; Kaikita, K.; Sumida, H.; Jinnouchi, H.; Matsui, K.; Kim-Mitsuyama, S.; Takeya, M.; Ogawa, H. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J. Am. Coll. Cardiol., 2012, 59(3), 265-276.
[http://dx.doi.org/10.1016/j.jacc.2011.07.053] [PMID: 22240132 ]
[153]
Tremblay, A.J.; Lamarche, B.; Deacon, C.F.; Weisnagel, S.J.; Couture, P. Effects of sitagliptin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes. Metabolism, 2014, 63(9), 1141-1148.
[http://dx.doi.org/10.1016/j.metabol.2014.06.004] [PMID: 25034387 ]
[154]
Fadini, G.P.; Boscaro, E.; Albiero, M.; Menegazzo, L.; Frison, V.; de Kreutzenberg, S.; Agostini, C.; Tiengo, A.; Avogaro, A. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha. Diabetes Care, 2010, 33(7), 1607-1609.
[http://dx.doi.org/10.2337/dc10-0187] [PMID: 20357375 ]
[155]
Widlansky, M.E.; Puppala, V.K.; Suboc, T.M.; Malik, M.; Branum, A.; Signorelli, K.; Wang, J.; Ying, R.; Tanner, M.J.; Tyagi, S. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc. Med., 2017, 22(3), 189-196.
[http://dx.doi.org/10.1177/1358863X16681486] [PMID: 28145158 ]
[156]
Maruhashi, T.; Higashi, Y.; Kihara, Y.; Yamada, H.; Sata, M.; Ueda, S.; Odawara, M.; Terauchi, Y.; Dai, K.; Ohno, J.; Iida, M.; Sano, H.; Tomiyama, H.; Inoue, T.; Tanaka, A.; Murohara, T.; Node, K.; Investigators, P.S. PROLOGUE Study Investigators. Long-term effect of sitagliptin on endothelial function in type 2 diabetes: a sub-analysis of the PROLOGUE study. Cardiovasc. Diabetol., 2016, 15(1), 134.
[http://dx.doi.org/10.1186/s12933-016-0438-x] [PMID: 27624168 ]
[157]
Nakamura, T.; Iwanaga, Y.; Miyaji, Y.; Nohara, R.; Ishimura, T.; Miyazaki, S. Sitagliptin Registry Kinki Cardiologists’ Study (SIRKAS) Investigators. Cardiovascular efficacy of sitagliptin in patients with diabetes at high risk of cardiovascular disease: a 12-month follow-up. Cardiovasc. Diabetol., 2016, 15, 54.
[http://dx.doi.org/10.1186/s12933-016-0371-z] [PMID: 27036865 ]
[158]
Hage, C.; Brismar, K.; Lundman, P.; Norhammar, A.; Rydén, L.; Mellbin, L. The DPP-4 inhibitor sitagliptin and endothelial function in patients with acute coronary syndromes and newly detected glucose perturbations: A report from the BEGAMI study. Diab. Vasc. Dis. Res., 2014, 11(4), 290-293.
[http://dx.doi.org/10.1177/1479164114533355] [PMID: 24845072 ]
[159]
Ayaori, M.; Iwakami, N.; Uto-Kondo, H.; Sato, H.; Sasaki, M.; Komatsu, T.; Iizuka, M.; Takiguchi, S.; Yakushiji, E.; Nakaya, K.; Yogo, M.; Ogura, M.; Takase, B.; Murakami, T.; Ikewaki, K. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J. Am. Heart Assoc., 2013, 2(1)e003277
[http://dx.doi.org/10.1161/JAHA.112.003277] [PMID: 23525426 ]
[160]
Tripolt, N.J.; Aberer, F.; Riedl, R.; Url, J.; Dimsity, G.; Meinitzer, A.; Stojakovic, T.; Aziz, F.; Hödl, R.; Brachtl, G.; Strunk, D.; Brodmann, M.; Hafner, F.; Sourij, H. Effects of linagliptin on endothelial function and postprandial lipids in coronary artery disease patients with early diabetes: a randomized, placebo-controlled, double-blind trial. Cardiovasc. Diabetol., 2018, 17(1), 71.
[http://dx.doi.org/10.1186/s12933-018-0716-x] [PMID: 29773079 ]
[161]
Baltzis, D.; Dushay, J.R.; Loader, J.; Wu, J.; Greenman, R.L.; Roustit, M.; Veves, A. Effect of linagliptin on vascular function: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab., 2016, 101(11), 4205-4213.
[http://dx.doi.org/10.1210/jc.2016-2655] [PMID: 27583476 ]
[162]
Zhong, J.; Maiseyeu, A.; Davis, S.N.; Rajagopalan, S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ. Res., 2015, 116(8), 1491-1504.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305665] [PMID: 25858071 ]
[163]
Ishii, M.; Shibata, R.; Kondo, K.; Kambara, T.; Shimizu, Y.; Tanigawa, T.; Bando, Y.K.; Nishimura, M.; Ouchi, N.; Murohara, T. Vildagliptin stimulates endothelial cell network formation and ischemia-induced revascularization via an endothelial nitric-oxide synthase-dependent mechanism. J. Biol. Chem., 2014, 289(39), 27235-27245.
[http://dx.doi.org/10.1074/jbc.M114.557835] [PMID: 25100725 ]
[164]
Shah, Z.; Pineda, C.; Kampfrath, T.; Maiseyeu, A.; Ying, Z.; Racoma, I.; Deiuliis, J.; Xu, X.; Sun, Q.; Moffatt-Bruce, S.; Villamena, F.; Rajagopalan, S. Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways. Vascul. Pharmacol., 2011, 55(1-3), 2-9.
[http://dx.doi.org/10.1016/j.vph.2011.03.001] [PMID: 21397040 ]
[165]
Forst, T.; Michelson, G.; Ratter, F.; Weber, M.M.; Anders, S.; Mitry, M.; Wilhelm, B.; Pfützner, A. Addition of liraglutide in patients with Type 2 diabetes well controlled on metformin monotherapy improves several markers of vascular function. Diabet. Med., 2012, 29(9), 1115-1118.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03589.x] [PMID: 22288732 ]
[166]
Faber, R.; Zander, M.; Pena, A.; Michelsen, M.M.; Mygind, N.D.; Prescott, E. Effect of the glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes - a randomized, single-blinded, cross-over pilot study. Cardiovasc. Diabetol., 2015, 14, 41.
[http://dx.doi.org/10.1186/s12933-015-0206-3] [PMID: 25896352 ]
[167]
Nomoto, H.; Miyoshi, H.; Furumoto, T.; Oba, K.; Tsutsui, H.; Miyoshi, A.; Kondo, T.; Tsuchida, K.; Atsumi, T.; Manda, N.; Kurihara, Y.; Aoki, S.; Group, S.S. SAIS Study Group. A comparison of the effects of the GLP-1 analogue liraglutide and insulin glargine on endothelial function and metabolic parameters: a randomized, controlled trial sapporo athero-incretin study 2 (SAIS2). PLoS One, 2015, 10(8)e0135854
[http://dx.doi.org/10.1371/journal.pone.0135854] [PMID: 26284918 ]
[168]
Hopkins, N.D.; Cuthbertson, D.J.; Kemp, G.J.; Pugh, C.; Green, D.J.; Cable, N.T.; Jones, H. Effects of 6 months glucagon-like peptide-1 receptor agonist treatment on endothelial function in type 2 diabetes mellitus patients. Diabetes Obes. Metab., 2013, 15(8), 770-773.
[http://dx.doi.org/10.1111/dom.12089] [PMID: 23451821 ]
[169]
Gurkan, E.; Tarkun, I.; Sahin, T.; Cetinarslan, B.; Canturk, Z. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers. Diabetes Res. Clin. Pract., 2014, 106(3), 567-575.
[http://dx.doi.org/10.1016/j.diabres.2014.09.046] [PMID: 25458329 ]
[170]
Hu, Y.; Liu, J.; Wang, G.; Xu, Y. The effects of exenatide and metformin on endothelial function in newly diagnosed type 2 diabetes mellitus patients: a case-control study. Diabetes Ther., 2018, 9(3), 1295-1305.
[http://dx.doi.org/10.1007/s13300-018-0435-z] [PMID: 29754323 ]
[171]
Ceriello, A.; Novials, A.; Ortega, E.; Canivell, S.; La Sala, L.; Pujadas, G.; Esposito, K.; Giugliano, D.; Genovese, S. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care, 2013, 36(8), 2346-2350.
[http://dx.doi.org/10.2337/dc12-2469] [PMID: 23564922 ]
[172]
Kelly, A.S.; Bergenstal, R.M.; Gonzalez-Campoy, J.M.; Katz, H.; Bank, A.J. Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc. Diabetol., 2012, 11, 64.
[http://dx.doi.org/10.1186/1475-2840-11-64] [PMID: 22681705 ]
[173]
Liu, H.; Hu, Y.; Simpson, R.W.; Dear, A.E. Glucagon-like peptide-1 attenuates tumour necrosis factor-alpha-mediated induction of plasminogen [corrected] activator inhibitor-1 expression. J. Endocrinol., 2008, 196(1), 57-65.
[http://dx.doi.org/10.1677/JOE-07-0387] [PMID: 18180317 ]
[174]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun., 2010, 391(3), 1405-1408.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.075] [PMID: 20026306 ]
[175]
Ding, L.; Zhang, J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin., 2012, 33(1), 75-81.
[http://dx.doi.org/10.1038/aps.2011.149] [PMID: 22120969 ]
[176]
Xiao-Yun, X.; Zhao-Hui, M.; Ke, C.; Hong-Hui, H.; Yan-Hong, X. Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med. Sci. Monit., 2011, 17(2), BR35-BR41.
[http://dx.doi.org/10.12659/MSM.881383] [PMID: 21278683 ]
[177]
Schisano, B.; Harte, A.L.; Lois, K.; Saravanan, P.; Al-Daghri, N.; Al-Attas, O.; Knudsen, L.B.; McTernan, P.G.; Ceriello, A.; Tripathi, G. GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept., 2012, 174(1-3), 46-52.
[http://dx.doi.org/10.1016/j.regpep.2011.11.008] [PMID: 22120833 ]
[178]
Gaspari, T.; Liu, H.; Welungoda, I.; Hu, Y.; Widdop, R.E.; Knudsen, L.B.; Simpson, R.W.; Dear, A.E.A.A. GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab. Vasc. Dis. Res., 2011, 8(2), 117-124.
[http://dx.doi.org/10.1177/1479164111404257] [PMID: 21562063 ]
[179]
Tanaka, A.; Shimabukuro, M.; Okada, Y.; Taguchi, I.; Yamaoka-Tojo, M.; Tomiyama, H.; Teragawa, H.; Sugiyama, S.; Yoshida, H.; Sato, Y.; Kawaguchi, A.; Ikehara, Y.; Machii, N.; Maruhashi, T.; Shima, K.R.; Takamura, T.; Matsuzawa, Y.; Kimura, K.; Sakuma, M.; Oyama, J.I.; Inoue, T.; Higashi, Y.; Ueda, S.; Node, K.; Investigators, E.T. EMBLEM Trial Investigators. Rationale and design of a multicenter placebo-controlled double-blind randomized trial to evaluate the effect of empagliflozin on endothelial function: the EMBLEM trial. Cardiovasc. Diabetol., 2017, 16(1), 48.
[http://dx.doi.org/10.1186/s12933-017-0532-8] [PMID: 28403850 ]
[180]
Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc. Diabetol., 2017, 16(1), 138.
[http://dx.doi.org/10.1186/s12933-017-0621-8] [PMID: 29061124 ]
[181]
Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; Jinnouchi, T. The SGLT2 inhibitor dapagliflozin significantly improves the peripheral microvascular endothelial function in patients with uncontrolled type 2 diabetes mellitus. Intern. Med., 2018, 57(15), 2147-2156.
[http://dx.doi.org/10.2169/internalmedicine.0701-17] [PMID: 29607968 ]
[182]
Gaspari, T.; Spizzo, I.; Liu, H.; Hu, Y.; Simpson, R.W.; Widdop, R.E.; Dear, A.E. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A potential mechanism for inhibition of atherogenesis. Diab. Vasc. Dis. Res., 2018, 15(1), 64-73.
[http://dx.doi.org/10.1177/1479164117733626] [PMID: 28976221 ]
[183]
Lee, D.M.; Battson, M.L.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Weir, T.L.; Gentile, C.L. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc. Diabetol., 2018, 17(1), 62.
[http://dx.doi.org/10.1186/s12933-018-0708-x] [PMID: 29703207 ]
[184]
Li, H.; Shin, S.E.; Seo, M.S.; An, J.R.; Choi, I.W.; Jung, W.K.; Firth, A.L.; Lee, D.S.; Yim, M.J.; Choi, G.; Lee, J.M.; Na, S.H.; Park, W.S. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci., 2018, 197, 46-55.
[http://dx.doi.org/10.1016/j.lfs.2018.01.032] [PMID: 29409796 ]
[185]
Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; Gottschlich, A.; Steven, S.; Schulz, E.; Bottari, S.P.; Mayoux, E.; Münzel, T.; Daiber, A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One, 2014, 9(11)e112394
[http://dx.doi.org/10.1371/journal.pone.0112394] [PMID: 25402275 ]
[186]
Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol., 2014, 13, 148.
[http://dx.doi.org/10.1186/s12933-014-0148-1] [PMID: 25344694 ]
[187]
Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice. Eur. J. Pharmacol., 2017, 809, 163-171.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.019] [PMID: 28506912 ]
[188]
Marso, S.P.; McGuire, D.K.; Zinman, B.; Poulter, N.R.; Emerson, S.S.; Pieber, T.R.; Pratley, R.E.; Haahr, P.M.; Lange, M.; Brown-Frandsen, K.; Moses, A.; Skibsted, S.; Kvist, K.; Buse, J.B.; Group, D.S. DEVOTE study group. efficacy and safety of degludec versus glargine in type 2 diabetes. N. Engl. J. Med., 2017, 377(8), 723-732.
[http://dx.doi.org/10.1056/NEJMoa1615692] [PMID: 28605603 ]
[189]
Gerstein, H.C.; Bosch, J.; Dagenais, G.R.; Díaz, R.; Jung, H.; Maggioni, A.P.; Pogue, J.; Probstfield, J.; Ramachandran, A.; Riddle, M.C.; Rydén, L.E.; Yusuf, S. ORIGIN Trial Investigators. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med., 2012, 367(4), 319-328.
[http://dx.doi.org/10.1056/NEJMoa1203858] [PMID: 22686416 ]
[190]
Madenidou, A.V.; Paschos, P.; Karagiannis, T.; Katsoula, A.; Athanasiadou, E.; Kitsios, K.; Bekiari, E.; Matthews, D.R.; Tsapas, A. Comparative benefits and harms of basal insulin analogues for type 2 diabetes: a systematic review and network meta-analysis. Ann. Intern. Med., 2018, 169(3), 165-174.
[http://dx.doi.org/10.7326/M18-0443] [PMID: 29987326 ]
[191]
Tentolouris, A.; Eleftheriadou, I.; Tentolouris, N. Insulin degludec U100 is associated with lower risk for severe and symptomatic hypoglycemia as compared with insulin glargine U100 in subjects with type 1 diabetes. Ann. Transl. Med., 2018, 6(3), 63.
[http://dx.doi.org/10.21037/atm.2017.12.28] [PMID: 29610753 ]
[192]
Oikonomou, D.; Kopf, S.; von Bauer, R.; Djuric, Z.; Cebola, R.; Sander, A.; Englert, S.; Vittas, S.; Hidmark, A.; Morcos, M.; Korosoglou, G.; Nawroth, P.P.; Humpert, P.M. Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients: a partially double-blind, randomized, three-arm unicenter study. Cardiovasc. Diabetol., 2014, 13, 137.
[http://dx.doi.org/10.1186/s12933-014-0137-4] [PMID: 25300286 ]
[193]
Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; Collins, R. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 2010, 376(9753), 1670-1681.
[http://dx.doi.org/10.1016/S0140-6736(10)61350-5] [PMID: 21067804 ]
[194]
American Diabetes Association. 9. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2018. Diabetes Care, 2018, 41(Suppl. 1), S86-S104.
[http://dx.doi.org/10.2337/dc18-S009] [PMID: 29222380 ]
[195]
Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res., 2017, 120(1), 229-243.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308537] [PMID: 28057795 ]
[196]
Grigoropoulou, P.; Tentolouris, A.; Eleftheriadou, I.; Tsilingiris, D.; Vlachopoulos, C.; Sykara, M.; Tentolouris, N. Effect of 12-month intervention with low-dose atorvastatin on pulse wave velocity in subjects with type 2 diabetes and dyslipidaemia. Diab. Vasc. Dis. Res., 2019, 16(1), 38-46.
[http://dx.doi.org/10.1177/1479164118805320] [PMID: 30328360 ]
[197]
Laufs, U.; La Fata, V.; Plutzky, J.; Liao, J.K. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation, 1998, 97(12), 1129-1135.
[http://dx.doi.org/10.1161/01.CIR.97.12.1129] [PMID: 9537338 ]
[198]
Laufs, U.; Liao, J.K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem., 1998, 273(37), 24266-24271.
[http://dx.doi.org/10.1074/jbc.273.37.24266] [PMID: 9727051 ]
[199]
Takemoto, M.; Sun, J.; Hiroki, J.; Shimokawa, H.; Liao, J.K. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation, 2002, 106(1), 57-62.
[http://dx.doi.org/10.1161/01.CIR.0000020682.73694.AB] [PMID: 12093770 ]
[200]
Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A.M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999, 399(6736), 601-605.
[http://dx.doi.org/10.1038/21224] [PMID: 10376603 ]
[201]
Wolfrum, S.; Dendorfer, A.; Rikitake, Y.; Stalker, T.J.; Gong, Y.; Scalia, R.; Dominiak, P.; Liao, J.K. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1842-1847.
[http://dx.doi.org/10.1161/01.ATV.0000142813.33538.82] [PMID: 15319269 ]
[202]
Pelat, M.; Dessy, C.; Massion, P.; Desager, J.P.; Feron, O.; Balligand, J.L. Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E-/- mice in vivo. Circulation, 2003, 107(19), 2480-2486.
[http://dx.doi.org/10.1161/01.CIR.0000065601.83526.3E] [PMID: 12719275 ]
[203]
Wassmann, S.; Laufs, U.; Müller, K.; Konkol, C.; Ahlbory, K.; Bäumer, A.T.; Linz, W.; Böhm, M.; Nickenig, G. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 2002, 22(2), 300-305.
[http://dx.doi.org/10.1161/hq0202.104081] [PMID: 11834532 ]
[204]
Zhang, L.; Gong, D.; Li, S.; Zhou, X. Meta-analysis of the effects of statin therapy on endothelial function in patients with diabetes mellitus. Atherosclerosis, 2012, 223(1), 78-85.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.01.031] [PMID: 22326029 ]
[205]
Murrow, J.R.; Sher, S.; Ali, S.; Uphoff, I.; Patel, R.; Porkert, M.; Le, N.A.; Jones, D.; Quyyumi, A.A. The differential effect of statins on oxidative stress and endothelial function: atorvastatin versus pravastatin. J. Clin. Lipidol., 2012, 6(1), 42-49.
[http://dx.doi.org/10.1016/j.jacl.2011.08.006] [PMID: 22264573 ]
[206]
Kim, K.M.; Jung, K.Y.; Yun, H.M.; Lee, S.Y.; Oh, T.J.; Jang, H.C.; Lim, S. Effect of rosuvastatin on fasting and postprandial endothelial biomarker levels and microvascular reactivity in patients with type 2 diabetes and dyslipidemia: a preliminary report. Cardiovasc. Diabetol., 2017, 16(1), 146.
[http://dx.doi.org/10.1186/s12933-017-0629-0] [PMID: 29121934 ]
[207]
Katsiki, N.; Reiner, Ž.; Tedeschi Reiner, E.; Al-Rasadi, K.; Pirro, M.; Mikhailidis, D.P.; Sahebkar, A. Improvement of endothelial function by pitavastatin: a meta-analysis. Expert Opin. Pharmacother., 2018, 19(3), 279-286.
[http://dx.doi.org/10.1080/14656566.2018.1428560] [PMID: 29334477 ]
[208]
Vasa, M.; Fichtlscherer, S.; Adler, K.; Aicher, A.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 2001, 103(24), 2885-2890.
[http://dx.doi.org/10.1161/hc2401.092816] [PMID: 11413075 ]
[209]
Oikonomou, E.; Siasos, G.; Zaromitidou, M.; Hatzis, G.; Mourouzis, K.; Chrysohoou, C.; Zisimos, K.; Mazaris, S.; Tourikis, P.; Athanasiou, D.; Stefanadis, C.; Papavassiliou, A.G.; Tousoulis, D. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients. Atherosclerosis, 2015, 238(2), 159-164.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.014] [PMID: 25525743 ]
[210]
Goya, K.; Sumitani, S.; Xu, X.; Kitamura, T.; Yamamoto, H.; Kurebayashi, S.; Saito, H.; Kouhara, H.; Kasayama, S.; Kawase, I. Peroxisome proliferator-activated receptor alpha agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2004, 24(4), 658-663.
[http://dx.doi.org/10.1161/01.ATV.0000118682.58708.78] [PMID: 14751809 ]
[211]
Liu, J.; Lu, C.; Li, F.; Wang, H.; He, L.; Hao, Y.; Chen, A.F.; An, H.; Wang, X.; Hong, T.; Wang, G. PPAR-α agonist fenofibrate upregulates tetrahydrobiopterin level through increasing the expression of guanosine 5′-triphosphate cyclohydrolase-i in human umbilical vein endothelial cells. PPAR Res., 2011, 2011523520
[http://dx.doi.org/10.1155/2011/523520] [PMID: 22190909 ]
[212]
Irukayama-Tomobe, Y.; Miyauchi, T.; Kasuya, Y.; Sakai, S.; Goto, K.; Yamaguchi, I. Activation of peroxisome proliferator-activated receptor-alpha decreases endothelin-1-induced p38 mitogen-activated protein kinase activation in cardiomyocytes. J. Cardiovasc. Pharmacol., 2004, 44(Suppl. 1), S358-S361.
[http://dx.doi.org/10.1097/01.fjc.0000166303.33313.01] [PMID: 15838320 ]
[213]
Playford, D.A.; Watts, G.F.; Best, J.D.; Burke, V. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am. J. Cardiol., 2002, 90(11), 1254-1257.
[http://dx.doi.org/10.1016/S0002-9149(02)02847-3] [PMID: 12450611 ]
[214]
Ghani, R.A.; Bin Yaakob, I.; Wahab, N.A.; Zainudin, S.; Mustafa, N.; Sukor, N.; Wan Mohamud, W.N.; Kadir, K.A.; Kamaruddin, N.A. The influence of fenofibrate on lipid profile, endothelial dysfunction, and inflammatory markers in type 2 diabetes mellitus patients with typical and mixed dyslipidemia. J. Clin. Lipidol., 2013, 7(5), 446-453.
[http://dx.doi.org/10.1016/j.jacl.2013.04.004] [PMID: 24079286 ]
[215]
Sahebkar, A.; Giua, R.; Pedone, C.; Ray, K.K.; Vallejo-Vaz, A.J.; Costanzo, L. Fibrate therapy and flow-mediated dilation: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol. Res., 2016, 111, 163-179.
[http://dx.doi.org/10.1016/j.phrs.2016.06.011] [PMID: 27320045 ]
[216]
Harmer, J.A.; Keech, A.C.; Veillard, A.S.; Skilton, M.R.; Marwick, T.H.; Watts, G.F.; Meredith, I.T.; Celermajer, D.S.; Investigators, F.V.S. FIELD Vascular Study Investigators. Fenofibrate effects on arterial endothelial function in adults with type 2 diabetes mellitus: A FIELD substudy. Atherosclerosis, 2015, 242(1), 295-302.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.07.038] [PMID: 26233916 ]
[217]
Blanco-Rivero, J.; Márquez-Rodas, I.; Xavier, F.E.; Aras-López, R.; Arroyo-Villa, I.; Ferrer, M.; Balfagón, G. Long-term fenofibrate treatment impairs endothelium-dependent dilation to acetylcholine by altering the cyclooxygenase pathway. Cardiovasc. Res., 2007, 75(2), 398-407.
[http://dx.doi.org/10.1016/j.cardiores.2007.03.006] [PMID: 17412316 ]
[218]
Sugiyama, S.; Jinnouchi, H.; Hieshima, K.; Kurinami, N.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; Matsui, K.; Jinnouchi, T. A pilot study of ezetimibe vs. atorvastatin for improving peripheral microvascular endothelial function in stable patients with type 2 diabetes mellitus. Lipids Health Dis., 2015, 14, 37.
[http://dx.doi.org/10.1186/s12944-015-0028-z] [PMID: 25903215 ]
[219]
Nochioka, K.; Tanaka, S.; Miura, M.; Zhulanqiqige, E.; Fukumoto, Y.; Shiba, N.; Shimokawa, H. Ezetimibe improves endothelial function and inhibits Rho-kinase activity associated with inhibition of cholesterol absorption in humans. Circ. J., 2012, 76(8), 2023-2030.
[http://dx.doi.org/10.1253/circj.CJ-12-0331] [PMID: 22640986 ]
[220]
Shinnakasu, A.; Yamamoto, K.; Kurano, M.; Arimura, H.; Arimura, A.; Kikuti, A.; Hashiguchi, H.; Deguchi, T.; Nishio, Y. The combination therapy of fenofibrate and ezetimibe improved lipid profile and vascular function compared with statins in patients with type 2 diabetes. J. Atheroscler. Thromb., 2017, 24(7), 735-748.
[http://dx.doi.org/10.5551/jat.39446] [PMID: 28450679 ]
[221]
Vane, J.R.; Botting, R.M. The mechanism of action of aspirin. Thromb. Res., 2003, 110(5-6), 255-258.
[http://dx.doi.org/10.1016/S0049-3848(03)00379-7] [PMID: 14592543 ]
[222]
Dzeshka, M.S.; Shantsila, A.; Lip, G.Y. Effects of aspirin on endothelial function and hypertension. Curr. Hypertens. Rep., 2016, 18(11), 83.
[http://dx.doi.org/10.1007/s11906-016-0688-8] [PMID: 27787837 ]
[223]
Schrottmaier, W.C.; Kral, J.B.; Badrnya, S.; Assinger, A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost., 2015, 114(3), 478-489.
[http://dx.doi.org/10.1160/TH14-11-0943] [PMID: 25904241 ]
[224]
Thomas, M.R.; Storey, R.F. The role of platelets in inflammation. Thromb. Haemost., 2015, 114(3), 449-458.
[PMID: 26293514 ]
[225]
Ellinsworth, D.C.; Shukla, N.; Fleming, I.; Jeremy, J.Y. Interactions between thromboxane A2, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc. Res., 2014, 102(1), 9-16.
[http://dx.doi.org/10.1093/cvr/cvu015] [PMID: 24469536 ]
[226]
Capra, V.; Bäck, M.; Angiolillo, D.J.; Cattaneo, M.; Sakariassen, K.S. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J. Thromb. Haemost., 2014, 12(2), 126-137.
[http://dx.doi.org/10.1111/jth.12472] [PMID: 24298905 ]
[227]
Heiss, E.H.; Dirsch, V.M. Regulation of eNOS enzyme activity by posttranslational modification. Curr. Pharm. Des., 2014, 20(22), 3503-3513.
[http://dx.doi.org/10.2174/13816128113196660745] [PMID: 24180389 ]
[228]
Jung, S.B.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Mattagajasingh, I.; Hoffman, T.A.; Cole, M.P.; Kumar, A.; Dericco, J.S.; Jeon, B.H.; Irani, K. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ. Res., 2010, 107(7), 877-887.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.222968] [PMID: 20705923 ]
[229]
Taubert, D.; Berkels, R.; Grosser, N.; Schröder, H.; Gründemann, D.; Schömig, E. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action. Br. J. Pharmacol., 2004, 143(1), 159-165.
[http://dx.doi.org/10.1038/sj.bjp.0705907] [PMID: 15289285 ]
[230]
Schror, K.; Rauch, B. H. Aspirin and lipid mediators in the cardiovascular system.Prostaglandins & other lipid mediators. Prostaglandins Other Lipid Mediat, 2015, 121(Pt A), 17-23.
[http://dx.doi.org/10.1016/j.prostaglandins.2015.07.004] [PMID: 26201059 ]
[231]
Romano, M.; Cianci, E.; Simiele, F.; Recchiuti, A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur. J. Pharmacol., 2015, 760, 49-63.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.083] [PMID: 25895638 ]
[232]
Ho, K.J.; Spite, M.; Owens, C.D.; Lancero, H.; Kroemer, A.H.; Pande, R.; Creager, M.A.; Serhan, C.N.; Conte, M.S. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. Am. J. Pathol., 2010, 177(4), 2116-2123.
[http://dx.doi.org/10.2353/ajpath.2010.091082] [PMID: 20709806 ]
[233]
Félétou, M.; Huang, Y.; Vanhoutte, P.M. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br. J. Pharmacol., 2011, 164(3), 894-912.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01276.x] [PMID: 21323907 ]
[234]
Tassone, E.J.; Perticone, M.; Sciacqua, A.; Mafrici, S.F.; Settino, C.; Malara, N.; Mollace, V.; Sesti, G.; Perticone, F. Low dose of acetylsalicylic acid and oxidative stress-mediated endothelial dysfunction in diabetes: a short-term evaluation. Acta Diabetol., 2015, 52(2), 249-256.
[http://dx.doi.org/10.1007/s00592-014-0629-4] [PMID: 25091345 ]
[235]
Magen, E.; Viskoper, J.R.; Mishal, J.; Priluk, R.; London, D.; Yosefy, C. Effects of low-dose aspirin on blood pressure and endothelial function of treated hypertensive hypercholesterolaemic subjects. J. Hum. Hypertens., 2005, 19(9), 667-673.
[http://dx.doi.org/10.1038/sj.jhh.1001910] [PMID: 16034448 ]
[236]
Bulut, D.; Becker, V.; Mügge, A. Acetylsalicylate reduces endothelial and platelet-derived microparticles in patients with coronary artery disease. Can. J. Physiol. Pharmacol., 2011, 89(4), 239-244.
[http://dx.doi.org/10.1139/y11-013] [PMID: 21539467 ]
[237]
Raghavan, R.P.; Laight, D.W.; Cummings, M.H. Aspirin in type 2 diabetes, a randomised controlled study: effect of different doses on inflammation, oxidative stress, insulin resistance and endothelial function. Int. J. Clin. Pract., 2014, 68(2), 271-277.
[http://dx.doi.org/10.1111/ijcp.12310] [PMID: 24372992 ]
[238]
Cameron, S.J.; Goulopoulou, S.; Weil, B.R.; Kanaley, J.A. Regulation of blood flow by aspirin following muscle ischemia. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(2), 143-150.
[PMID: 22428464 ]
[239]
Campia, U.; Choucair, W.K.; Bryant, M.B.; Quyyumi, A.A.; Cardillo, C.; Panza, J.A. Role of cyclooxygenase products in the regulation of vascular tone and in the endothelial vasodilator function of normal, hypertensive, and hypercholesterolemic humans. Am. J. Cardiol., 2002, 89(3), 286-290.
[http://dx.doi.org/10.1016/S0002-9149(01)02229-9] [PMID: 11809430 ]
[240]
Yamanari, H.; Nakamura, K.; Kakishita, M.; Ohe, T. Effects of cyclooxygenase inhibition on endothelial function in hypertensive patients treated with angiotensin-converting enzyme inhibitors. Clin. Cardiol., 2004, 27(9), 523-527.
[http://dx.doi.org/10.1002/clc.4960270911] [PMID: 15471166 ]
[241]
Husain, S.; Andrews, N.P.; Mulcahy, D.; Panza, J.A.; Quyyumi, A.A. Aspirin improves endothelial dysfunction in atherosclerosis. Circulation, 1998, 97(8), 716-720.
[http://dx.doi.org/10.1161/01.CIR.97.8.716] [PMID: 9498533 ]
[242]
Noon, J.P.; Walker, B.R.; Hand, M.F.; Webb, D.J. Impairment of forearm vasodilatation to acetylcholine in hypercholesterolemia is reversed by aspirin. Cardiovasc. Res., 1998, 38(2), 480-484.
[http://dx.doi.org/10.1016/S0008-6363(98)00013-3] [PMID: 9709409 ]
[243]
Furuno, T.; Yamasaki, F.; Yokoyama, T.; Sato, K.; Sato, T.; Doi, Y.; Sugiura, T. Effects of various doses of aspirin on platelet activity and endothelial function. Heart Vessels, 2011, 26(3), 267-273.
[http://dx.doi.org/10.1007/s00380-010-0054-8] [PMID: 21063876 ]
[244]
Duffy, S.J.; Tran, B.T.; New, G.; Tudball, R.N.; Esler, M.D.; Harper, R.W.; Meredith, I.T. Continuous release of vasodilator prostanoids contributes to regulation of resting forearm blood flow in humans. Am. J. Physiol., 1998, 274(4), H1174-H1183.
[PMID: 9575920 ]
[245]
Nagelschmitz, J.; Blunck, M.; Kraetzschmar, J.; Ludwig, M.; Wensing, G.; Hohlfeld, T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin. Pharmacol., 2014, 6, 51-59.
[http://dx.doi.org/10.2147/CPAA.S47895] [PMID: 24672263 ]
[246]
Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11693-11697.
[http://dx.doi.org/10.1073/pnas.90.24.11693] [PMID: 8265610 ]
[247]
Hennekens, C.H.; Schneider, W.R.; Pokov, A.; Hetzel, S.; Demets, D.; Serebruany, V.; Schröder, H. A randomized trial of aspirin at clinically relevant doses and nitric oxide formation in humans. J. Cardiovasc. Pharmacol. Ther., 2010, 15(4), 344-348.
[http://dx.doi.org/10.1177/1074248410375091] [PMID: 20938039 ]
[248]
Hetzel, S.; DeMets, D.; Schneider, R.; Borzak, S.; Schneider, W.; Serebruany, V.; Schröder, H.; Hennekens, C.H. Aspirin increases nitric oxide formation in chronic stable coronary disease. J. Cardiovasc. Pharmacol. Ther., 2013, 18(3), 217-221.
[http://dx.doi.org/10.1177/1074248413482753] [PMID: 23524841 ]
[249]
Geppert, A.; Graf, S.; Beckmann, R.; Hornykewycz, S.; Schuster, E.; Binder, B.R.; Huber, K. Concentration of endogenous tPA antigen in coronary artery disease: relation to thrombotic events, aspirin treatment, hyperlipidemia, and multivessel disease. Arterioscler. Thromb. Vasc. Biol., 1998, 18(10), 1634-1642.
[http://dx.doi.org/10.1161/01.ATV.18.10.1634] [PMID: 9763537 ]
[250]
Vlachopoulos, C.; Aznaouridis, K.; Bratsas, A.; Ioakeimidis, N.; Dima, I.; Xaplanteris, P.; Stefanadis, C.; Tousoulis, D. Arterial stiffening and systemic endothelial activation induced by smoking: The role of COX-1 and COX-2. Int. J. Cardiol., 2015, 189, 293-298.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.029] [PMID: 25919966 ]
[251]
Kharbanda, R.K.; Walton, B.; Allen, M.; Klein, N.; Hingorani, A.D.; MacAllister, R.J.; Vallance, P. Prevention of inflammation-induced endothelial dysfunction: a novel vasculo-protective action of aspirin. Circulation, 2002, 105(22), 2600-2604.
[http://dx.doi.org/10.1161/01.CIR.0000017863.52347.6C] [PMID: 12045164 ]
[252]
Lou, J.; Povsic, T.J.; Allen, J.D.; Adams, S.D.; Myles, S.; Starr, A.Z.; Ortel, T.L.; Becker, R.C. The effect of aspirin on endothelial progenitor cell biology: preliminary investigation of novel properties. Thromb. Res., 2010, 126(3), e175-e179.
[http://dx.doi.org/10.1016/j.thromres.2009.11.017] [PMID: 20659762 ]
[253]
Ueno, H.; Koyama, H.; Mima, Y.; Fukumoto, S.; Tanaka, S.; Shoji, T.; Emoto, M.; Shoji, T.; Nishizawa, Y.; Inaba, M. Comparison of the effect of cilostazol with aspirin on circulating endothelial progenitor cells and small-dense LDL cholesterol in diabetic patients with cerebral ischemia: a randomized controlled pilot trial. J. Atheroscler. Thromb., 2011, 18(10), 883-890.
[http://dx.doi.org/10.5551/jat.9225] [PMID: 21701082 ]
[254]
Jiang, X.L.; Samant, S.; Lesko, L.J.; Schmidt, S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin. Pharmacokinet., 2015, 54(2), 147-166.
[http://dx.doi.org/10.1007/s40262-014-0230-6] [PMID: 25559342 ]
[255]
Cerda, A.; Pavez, M.; Manriquez, V.; Luchessi, A.D.; Leal, P.; Benavente, F.; Fajardo, C.M.; Salazar, L.; Hirata, M.H.; Hirata, R.D.C. Effects of clopidogrel on inflammatory cytokines and adhesion molecules in human endothelial cells: Role of nitric oxide mediating pleiotropic effects. Cardiovasc. Ther., 2017, 35(4)
[http://dx.doi.org/10.1111/1755-5922.12261] [PMID: 28371087 ]
[256]
Ziemianin, B.; Olszanecki, R.; Uracz, W.; Marcinkiewicz, E.; Gryglewski, R.J. Thienopyridines: effects on cultured endothelial cells. J. Physiol. Pharmacol., 1999, 50(4), 597-604.
[PMID: 10639010 ]
[257]
Yang, H.; Zhao, P.; Tian, S. Clopidogrel protects endothelium by hindering TNFα-induced VCAM-1 expression through CaMKKβ/AMPK/Nrf2 Pathway. J. Diabetes Res., 2016, 20169128050
[http://dx.doi.org/10.1155/2016/9128050] [PMID: 26824050 ]
[258]
Hamilos, M.; Muller, O.; Ntalianis, A.; Trana, C.; Bartunek, J.; Sarno, G.; Mangiacapra, F.; Dierickx, K.; Meeus, P.; Cuisset, T.; De Bruyne, B.; Wijns, W.; Barbato, E. Relationship between peripheral arterial reactive hyperemia and residual platelet reactivity after 600 mg clopidogrel. J. Thromb. Thrombolysis, 2011, 32(1), 64-71.
[http://dx.doi.org/10.1007/s11239-011-0557-x] [PMID: 21290254 ]
[259]
Heitzer, T.; Rudolph, V.; Schwedhelm, E.; Karstens, M.; Sydow, K.; Ortak, M.; Tschentscher, P.; Meinertz, T.; Böger, R.; Baldus, S. Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: evidence for antioxidant and antiinflammatory effects. Arterioscler. Thromb. Vasc. Biol., 2006, 26(7), 1648-1652.
[http://dx.doi.org/10.1161/01.ATV.0000225288.74170.dc] [PMID: 16675725 ]
[260]
Patti, G.; Grieco, D.; Dicuonzo, G.; Pasceri, V.; Nusca, A.; Di Sciascio, G. High versus standard clopidogrel maintenance dose after percutaneous coronary intervention and effects on platelet inhibition, endothelial function, and inflammation results of the ARMYDA-150 mg (antiplatelet therapy for reduction of myocardial damage during angioplasty) randomized study. J. Am. Coll. Cardiol., 2011, 57(7), 771-778.
[http://dx.doi.org/10.1016/j.jacc.2010.09.050] [PMID: 21310311 ]
[261]
Warnholtz, A.; Ostad, M.A.; Velich, N.; Trautmann, C.; Schinzel, R.; Walter, U.; Munzel, T. A single loading dose of clopidogrel causes dose-dependent improvement of endothelial dysfunction in patients with stable coronary artery disease: results of a double-blind, randomized study. Atherosclerosis, 2008, 196(2), 689-695.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.12.009] [PMID: 17214996 ]
[262]
Willoughby, S.R.; Luu, L.J.; Cameron, J.D.; Nelson, A.J.; Schultz, C.D.; Worthley, S.G.; Worthley, M.I. Clopidogrel improves microvascular endothelial function in subjects with stable coronary artery disease. Heart Lung Circ., 2014, 23(6), 534-541.
[http://dx.doi.org/10.1016/j.hlc.2014.01.005] [PMID: 24529502 ]
[263]
Ostad, M.A.; Nick, E.; Paixao-Gatinho, V.; Schnorbus, B.; Schiewe, R.; Tschentscher, P.; Munzel, T.; Warnholtz, A. Lack of evidence for pleiotropic effects of clopidogrel on endothelial function and inflammation in patients with stable coronary artery disease: results of the double-blind, randomized CASSANDRA study. Clin. Res. Cardiol., 2011, 100(1), 29-36.
[http://dx.doi.org/10.1007/s00392-010-0199-6] [PMID: 20644943 ]
[264]
Ramadan, R.; Dhawan, S.S.; Syed, H.; Pohlel, F.K.; Binongo, J.N.; Ghazzal, Z.B.; Quyyumi, A.A. Effects of clopidogrel therapy on oxidative stress, inflammation, vascular function, and progenitor cells in stable coronary artery disease. J. Cardiovasc. Pharmacol., 2014, 63(4), 369-374.
[http://dx.doi.org/10.1097/FJC.0000000000000057] [PMID: 24336012 ]
[265]
Woo, J.S.; Kim, W.; Jang, H.H.; Kim, J.B.; Kim, W.S.; Kim, K.S. Effect of platelet reactivity, endothelial function, and inflammatory status on outcomes in patients with stable angina pectoris on clopidogrel therapy. Am. J. Cardiol., 2014, 113(5), 786-792.
[http://dx.doi.org/10.1016/j.amjcard.2013.11.025] [PMID: 24388620 ]
[266]
Campo, G.; Vieceli Dalla Sega, F.; Pavasini, R.; Aquila, G.; Gallo, F.; Fortini, F.; Tonet, E.; Cimaglia, P.; Del Franco, A.; Pestelli, G.; Pecoraro, A.; Contoli, M.; Balla, C.; Biscaglia, S.; Rizzo, P.; Ferrari, R. Biological effects of ticagrelor over clopidogrel in patients with stable coronary artery disease and chronic obstructive pulmonary disease. Thromb. Haemost., 2017, 117(6), 1208-1216.
[http://dx.doi.org/10.1160/TH16-12-0973] [PMID: 28331925 ]
[267]
Mangiacapra, F.; Panaioli, E.; Colaiori, I.; Ricottini, E.; Lauria Pantano, A.; Pozzilli, P.; Barbato, E.; Di Sciascio, G. Clopidogrel versus ticagrelor for antiplatelet maintenance in diabetic patients treated with percutaneous coronary intervention: results of the clotildia study (clopidogrel high dose versus ticagrelor for antiplatelet maintenance in diabetic patients). Circulation, 2016, 134(11), 835-837.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023743] [PMID: 27619717 ]
[268]
Zhang, Y.Z.; Chen, B.L.; Zhang, W.; Cao, X. Non-antiplatelet effect of clopidogrel: improving endothelial function in Chinese healthy subjects with different CYP2C19 genotype. Clin. Exp. Pharmacol. Physiol., 2015, 42(1), 22-26.
[http://dx.doi.org/10.1111/1440-1681.12325] [PMID: 25311974 ]
[269]
Kwong, W.; Parker, J.D. The Effect of Clopidogrel on the response to ischemia reperfusion. J. Cardiovasc. Pharmacol. Ther., 2017, 22(4), 368-373.
[http://dx.doi.org/10.1177/1074248416683047] [PMID: 28587582 ]
[270]
Watanabe, T.; Barker, T.A.; Berk, B.C. Angiotensin II and the endothelium: diverse signals and effects. Hypertension, 2005, 45(2), 163-169.
[http://dx.doi.org/10.1161/01.HYP.0000153321.13792.b9] [PMID: 15630047 ]
[271]
Daemen, M.J.; Lombardi, D.M.; Bosman, F.T.; Schwartz, S.M. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ. Res., 1991, 68(2), 450-456.
[http://dx.doi.org/10.1161/01.RES.68.2.450] [PMID: 1991349 ]
[272]
Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res., 1994, 74(6), 1141-1148.
[http://dx.doi.org/10.1161/01.RES.74.6.1141] [PMID: 8187280 ]
[273]
Fleming, I. Signaling by the angiotensin-converting enzyme. Circ. Res., 2006, 98(7), 887-896.
[http://dx.doi.org/10.1161/01.RES.0000217340.40936.53] [PMID: 16614314 ]
[274]
Murphey, L.J.; Malave, H.A.; Petro, J.; Biaggioni, I.; Byrne, D.W.; Vaughan, D.E.; Luther, J.M.; Pretorius, M.; Brown, N.J. Bradykinin and its metabolite bradykinin 1-5 inhibit thrombin-induced platelet aggregation in humans. J. Pharmacol. Exp. Ther., 2006, 318(3), 1287-1292.
[http://dx.doi.org/10.1124/jpet.106.104026] [PMID: 16772538 ]
[275]
Brown, N.J.; Gainer, J.V.; Murphey, L.J.; Vaughan, D.E. Bradykinin stimulates tissue plasminogen activator release from human forearm vasculature through B(2) receptor-dependent, NO synthase-independent, and cyclooxygenase-independent pathway. Circulation, 2000, 102(18), 2190-2196.
[http://dx.doi.org/10.1161/01.CIR.102.18.2190] [PMID: 11056091 ]
[276]
Cheetham, C.; O’Driscoll, G.; Stanton, K.; Taylor, R.; Green, D. Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in Type II diabetes. Clin. Sci. (Lond.), 2001, 100(1), 13-17.
[PMID: 11115412 ]
[277]
Pelliccia, F.; Pasceri, V.; Cianfrocca, C.; Vitale, C.; Speciale, G.; Gaudio, C.; Rosano, G.M.; Mercuro, G. Angiotensin II receptor antagonism with telmisartan increases number of endothelial progenitor cells in normotensive patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Atherosclerosis, 2010, 210(2), 510-515.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.12.005] [PMID: 20044087 ]
[278]
Warnholtz, A.; Ostad, M.A.; Heitzer, T.; Thuneke, F.; Fröhlich, M.; Tschentscher, P.; Schwedhelm, E.; Böger, R.; Meinertz, T.; Munzel, T. AT1-receptor blockade with irbesartan improves peripheral but not coronary endothelial dysfunction in patients with stable coronary artery disease. Atherosclerosis, 2007, 194(2), 439-445.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.034] [PMID: 16970950 ]
[279]
Yilmaz, M.I.; Carrero, J.J.; Martín-Ventura, J.L.; Sonmez, A.; Saglam, M.; Celik, T.; Yaman, H.; Yenicesu, M.; Eyileten, T.; Moreno, J.A.; Egido, J.; Blanco-Colio, L.M. Combined therapy with renin-angiotensin system and calcium channel blockers in type 2 diabetic hypertensive patients with proteinuria: effects on soluble TWEAK, PTX3, and flow-mediated dilation. Clin. J. Am. Soc. Nephrol., 2010, 5(7), 1174-1181.
[http://dx.doi.org/10.2215/CJN.01110210] [PMID: 20430947 ]
[280]
Takiguchi, S.; Ayaori, M.; Uto-Kondo, H.; Iizuka, M.; Sasaki, M.; Komatsu, T.; Takase, B.; Adachi, T.; Ohsuzu, F.; Ikewaki, K. Olmesartan improves endothelial function in hypertensive patients: link with extracellular superoxide dismutase. Hypertens. Res., 2011, 34(6), 686-692.
[http://dx.doi.org/10.1038/hr.2011.11] [PMID: 21307868 ]
[281]
Sozen, A.B.; Kayacan, M.S.; Tansel, T.; Celebi, A.; Kudat, H.; Akkaya, V.; Erk, O.; Hatipoglu, I.; Demirel, S. Drugs with blocking effects on the renin-angiotensin-aldosterone system do not improve endothelial dysfunction long-term in hypertensive patients. J. Int. Med. Res., 2009, 37(4), 996-1002.
[http://dx.doi.org/10.1177/147323000903700403] [PMID: 19761681 ]
[282]
Trevelyan, J.; Needham, E.W.; Morris, A.; Mattu, R.K. Comparison of the effect of enalapril and losartan in conjunction with surgical coronary revascularisation versus revascularisation alone on systemic endothelial function. Heart, 2005, 91(8), 1053-1057.
[http://dx.doi.org/10.1136/hrt.2004.036897] [PMID: 16020596 ]
[283]
Bahlmann, F.H.; de Groot, K.; Mueller, O.; Hertel, B.; Haller, H.; Fliser, D. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension, 2005, 45(4), 526-529.
[http://dx.doi.org/10.1161/01.HYP.0000159191.98140.89] [PMID: 15767470 ]
[284]
Tan, K.C.; Chow, W.S.; Ai, V.H.; Lam, K.S. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes Metab. Res. Rev., 2002, 18(1), 71-76.
[http://dx.doi.org/10.1002/dmrr.255] [PMID: 11921421 ]
[285]
Chung, N.A.; Beevers, D.G.; Lip, G. Effects of losartan versus hydrochlorothiazide on indices of endothelial damage/dysfunction, angiogenesis and tissue factor in essential hypertension. Blood Press., 2004, 13(3), 183-189.
[http://dx.doi.org/10.1080/08037050410033312] [PMID: 15223728 ]
[286]
Bots, M.L.; Remme, W.J.; Lüscher, T.F.; Fox, K.M.; Bertrand, M.; Ferrari, R.; Simoons, M.L.; Grobbee, D.E. EUROPA-PERFECT Investigators. ACE inhibition and endothelial function: main findings of PERFECT, a sub-study of the EUROPA trial. Cardiovasc. Drugs Ther., 2007, 21(4), 269-279.
[http://dx.doi.org/10.1007/s10557-007-6041-3] [PMID: 17657599 ]
[287]
Tikiz, C.; Utuk, O.; Pirildar, T.; Bayturan, O.; Bayindir, P.; Taneli, F.; Tikiz, H.; Tuzun, C. Effects of Angiotensin-converting enzyme inhibition and statin treatment on inflammatory markers and endothelial functions in patients with longterm rheumatoid arthritis. J. Rheumatol., 2005, 32(11), 2095-2101.
[PMID: 16265685 ]
[288]
Mullen, M.J.; Clarkson, P.; Donald, A.E.; Thomson, H.; Thorne, S.A.; Powe, A.J.; Furuno, T.; Bull, T.; Deanfield, J.E. Effect of enalapril on endothelial function in young insulin-dependent diabetic patients: a randomized, double-blind study. J. Am. Coll. Cardiol., 1998, 31(6), 1330-1335.
[http://dx.doi.org/10.1016/S0735-1097(98)00099-0] [PMID: 9581728 ]
[289]
Shahin, Y.; Khan, J.A.; Samuel, N.; Chetter, I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis, 2011, 216(1), 7-16.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.044] [PMID: 21411098 ]
[290]
Li, S.; Wu, Y.; Yu, G.; Xia, Q.; Xu, Y. Angiotensin II receptor blockers improve peripheral endothelial function: a meta-analysis of randomized controlled trials. PLoS One, 2014, 9(3)e90217
[http://dx.doi.org/10.1371/journal.pone.0090217] [PMID: 24595033 ]
[291]
Chen, J.D.; Liu, M.; Chen, X.H.; Yang, Z.J. Effect of Angiotensin receptor blockers on flow-mediated vasodilation: a meta-analysis of randomized controlled trials. Cardiology, 2015, 131(2), 69-79.
[http://dx.doi.org/10.1159/000375259] [PMID: 25872009 ]
[292]
Ito, A.; Egashira, K.; Narishige, T.; Muramatsu, K.; Takeshita, A. Renin-angiotensin system is involved in the mechanism of increased serum asymmetric dimethylarginine in essential hypertension. Jpn. Circ. J., 2001, 65(9), 775-778.
[http://dx.doi.org/10.1253/jcj.65.775] [PMID: 11548874 ]
[293]
Napoli, C.; Sica, V.; de Nigris, F.; Pignalosa, O.; Condorelli, M.; Ignarro, L.J.; Liguori, A. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am. Heart J., 2004, 148(1)e5
[http://dx.doi.org/10.1016/j.ahj.2004.03.025] [PMID: 15215814 ]
[294]
Gamboa, J.L.; Pretorius, M.; Sprinkel, K.C.; Brown, N.J.; Ikizler, T.A. Angiotensin converting enzyme inhibition increases ADMA concentration in patients on maintenance hemodialysis--a randomized cross-over study. BMC Nephrol., 2015, 16, 167.
[http://dx.doi.org/10.1186/s12882-015-0162-x] [PMID: 26494370 ]
[295]
Bella, A.J.; Deyoung, L.X.; Al-Numi, M.; Brock, G.B. Daily administration of phosphodiesterase type 5 inhibitors for urological and nonurological indications. Eur. Urol., 2007, 52(4), 990-1005.
[http://dx.doi.org/10.1016/j.eururo.2007.06.048] [PMID: 17646047 ]
[296]
Kukreja, R.C.; Salloum, F.; Das, A.; Ockaili, R.; Yin, C.; Bremer, Y.A.; Fisher, P.W.; Wittkamp, M.; Hawkins, J.; Chou, E.; Kukreja, A.K.; Wang, X.; Marwaha, V.R.; Xi, L. Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascul. Pharmacol., 2005, 42(5-6), 219-232.
[http://dx.doi.org/10.1016/j.vph.2005.02.010] [PMID: 15922255 ]
[297]
Ghalayini, I.F. Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility. Int. J. Impot. Res., 2004, 16(6), 459-469.
[http://dx.doi.org/10.1038/sj.ijir.3901256] [PMID: 15229623 ]
[298]
Santi, D.; Giannetta, E.; Isidori, A.M.; Vitale, C.; Aversa, A.; Simoni, M. Therapy of endocrine disease. Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis. Eur. J. Endocrinol., 2015, 172(3), R103-R114.
[http://dx.doi.org/10.1530/EJE-14-0700] [PMID: 25277671 ]
[299]
Aversa, A.; Vitale, C.; Volterrani, M.; Fabbri, A.; Spera, G.; Fini, M.; Rosano, G.M. Chronic administration of Sildenafil improves markers of endothelial function in men with Type 2 diabetes. Diabet. Med., 2008, 25(1), 37-44.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02298.x] [PMID: 18199130 ]
[300]
Desouza, C.; Parulkar, A.; Lumpkin, D.; Akers, D.; Fonseca, V.A. Acute and prolonged effects of sildenafil on brachial artery flow-mediated dilatation in type 2 diabetes. Diabetes Care, 2002, 25(8), 1336-1339.
[http://dx.doi.org/10.2337/diacare.25.8.1336] [PMID: 12145231 ]
[301]
Burnett, A.L.; Strong, T.D.; Trock, B.J.; Jin, L.; Bivalacqua, T.J.; Musicki, B. Serum biomarker measurements of endothelial function and oxidative stress after daily dosing of sildenafil in type 2 diabetic men with erectile dysfunction. J. Urol., 2009, 181(1), 245-251.
[http://dx.doi.org/10.1016/j.juro.2008.09.005] [PMID: 19013603 ]
[302]
Aversa, A.; Greco, E.; Bruzziches, R.; Pili, M.; Rosano, G.; Spera, G. Relationship between chronic tadalafil administration and improvement of endothelial function in men with erectile dysfunction: a pilot study. Int. J. Impot. Res., 2007, 19(2), 200-207.
[http://dx.doi.org/10.1038/sj.ijir.3901513] [PMID: 16943794 ]
[303]
Foresta, C.; Ferlin, A.; De Toni, L.; Lana, A.; Vinanzi, C.; Galan, A.; Caretta, N. Circulating endothelial progenitor cells and endothelial function after chronic Tadalafil treatment in subjects with erectile dysfunction. Int. J. Impot. Res., 2006, 18(5), 484-488.
[http://dx.doi.org/10.1038/sj.ijir.3901465] [PMID: 16541115 ]
[304]
Giannetta, E.; Feola, T.; Gianfrilli, D.; Pofi, R.; Dall’Armi, V.; Badagliacca, R.; Barbagallo, F.; Lenzi, A.; Isidori, A.M. Is chronic inhibition of phosphodiesterase type 5 cardioprotective and safe? A meta-analysis of randomized controlled trials. BMC Med., 2014, 12, 185.
[http://dx.doi.org/10.1186/s12916-014-0185-3] [PMID: 25330139 ]
[305]
Katz, S.D.; Balidemaj, K.; Homma, S.; Wu, H.; Wang, J.; Maybaum, S. Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J. Am. Coll. Cardiol., 2000, 36(3), 845-851.
[http://dx.doi.org/10.1016/S0735-1097(00)00790-7] [PMID: 10987609 ]
[306]
Hatzichristou, D.; Gambla, M.; Rubio-Aurioles, E.; Buvat, J.; Brock, G.B.; Spera, G.; Rose, L.; Lording, D.; Liang, S. Efficacy of tadalafil once daily in men with diabetes mellitus and erectile dysfunction. Diabet. Med., 2008, 25(2), 138-146.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02338.x] [PMID: 18290855 ]
[307]
Foresta, C.; De Toni, L.; Di Mambro, A.; Garolla, A.; Ferlin, A.; Zuccarello, D. The PDE5 inhibitor sildenafil increases circulating endothelial progenitor cells and CXCR4 expression. J. Sex. Med., 2009, 6(2), 369-372.
[http://dx.doi.org/10.1111/j.1743-6109.2008.01014.x] [PMID: 18823318 ]
[308]
Gori, T.; Sicuro, S.; Dragoni, S.; Donati, G.; Forconi, S.; Parker, J.D. Sildenafil prevents endothelial dysfunction induced by ischemia and reperfusion via opening of adenosine triphosphate-sensitive potassium channels: a human in vivo study. Circulation, 2005, 111(6), 742-746.
[http://dx.doi.org/10.1161/01.CIR.0000155252.23933.2D] [PMID: 15699265 ]
[309]
Kimura, M.; Higashi, Y.; Hara, K.; Noma, K.; Sasaki, S.; Nakagawa, K.; Goto, C.; Oshima, T.; Yoshizumi, M.; Chayama, K. PDE5 inhibitor sildenafil citrate augments endothelium-dependent vasodilation in smokers. Hypertension, 2003, 41(5), 1106-1110.
[http://dx.doi.org/10.1161/01.HYP.0000068202.42431.CC] [PMID: 12695418 ]
[310]
McLaughlin, K.; Lytvyn, Y.; Luca, M.C.; Liuni, A.; Gori, T.; Parker, J.D. Repeated daily dosing with sildenafil provides sustained protection from endothelial dysfunction caused by ischemia and reperfusion: a human in vivo study. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(6), H888-H894.
[http://dx.doi.org/10.1152/ajpheart.00215.2014] [PMID: 25063793 ]
[311]
La Vignera, S.; Condorelli, R.; Vicari, E.; D’Agata, R.; Calogero, A.E. Circulating endothelial progenitor cells and endothelial microparticles in patients with arterial erectile dysfunction and metabolic syndrome. J. Androl., 2012, 33(2), 202-209.
[http://dx.doi.org/10.2164/jandrol.111.013136] [PMID: 21474787 ]
[312]
Dishy, V.; Harris, P.A.; Pierce, R.; Prasad, H.C.; Sofowora, G.; Bonar, H.L.; Wood, A.J.; Stein, C.M. Sildenafil does not improve nitric oxide-mediated endothelium-dependent vascular responses in smokers. Br. J. Clin. Pharmacol., 2004, 57(2), 209-212.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01974.x] [PMID: 14748820 ]
[313]
Dishy, V.; Sofowora, G.; Harris, P.A.; Kandcer, M.; Zhan, F.; Wood, A.J.; Stein, C.M. The effect of sildenafil on nitric oxide-mediated vasodilation in healthy men. Clin. Pharmacol. Ther., 2001, 70(3), 270-279.
[http://dx.doi.org/10.1067/mcp.2001.117995] [PMID: 11557915 ]
[314]
Robinson, S.D.; Ludlam, C.A.; Boon, N.A.; Newby, D.E. Phosphodiesterase type 5 inhibition does not reverse endothelial dysfunction in patients with coronary heart disease. Heart, 2006, 92(2), 170-176.
[http://dx.doi.org/10.1136/hrt.2004.059683] [PMID: 15863522 ]
[315]
Konstantinopoulos, A.; Giannitsas, K.; Athanasopoulos, A.; Spathas, D.; Perimenis, P. The impact of daily sildenafil on levels of soluble molecular markers of endothelial function in plasma in patients with erectile dysfunction. Expert Opin. Pharmacother., 2009, 10(2), 155-160.
[http://dx.doi.org/10.1517/14656560802678211] [PMID: 19236190 ]
[316]
Kambayashi, J.; Liu, Y.; Sun, B.; Shakur, Y.; Yoshitake, M.; Czerwiec, F. Cilostazol as a unique antithrombotic agent. Curr. Pharm. Des., 2003, 9(28), 2289-2302.
[http://dx.doi.org/10.2174/1381612033453910] [PMID: 14529391 ]
[317]
Goto, S. Cilostazol: potential mechanism of action for antithrombotic effects accompanied by a low rate of bleeding. Atheroscler. Suppl., 2005, 6(4), 3-11.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2005.09.002] [PMID: 16275169 ]
[318]
Hashimoto, A.; Miyakoda, G.; Hirose, Y.; Mori, T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis, 2006, 189(2), 350-357.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.01.022] [PMID: 16545819 ]
[319]
Hashimoto, A.; Tanaka, M.; Takeda, S.; Ito, H.; Nagano, K. Cilostazol induces PGI2 production via activation of the downstream Epac-1/Rap1 signaling cascade to increase intracellular calcium by PLCε and to activate p44/42 MAPK in human aortic endothelial cells. PLoS One, 2015, 10(7)e0132835
[http://dx.doi.org/10.1371/journal.pone.0132835] [PMID: 26181635 ]
[320]
Hattori, Y.; Suzuki, K.; Tomizawa, A.; Hirama, N.; Okayasu, T.; Hattori, S.; Satoh, H.; Akimoto, K.; Kasai, K. Cilostazol inhibits cytokine-induced nuclear factor-kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc. Res., 2009, 81(1), 133-139.
[http://dx.doi.org/10.1093/cvr/cvn226] [PMID: 18703532 ]
[321]
Chuang, S.Y.; Yang, S.H.; Pang, J.H. Cilostazol reduces MCP-1-induced chemotaxis and adhesion of THP-1 monocytes by inhibiting CCR2 gene expression. Biochem. Biophys. Res. Commun., 2011, 411(2), 402-408.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.163] [PMID: 21756880 ]
[322]
Suzuki, K.; Uchida, K.; Nakanishi, N.; Hattori, Y. Cilostazol activates AMP-activated protein kinase and restores endothelial function in diabetes. Am. J. Hypertens., 2008, 21(4), 451-457.
[http://dx.doi.org/10.1038/ajh.2008.6] [PMID: 18369362 ]
[323]
Kim, M.J.; Lee, J.H.; Park, S.Y.; Hong, K.W.; Kim, C.D.; Kim, K.Y.; Lee, W.S. Protection from apoptotic cell death by cilostazol, phosphodiesterase type III inhibitor, via cAMP-dependent protein kinase activation. Pharmacol. Res., 2006, 54(4), 261-267.
[http://dx.doi.org/10.1016/j.phrs.2006.05.006] [PMID: 16822680 ]
[324]
Chao, T.H.; Chen, I.C.; Lee, C.H.; Chen, J.Y.; Tsai, W.C.; Li, Y.H.; Tseng, S.Y.; Tsai, L.M.; Tseng, W.K. Cilostazol enhances mobilization of circulating endothelial progenitor cells and improves endothelium-dependent function in patients at high risk of cardiovascular disease. Angiology, 2016, 67(7), 638-646.
[http://dx.doi.org/10.1177/0003319715606249] [PMID: 27401788 ]
[325]
Lee, S.J.; Lee, J.S.; Choi, M.H.; Lee, S.E.; Shin, D.H.; Hong, J.M. Cilostazol improves endothelial function in acute cerebral ischemia patients: a double-blind placebo controlled trial with flow-mediated dilation technique. BMC Neurol., 2017, 17(1), 169.
[http://dx.doi.org/10.1186/s12883-017-0950-y] [PMID: 28851320 ]
[326]
Mori, H.; Maeda, A.; Wakabayashi, K.; Sato, T.; Sasai, M.; Tashiro, K.; Iso, Y.; Ebato, M.; Suzuki, H. The effect of cilostazol on endothelial function as assessed by flow-mediated dilation in patients with coronary artery disease. J. Atheroscler. Thromb., 2016, 23(10), 1168-1177.
[http://dx.doi.org/10.5551/jat.32912] [PMID: 27169919 ]
[327]
Kim, K.S.; Park, H.S.; Jung, I.S.; Park, J.H.; Ahn, K.T.; Jin, S.A.; Park, Y.K.; Kim, J.H.; Lee, J.H.; Choi, S.W.; Jeong, J.O.; Seong, I.W. Endothelial dysfunction in the smokers can be improved with oral cilostazol treatment. J. Cardiovasc. Ultrasound, 2011, 19(1), 21-25.
[http://dx.doi.org/10.4250/jcu.2011.19.1.21] [PMID: 21519488 ]
[328]
Oida, K.; Ebata, K.; Kanehara, H.; Suzuki, J.; Miyamori, I. Effect of cilostazol on impaired vasodilatory response of the brachial artery to ischemia in smokers. J. Atheroscler. Thromb., 2003, 10(2), 93-98.
[http://dx.doi.org/10.5551/jat.10.93] [PMID: 12740483 ]
[329]
Jeong, I.S.; Park, J.H.; Jin, S.A.; Kim, J.H.; Lee, J.H.; Choi, S.W.; Jeong, J.O.; Seong, I.W. Oral sarpogrelate can improve endothelial dysfunction as effectively as oral cilostazol, with fewer headaches, in active young male smokers. Heart Vessels, 2013, 28(5), 578-582.
[http://dx.doi.org/10.1007/s00380-012-0282-1] [PMID: 22968852 ]
[330]
Rajagopalan, S.; Pfenninger, D.; Somers, E.; Kehrer, C.; Chakrabarti, A.; Mukherjee, D.; Brook, R.; Kaplan, M.J. Effects of cilostazol in patients with Raynaud’s syndrome. Am. J. Cardiol., 2003, 92(11), 1310-1315.
[http://dx.doi.org/10.1016/j.amjcard.2003.08.013] [PMID: 14636909 ]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 7
Year: 2020
Page: [1089 - 1131]
Pages: 43
DOI: 10.2174/0929867326666190119154152
Price: $65

Article Metrics

PDF: 60
HTML: 4