Chemical Composition, Antibacterial, Insecticidal and Anti-Oxidant Activities of Three Acantholimon Species (A. atropatanum, A. gilliatii and A. tragacanthium)

Author(s): Ardalan Pasdaran, Satyajit D. Sarker, Lutfun Nahar, Azadeh Hamedi*

Journal Name: The Natural Products Journal

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The essential oil from the Acantholimon genus have been an integral part of the traditional food additive in Middle East. Most of the plants in Acantholimon genus have not been studied scientifically. The aim of this study is to investigate the chemical composition, antibacterial, insecticidal and anti-oxidant activities of three Acantholimon species including Acantholimon atropatanum, A. gilliatii and A. tragacanthium.

Method: The essential oils of the aerial parts were extracted by hydrodistillation. Chemical constitutions were identified by gas chromatography- mass spectroscopy technique, also their toxicities were assessed against the two important grain products pests, Oryzeaphilus mercator and Tribolium castaneum. Antibacterial activity was assessed against the three foodborne bacteria that include Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus based on the disc diffusion assay. Free-radical-scavenging property was identified based on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.

Results: 2-hexahydrofarnesyl acetone was the main compound in A. gilliatii and A. tragacanthium, whilst farnesyl acetone, heptacosane and germacrene D were the principal components of A. atropatanum essential oil. These oils exhibited 40-90% mortality of O. mercator and/or T. castaneum at a dose of 12 μl/l air after 48h of exposure, and exhibited significant free-radicalscavenging property (RC50 = 3.7 × 10-3 - 8.3 × 10-3 mg/ml). The oils of A. tragacanthium and A. gilliatii showed a weaker antibacterial activity compared to A. atropatanum.

Conclusion: A. atropatanum, A. gilliatii and A. tragacanthium essential oils had significant insecticidal and anti-oxidant properties. They also showed week to moderate antibacterial activity against P. aeruginosa and S. aureus.

Keywords: Acantholimon, Plumbaginaceae, GC-MS, essential oil, toxicity, antimicrobial activity, free-radical-scavenging.

[1]
Giday, M.; Teklehaymanot, T.; Animut, A.; Mekonnen, Y. Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. J. Ethnopharmacol., 2007, 110(3), 516-525.
[http://dx.doi.org/10.1016/j.jep.2006.10.011] [PMID: 17101251]
[2]
Voeks, R.A.; Leony, A. Forgetting the forest: Assessing medicinal plant erosion in eastern Brazil. Econ. Bot., 2004, 58(1), S294-S306.
[http://dx.doi.org/10.1663/0013-0001(2004)58[S294:FTFAMP]2.0.CO;2]
[3]
Tabuti, J.R.S.; Lye, K.A.; Dhillion, S.S. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J. Ethnopharmacol., 2003, 88(1), 19-44.
[http://dx.doi.org/10.1016/S0378-8741(03)00161-2] [PMID: 12902048]
[4]
Markandeya, D. Antimicrobial and phytochemical screening of Plumbago zeylanica Linn. (Plumbaginaceae) leaf. J. Exp. Sci., 2011, 2(3)
[5]
Chiu, N.; Chang, K. The Illustrated Medicinal Plants of Taiwan; Southern Materials Center Inc.: Taipei, 1986, p. 99.
[6]
Corrêa, M.P. Diccionário das plantas úteis do Brasil e das exóticas cultiva-das., Ministério da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal: Rio de Janeiro. 1984.
[7]
Pullaiah, T. Encyclopaedia of world medicinal plants., Daya books:New Delhi, India. 2006. Vol. 1.
[8]
Sunil, C.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2012, 50(12), 4356-4363.
[http://dx.doi.org/10.1016/j.fct.2012.08.046] [PMID: 22960630]
[9]
Simonsen, H.T.; Nordskjold, J.B.; Smitt, U.W.; Nyman, U.; Palpu, P.; Joshi, P.; Varughese, G. In vitro screening of Indian medicinal plants for antiplasmodial activity. J. Ethnopharmacol., 2001, 74(2), 195-204.
[http://dx.doi.org/10.1016/S0378-8741(00)00369-X] [PMID: 11167038]
[10]
Olagunju, J.A.; Jobi, A.A.; Oyedapo, O.O. An investigation into the biochemical basis of the observed hyperglycaemia in rats treated with ethanol root extract of Plumbago zeylanica. Phytother.Res., 1999, 13(4), 346-348.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4‹346::AID-PTR444›3.0.CO;2-D] [PMID: 10404546]
[11]
Patil, C.D.; Patil, S.V.; Salunke, B.K.; Salunkhe, R.B. Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol. Res., 2011, 108(5), 1253-1263.
[http://dx.doi.org/10.1007/s00436-010-2174-6] [PMID: 21107859]
[12]
Association pour la protection de la nature et de l’environnement Flore succincte, et Ollustrée des, zones arides et sahariennes de Tunisie, L'Or du temps: Sfax, Tunisia. 1998.
[13]
Gunaherath, G.; Gunatilaka, A.; Sultanbawa, M.U.S.; Balasubramaniam, S. 1, 2 (3)-Tetrahydro-3, 3′-biplumbagin: A naphthalenone and other constituents from Plumbago zeylanica. Phytochemistry, 1983, 22(5), 1245-1247.
[http://dx.doi.org/10.1016/0031-9422(83)80232-5]
[14]
Trabelsi, N.; Oueslati, S.; Falleh, H.; Waffo-Téguo, P.; Papastamoulis, Y.; Mérillon, J-M.; Abdelly, C.; Ksouri, R. Isolation of powerful antioxidants from the medicinal halophyte Limoniastrum guyonianum. Food Chem., 2012, 135(3), 1419-1424.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.120] [PMID: 22953875]
[15]
Asen, S.; Plimmer, J. 4, 6, 4′-Trihydroxyaurone and other flavonoids from Limonium. Phytochemistry, 1972, 11(8), 2601-2603.
[http://dx.doi.org/10.1016/S0031-9422(00)88547-7]
[16]
Sreelatha, T.; Hymavathi, A.; Murthy, J.M.; Rani, P.U.; Rao, J.M.; Babu, K.S. Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb. Bioorg. Med. Chem. Lett., 2010, 20(9), 2974-2977.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.107] [PMID: 20347303]
[17]
Sankaram, A.V.; Srinivasarao, A.; Sidhu, G.S. Chitranone- A new binaphthaquinone from Plumbago zeylanica. Phytochemistry, 1976, 15(1), 237-238.
[http://dx.doi.org/10.1016/S0031-9422(00)89104-9]
[18]
Kishore, N.; Mishra, B.B.; Tiwari, V.K.; Tripathi, V. Difuranonaphthoquinones from Plumbago zeylanica roots. Phytochem. Lett., 2010, 3(2), 62-65.
[http://dx.doi.org/10.1016/j.phytol.2009.11.007]
[19]
Trabelsi, N.; Oueslati, S.; Ksouri, R.; Nassra, M.; Marchal, A.; Krisa, S.; Abdelly, C.; Mérillon, J.M.; Waffo-Téguo, P. The antioxidant properties of new dimer and two monomers of phenolic acid amides isolated from Limoniastrum guyonianum. Food Chem., 2014, 146, 466-471.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.077] [PMID: 24176369]
[20]
Pavela, R. Efficacy of naphthoquinones as insecticides against the house fly, Musca domestica L. Ind. Crops Prod., 2013, 43, 745-750.
[http://dx.doi.org/10.1016/j.indcrop.2012.08.025]
[21]
Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Advance. Res., 2006, 661, 23-67.
[22]
Duffey, S.S.; Stout, M.J. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol., 1996, 32(1), 3-37.
[http://dx.doi.org/10.1002/(SICI)1520-6327(1996)32:1<3:AID-ARCH2>3.0.CO;2-1]
[23]
Asnaashari, S.; Delazar, A.; Alipour, S.S.; Nahar, L.; Williams, A.S.; Pasdaran, A. Chemical composition, free-radical-scavenging and insecticidal activities of the aerial parts of Stachys byzantina. Arch. Biol. Sci., 2010, 62(3), 653-662.
[http://dx.doi.org/10.2298/ABS1003653A]
[24]
Isman, M.B. Plant essential oils for pest and disease management. Crop Prot., 2000, 19(8), 603-608.
[http://dx.doi.org/10.1016/S0261-2194(00)00079-X]
[25]
Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev., 2011, 10(2), 197-204.
[http://dx.doi.org/10.1007/s11101-010-9170-4]
[26]
Muzaffariyan, V.A. Dictionary of Iranian plant names, 4th ed; Farhang Muasir: Tehran, 1996.
[27]
Lashgari, A.P.; Delazar, A.; Afshar, F.H.; Parsa, D. Contact toxicity and chemical composition of essential oil of Acantholimon scorpius. Pharm. Sci., 2016, 22(2), 138-141.
[http://dx.doi.org/10.15171/PS.2016.22]
[28]
Pasdaran, A.; Hamedi, A.; Mamedov, N.A. Antibacterial and insecticidal activity of volatile compounds of three algae species of Oman Sea. Int. J. Second Metab., 2016, 3(2), 66-73.
[29]
Kordali, S.; Aslan, I.; Çalmaşur, O.; Cakir, A. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius L. Coleoptera: Curculionidae. Ind. Crops Prod., 2006, 23(2), 162-170.
[http://dx.doi.org/10.1016/j.indcrop.2005.05.005]
[30]
Isman, M.B.; Proksch, P.; Yan, J.Y. Insecticidal chromenes from the Asteraceae: Structure‐activity relations. Entomol. Exp. Appl., 1987, 43(1), 87-93.
[http://dx.doi.org/10.1111/j.1570-7458.1987.tb02207.x]
[31]
Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Chem., 2005, 53(24), 9452-9458.
[http://dx.doi.org/10.1021/jf0516538] [PMID: 16302761]
[32]
Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol., 2002, 5(3), 237-243.
[http://dx.doi.org/10.1016/S1369-5266(02)00251-0] [PMID: 11960742]
[33]
Prajapati, V.; Tripathi, A.; Khanuja, S.; Kumar, S. Anti-insect screening of medicinal plants from Kukrail Forest, Lucknow, India. Pharm. Biol., 2003, 41(3), 166-170.
[http://dx.doi.org/10.1076/phbi.41.3.166.15092]
[34]
Jiang, Z.; Akhtar, Y.; Bradbury, R.; Zhang, X.; Isman, M.B. Comparative toxicity of essential oils of Litsea pungens and Litsea cubeba and blends of their major constituents against the cabbage looper, Trichoplusia ni. J. Agric. Food Chem., 2009, 57(11), 4833-4837.
[http://dx.doi.org/10.1021/jf900274r] [PMID: 19422220]
[35]
Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol., 2001, 74(2), 113-123.
[http://dx.doi.org/10.1016/S0378-8741(00)00335-4] [PMID: 11167029]
[36]
Saidana, D.; Mahjoub, S.; Boussaada, O.; Chriaa, J.; Mahjoub, M.A.; Chéraif, I. Antibacterial and antifungal activities of the essential oils of two saltcedar species from Tunisia. J. Am. Oil Chem. Soc., 2008, 85(9), 817-826.
[http://dx.doi.org/10.1007/s11746-008-1251-9]
[37]
Hammami, S.; Nguir, A.; Saidana, D.; Cheriaa, J.; Mighri, Z. Chemical analysis and antimicrobial effects of essential oil from Limoniastrum guyonianum growing in Tunisia. J. Med. Plants Res., 2011, 5, 2540-2545.
[38]
Pasdaran, A.; Hamedi, A. Natural Products as Source of New Antimicrobial Compounds for Skin Infections. In: The Microbiology of Skin, Soft Tissue, Bone and Joint Infections; Kon, K.; Rai, M., Eds.; Academic Press: Cambridge, United States. , 2017; 2, pp. 223-253.
[http://dx.doi.org/10.1016/B978-0-12-811079-9.00014-8]
[39]
Pasdaran, A.; Pasdaran, A.; Sheikhi, D. Volatile oils: Potential agents for the treatment of respiratory infections. The Microbiology of Respiratory System Infections, Kon, K.; Rai, M., Eds.; Academic Press: Cambridge, United States. 2016, 1, 237-261.
[http://dx.doi.org/10.1016/B978-0-12-804543-5.00016-6]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Page: [272 - 278]
Pages: 7
DOI: 10.2174/2210315509666190117153456
Price: $25

Article Metrics

PDF: 13
HTML: 1