Interleukin-17A: A Potential Therapeutic Target in Chronic Lung Diseases

Author(s): Sadiya Bi Shaikh, Ashwini Prabhu, Yashodhar Prabhakar Bhandary*

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that has gained a lot of attention because of its involvement in respiratory diseases. Interleukin-17 cytokine family includes six members, out of which, IL-17A participates towards the immune responses in allergy and inflammation. It also modulates the progression of respiratory disorders.

Objective: The present review is an insight into the involvement and contributions of the proinflammatory cytokine IL-17A in chronic respiratory diseases like Idiopathic Pulmonary Fibrosis (IPF), Chronic Obstructive Pulmonary Distress (COPD), asthma, pneumonia, obliterative bronchiolitis, lung cancer and many others.

Conclusion: IL-17A is a major regulator of inflammatory responses. In all the mentioned diseases, IL- 17A plays a prime role in inducing the diseases, whereas the lack of this pro-inflammatory cytokine reduces the severity of respective respiratory diseases. Thereby, this review suggests IL-17A as an instrumental target in chronic respiratory diseases.

Keywords: IL-17A, lung diseases, inflammation, cytokine, immune response, cell injury.

[1]
McAleer, J.P.; Kolls, J.K. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol. Rev., 2014, 260(1), 129-144.
[http://dx.doi.org/10.1111/imr.12183] [PMID: 24942687]
[2]
Creativecommons.org. Creative Commons — Attribution 3.0 Unported— CC BY 3.0 [Internet 2015 [cited 18 August 2015] http://creativecommons.org/licenses/by/3.0
[3]
Chung, K.F. Cytokines as targets in chronic obstructive pulmonary disease. Curr. Drug Targets, 2006, 7(6), 675-681.
[http://dx.doi.org/10.2174/138945006777435263] [PMID: 16787167]
[4]
McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol., 2007, 7(6), 429-442.
[http://dx.doi.org/10.1038/nri2094] [PMID: 17525752]
[5]
Tan, H.L.; Rosenthal, M. IL-17 in lung disease: friend or foe? Thorax, 2013, 68(8), 788-790.
[http://dx.doi.org/10.1136/thoraxjnl-2013-203307] [PMID: 23604380]
[6]
Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 Signaling: The yin and the yang. Trends Immunol., 2017, 38(5), 310-322.
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[7]
Matsuzaki, G.; Umemura, M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol. Immunol., 2018, 62(1), 1-13.
[http://dx.doi.org/10.1111/1348-0421.12560] [PMID: 29205464]
[8]
Hosseinzadeh, A.; Javad-Moosavi, S.A.; Reiter, R.J.; Hemati, K.; Ghaznavi, H.; Mehrzadi, S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci., 2018, 201, 17-29.
[http://dx.doi.org/10.1016/j.lfs.2018.03.032] [PMID: 29567077]
[9]
Gouda, M.M.; Prabhu, A.; Bhandary, Y.P. Curcumin alleviates IL-17A-mediated p53-PAI-1 expression in bleomycin-induced alveolar basal epithelial cells. J. Cell. Biochem., 2018, 119(2), 2222-2230.
[http://dx.doi.org/10.1002/jcb.26384] [PMID: 28902433]
[10]
Wang, T.; Liu, Y.; Zou, J.F.; Cheng, Z.S. Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation. PLoS One, 2017, 12(9)e0183972
[http://dx.doi.org/10.1371/journal.pone.0183972] [PMID: 28873461]
[11]
Chen, T.; Weng, D.; Li, H. Herpes Simplex Virus (hsv) Can Induce Acute Exacerbations Of Established Pulmonary Fibro-sis By Increasing IL-17A Secretion. Am. J. Respir. Crit. Care Med., 2017, 195, A2390.
[12]
Wilson, M.S.; Madala, S.K.; Ramalingam, T.R.; Gochuico, B.R.; Rosas, I.O.; Cheever, A.W.; Wynn, T.A. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med., 2010, 207(3), 535-552.
[http://dx.doi.org/10.1084/jem.20092121] [PMID: 20176803]
[13]
Cipolla, E.; Fisher, A.J.; Gu, H.; Mickler, E.A.; Agarwal, M.; Wilke, C.A.; Kim, K.K.; Moore, B.B.; Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis. FASEB J., 2017, 31(12), 5543-5556.
[http://dx.doi.org/10.1096/fj.201700289R] [PMID: 28821630]
[14]
Kuwal, A.; Joshi, V.; Dutt, N.; Singh, S.; Agarwal, K.C.; Purohit, G. A Prospective Study of Bacteriological Etiology in Hospitalized Acute Exacerbation of COPD Patients: Relationship with Lung Function and Respiratory Failure. Turk Thorac J, 2018, 19(1), 19-27.
[http://dx.doi.org/10.5152/TurkThoracJ.2017.17035] [PMID: 29404182]
[15]
Aghapour, M.; Raee, P.; Moghaddam, S.J.; Hiemstra, P.S.; Heijink, I.H. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 157-169.
[http://dx.doi.org/10.1165/rcmb.2017-0200TR] [PMID: 28933915]
[16]
Jindal, S.K.; Aggarwal, A.N.; Gupta, D.; Agarwal, R.; Kumar, R.; Kaur, T.; Chaudhry, K.; Shah, B. Indian study on epidemiology of asthma, respiratory symptoms and chronic bronchitis in adults (INSEARCH). Int. J. Tuberc. Lung Dis., 2012, 16(9), 1270-1277.
[http://dx.doi.org/10.5588/ijtld.12.0005] [PMID: 22871327]
[17]
Roos, A.B.; Mori, M.; Gura, H.K.; Lorentz, A.; Bjermer, L.; Hoffmann, H.J.; Erjefält, J.S.; Stampfli, M.R. Increased IL-17RA and IL-17RC in End-Stage COPD and the Contribution to Mast Cell Secretion of FGF-2 and VEGF. Respir. Res., 2017, 18(1), 48.
[http://dx.doi.org/10.1186/s12931-017-0534-9] [PMID: 28298222]
[18]
Roos, A.B.; Sethi, S.; Nikota, J.; Wrona, C.T.; Dorrington, M.G.; Sanden, C. ’; Bauer, C.M.; Shen, P.; Bowdish, D.; Ste-venson, C.S. IL-17A and the promotion of Neutrophilia in Acute Exacerbation of Chronic Obstructive Pulmonary Dis-ease. Am. J. Respir. Crit. Care Med., 2015, 192(4), 428-437.
[http://dx.doi.org/10.1164/rccm.201409-1689OC] [PMID: 26039632]
[19]
Fernandez-Botran, R.; Peyrani, P.; Wiemken, T.; Reyes, A.; Gauhar, U.; Rivas-Perez, H.; Roman, J.; Gearhart, J.A.M.; Ramirez, R.C. Role Of Cytokines In The Lung And Systemic Inflammation In Patients With COPD. Am. J. Respir. Crit. Care Med., 2017, 195, A6307.
[20]
Lau, W.L.; Tsantiskos, E.; Anderson, G. Dual-phenotype mouse model of COPD study suggest combined therapy tar-geting G-CSF and IL-17A could treat COPD. Eur. Respir. J., 2017, 50, PA377.
[21]
Lai, T.; Tian, B.; Cao, C.; Hu, Y.; Zhou, J.; Wang, Y.; Wu, Y.; Li, Z.; Xu, X.; Zhang, M.; Xu, F.; Cao, Y.; Chen, M.; Wu, D.; Wu, B.; Dong, C.; Li, W.; Ying, S.; Chen, Z.; Shen, H. HDAC2 suppresses IL17A-mediated airway remodeling in human and experimental mod-eling of COPD. Chest, 2018, 153(4), 863-875.
[http://dx.doi.org/10.1016/j.chest.2017.10.031] [PMID: 29113816]
[22]
Louhaichi, S.; Salhi, M.; Berraïes, A.; Hamdi, B.; Ammar, J.; Hamzaoui, K.; Hamzaoui, A. Co-inhibitory receptors in fe-male asthmatic patients: Correlation with IL-17 and IL-26. AIMS. Allergy. Immunol., 2018, 2(1), 10-23.
[23]
Zhao, P.; Li, J.; Tian, Y.; Mao, J.; Liu, X.; Feng, S.; Li, J.; Bian, Q.; Ji, H.; Zhang, L. Restoring Th17/Treg balance via modulation of STAT3 and STAT5 activation contributes to the amelioration of chronic obstructive pulmonary disease by Bufei Yishen formula. J. Ethnopharmacol., 2018, 217, 152-162.
[http://dx.doi.org/10.1016/j.jep.2018.02.023] [PMID: 29454913]
[24]
Chenuet, P.; Fauconnier, L.; Madouri, F.; Marchiol, T.; Rouxel, N.; Ledru, A.; Mauny, P.; Lory, R.; Uttenhove, C.; van Snick, J.; Iwakura, Y.; di Padova, F.; Quesniaux, V.; Togbe, D.; Ryffel, B. Neutralization of either IL-17A or IL-17F is sufficient to inhibit house dust mite induced allergic asthma in mice. Clin. Sci. (Lond.), 2017, 131(20), 2533-2548.
[http://dx.doi.org/10.1042/CS20171034] [PMID: 29026003]
[25]
Gorska, M.M.; Lenberg, J.; Alam, R.; Qian, Q. Critical Role of IL-1beta and IL-17A in Transmission of Asthma Predisposi-tion Across Generations. J. Allergy Clin. Immunol., 2017, 139(2), AB180.
[http://dx.doi.org/10.1016/j.jaci.2016.12.589]
[26]
McAlees, J.W.; Baker, T.; Hall, S.L.; Kim, E.; McKnight, C.G.; Lindsley, A.W.; Strait, R.T.; Zhang, X.; Myers, J.M.; Kovacic, M.B.; Lewkowich, I.P. Associations between asthma severity and responsiveness to Th2-and Th17-derived Cytokines in Pediatric Asthmatics. J. Allergy Clin. Immunol., 2018, 141(2), AB76.
[http://dx.doi.org/10.1016/j.jaci.2017.12.244]
[27]
Charrad, R.; Berraïes, A.; Hamdi, B.; Ammar, J.; Hamzaoui, K.; Hamzaoui, A. Anti-inflammatory activity of IL-37 in asthmatic children: Correlation with inflammatory cytokines TNF-α, IL-β, IL-6 and IL-17A. Immunobiology, 2016, 221(2), 182-187.
[http://dx.doi.org/10.1016/j.imbio.2015.09.009] [PMID: 26454413]
[28]
Maalmi, H.; Beraies, A.; Charad, R.; Ammar, J.; Hamzaoui, K.; Hamzaoui, A. IL-17A and IL-17F genes variants and susceptibility to childhood asthma in Tunisia. J. Asthma, 2014, 51(4), 348-354.
[http://dx.doi.org/10.3109/02770903.2013.876647] [PMID: 24393079]
[29]
Lindén, A.; Dahlén, B. Interleukin-17 cytokine signalling in patients with asthma. Eur. Respir. J., 2014, 44(5), 1319-1331.
[http://dx.doi.org/10.1183/09031936.00002314] [PMID: 24925921]
[30]
Ricciardolo, F.L.M.; Sorbello, V.; Folino, A.; Gallo, F.; Massaglia, G.M.; Favatà, G.; Conticello, S.; Vallese, D.; Gani, F.; Malerba, M.; Folkerts, G.; Rolla, G.; Profita, M.; Mauad, T.; Di Stefano, A.; Ciprandi, G. Identification of IL-17F/frequent exacerbator endotype in asthma. J. Allergy Clin. Immunol., 2017, 140(2), 395-406.
[http://dx.doi.org/10.1016/j.jaci.2016.10.034] [PMID: 27931975]
[31]
O’Connor, J.; Barney, J. Obliterative Bronchitis and Bronchio-litis after Toxic Epidermal Necrolysis.D37. Cf and non-cf bronchiectasis and immune deficiencies: case reports; Ameri-can Thoracic Society, 2018, pp. A6710-A6710.
[32]
Meng, Q.; Liu, J.; Lin, F.; Bao, L.; Jiang, Y.; Zheng, L.; Tie, J.; Zhang, L.; Liang, X.; Wei, L.; Li, Y.; Fan, H.; Zhou, X. IL-17 contributes to the pathogenesis of obliterative bronchiolitis via regulation of M1 macrophages polarization in murine heterotopic trachea transplantation models. Int. Immunopharmacol., 2017, 52, 51-60.
[http://dx.doi.org/10.1016/j.intimp.2017.08.022] [PMID: 28863322]
[33]
Gupta, P.K.; Wagner, S.R.; Wu, Q.; Shilling, R.A. IL-17A blockade attenuates obliterative bronchiolitis and IFN-γ cellu-lar immune response in lung allografts. Am. J. Respir. Cell Mol. Biol., 2017, 56(6), 708-715.
[http://dx.doi.org/10.1165/rcmb.2016-0154OC] [PMID: 28118023]
[34]
Fan, L.; Benson, H.L.; Vittal, R.; Mickler, E.A.; Presson, R.; Fisher, A.J.; Cummings, O.W.; Heidler, K.M.; Keller, M.R.; Burlingham, W.J.; Wilkes, D.S. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am. J. Transplant., 2011, 11(5), 911-922.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03482.x] [PMID: 21521466]
[35]
Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res., 2009, 2, 1-11.
[PMID: 22096348]
[36]
Mi, S.; Li, Z.; Yang, H.Z.; Liu, H.; Wang, J.P.; Ma, Y.G.; Wang, X.X.; Liu, H.Z.; Sun, W.; Hu, Z.W. Correction: Block-ing IL-17A Promotes the Resolution of Pulmonary Inflamma-tion and Fibrosis Via TGF-β1–Dependent and–Independent Mechanisms. J. Immunol., 2014, 193(10), 5345-5346.
[http://dx.doi.org/10.4049/jimmunol.1490041]
[37]
Rajput, C.; Han, M.; Bentley, J.K.; Lei, J.; Ishikawa, T.; Wu, Q.; Hinde, J.L.; Callear, A.P.; Stillwell, T.L.; Jackson, W.T.; Martin, E.T.; Hershenson, M.B. Enterovirus D68 infection induces IL-17-dependent neutrophilic airway inflammation and hyperresponsiveness. JCI Insight, 2018, 3(16)121882
[http://dx.doi.org/10.1172/jci.insight.121882] [PMID: 30135310]
[38]
Johnson, M.M.; Odell, J.A. Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis., 2014, 6(3), 210-220.
[PMID: 24624285]
[39]
Picot, V.S.; Bénet, T.; Messaoudi, M.; Telles, J.N.; Chou, M.; Eap, T.; Wang, J.; Shen, K.; Pape, J.W.; Rouzier, V.; Awasthi, S.; Pandey, N.; Bavdekar, A.; Sanghvi, S.; Robinson, A.; Contamin, B.; Hoffmann, J.; Sylla, M.; Diallo, S.; Nymadawa, P.; Dash-Yandag, B.; Russomando, G.; Basualdo, W.; Siqueira, M.M.; Barreto, P.; Komurian-Pradel, F.; Vernet, G.; Endtz, H.; Vanhems, P.; Paranhos-Baccalà, G. pneumonia GABRIEL network. Multicenter case-control study protocol of pneumonia etiology in children: Global Approach to Biological Research, Infectious diseases and Epidemics in Low-income countries (GABRIEL network). BMC Infect. Dis., 2014, 14(1), 635.
[http://dx.doi.org/10.1186/s12879-014-0635-8] [PMID: 25927410]
[40]
Global Health Observatory Data Repository. http://apps.who.int/gho/data/view.main.CM100WORLD-CH9?lang=en
[41]
Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibul-skis, R.; Eisele, T.; Liu, L.; Mathers, C. Child Health Epide-miology Reference Group of WHO and UNICEF Global, re-gional, and national causes of child mortality in 2008: a sys-tematic analysis. Lancet, 2010, 375(9730), 1969-1987.
[http://dx.doi.org/10.1016/S0140-6736(10)60549-1] [PMID: 20466419]
[42]
Ritchie, N.D.; Ritchie, R.; Bayes, H.K.; Mitchell, T.J.; Evans, T.J. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLoS Pathog., 2018, 14(5)e1007099
[http://dx.doi.org/10.1371/journal.ppat.1007099] [PMID: 29813133]
[43]
Zenobia, C.; Hajishengallis, G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol. 2000, 2015, 69(1), 142-159.
[http://dx.doi.org/10.1111/prd.12083] [PMID: 26252407]
[44]
Leiming, G.U.; Gaofeng, D.I.; Wencai, X.U.; Hong, G.E.; Jiang, Y.; Yufei, L.U. Correlations between Ape1/Ref-1, ICAM-1 and IL-17A Levels in Serum and Radiation Pneu-monitis for Local Advanced Non-small Cell Lung Cancer Pa-tients. Chin. J. Lung Cancer, 2018, 21(5), 383-388.
[45]
Mallory, G.B., Jr Predicting disease progression in cystic fibrosis: new use of an old tool. Am. J. Respir. Crit. Care Med., 2012, 186(1), 4-5.
[http://dx.doi.org/10.1164/rccm.201205-0822ED] [PMID: 22753681]
[46]
Bayes, H.K.; Ritchie, N.D.; Evans, T.J. IL-17 is required for control of chronic lung infection caused by Pseudomonas ae-ruginosa. Infect. Immun., 2016, 84(12), 3507-3516.
[http://dx.doi.org/10.1128/IAI.00717-16] [PMID: 27698020]
[47]
Hsu, D.; Taylor, P.; Fletcher, D.; van Heeckeren, R.; Eastman, J.; van Heeckeren, A.; Davis, P.; Chmiel, J.F.; Pearlman, E.; Bonfield, T.L. Interleukin-17 pathophysiology and therapeu-tic intervention in cystic fibrosis lung infection and inflamma-tion. Infect. Immun., 2016, 84(9), 2410-2421.
[http://dx.doi.org/10.1128/IAI.00284-16] [PMID: 27271746]
[48]
Decraene, A.; Willems-Widyastuti, A.; Kasran, A.; De Boeck, K.; Bullens, D.M.; Dupont, L.J. Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable Cystic Fibrosis patients. Respir. Res., 2010, 11(1), 177.
[http://dx.doi.org/10.1186/1465-9921-11-177] [PMID: 21143945]
[49]
Mikacenic, C.; Hansen, E.E.; Radella, F.; Gharib, S.A.; Stapleton, R.D.; Wurfel, M.M. Interleukin-17A Is Associated With Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome. Crit. Care Med., 2016, 44(3), 496-502.
[http://dx.doi.org/10.1097/CCM.0000000000001409] [PMID: 26540401]
[50]
Hagau, N.; Slavcovici, A.; Gonganau, D.N.; Oltean, S.; Dirzu, D.S.; Brezoszki, E.S.; Maxim, M.; Ciuce, C.; Mlesnite, M.; Gavrus, R.L.; Laslo, C.; Hagau, R.; Petrescu, M.; Studnicska, D.M. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. Crit. Care, 2010, 14(6), R203.
[http://dx.doi.org/10.1186/cc9324] [PMID: 21062445]
[51]
Laan, M.; Cui, Z.H.; Hoshino, H.; Lötvall, J.; Sjöstrand, M.; Gruenert, D.C.; Skoogh, B.E.; Lindén, A. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J. Immunol., 1999, 162(4), 2347-2352.
[PMID: 9973514]
[52]
Ye, P.; Rodriguez, F.H.; Kanaly, S.; Stocking, K.L.; Schurr, J.; Schwarzenberger, P.; Oliver, P.; Huang, W.; Zhang, P.; Zhang, J.; Shellito, J.E.; Bagby, G.J.; Nelson, S.; Charrier, K.; Peschon, J.J.; Kolls, J.K. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med., 2001, 194(4), 519-527.
[http://dx.doi.org/10.1084/jem.194.4.519] [PMID: 11514607]
[53]
Muir, R.; Osbourn, M.; Dubois, A.V.; Doran, E.; Small, D.M.; Monahan, A.; O’Kane, C.M.; McAllister, K.; Fitzgerald, D.C.; Kissenpfennig, A.; McAuley, D.F.; Ingram, R.J. Innate lymphoid cells are the predominant source of IL-17A during the early pathogen-esis of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2016, 193(4), 407-416.
[http://dx.doi.org/10.1164/rccm.201410-1782OC] [PMID: 26488187]
[54]
Chen, K.; Kolls, J.K. Chen.; Kong.; Jay, K.; Kolls. Innate lymphoid cells and acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2016, 193(4), 350-352.
[http://dx.doi.org/10.1164/rccm.201510-2101ED] [PMID: 26871668]
[55]
Li, J.T.; Melton, A.C.; Su, G.; Hamm, D.E.; LaFemina, M.; Howard, J.; Fang, X.; Bhat, S.; Huynh, K.M.; O’Kane, C.M.; Ingram, R.J.; Muir, R.R.; McAuley, D.F.; Matthay, M.A.; Sheppard, D. Unexpected role for adaptive αβTh17 cells in acute respiratory distress syndrome. J. Immunol., 2015, 195(1), 87-95.
[http://dx.doi.org/10.4049/jimmunol.1500054] [PMID: 26002979]
[56]
Reppert, S.; Koch, S.; Finotto, S. IL-17A is a central regulator of lung tumor growth. OncoImmunology, 2012, 1(5), 783-785.
[http://dx.doi.org/10.4161/onci.19735] [PMID: 22934282]
[57]
Wu, F.; Xu, J.; Huang, Q.; Han, J.; Duan, L.; Fan, J.; Lv, Z.; Guo, M.; Hu, G.; Chen, L.; Zhang, S.; Tao, X.; Ma, W.; Jin, Y. The role of interleukin-17 in lung cancer. Mediators Inflamm., 2016.20168494079
[http://dx.doi.org/10.1155/2016/8494079] [PMID: 27872514]
[58]
Youlden, D.R.; Cramb, S.M.; Baade, P.D. The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J. Thorac. Oncol., 2008, 3(8), 819-831.
[http://dx.doi.org/10.1097/JTO.0b013e31818020eb] [PMID: 18670299]
[59]
Cheng, S.; Shao, Z.; Liu, X.; Guo, L.; Zhang, X.; Na, Q.; Chen, X.; Ma, Y.; Zheng, J.; Song, B.; Liu, J. Interleukin 17A polymorphism elevates gene expression and is associated with increased risk of nonsmall cell lung cancer. DNA Cell Biol., 2015, 34(1), 63-68.
[http://dx.doi.org/10.1089/dna.2014.2628] [PMID: 25289477]
[60]
Li, Y.; Cao, Z.Y.; Sun, B.; Wang, G.Y.; Fu, Z.; Liu, Y.M.; Kong, Q.F.; Wang, J.H.; Zhang, Y.; Xu, X.Y.; Li, H.L. Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol. Ther., 2011, 12(7), 610-616.
[http://dx.doi.org/10.4161/cbt.12.7.16302] [PMID: 21785272]
[61]
Akbay, E.A.; Koyama, S.; Liu, Y.; Dries, R.; Bufe, L.E.; Silkes, M.; Alam, M.M.; Magee, D.M.; Jones, R.; Jinushi, M.; Kulkarni, M.; Carretero, J.; Wang, X.; Warner-Hatten, T.; Cavanaugh, J.D.; Osa, A.; Kumanogoh, A.; Freeman, G.J.; Awad, M.M.; Christiani, D.C.; Bueno, R.; Hammerman, P.S.; Dranoff, G.; Wong, K.K. Interleukin-17A promotes lung tumor progres-sion through neutrophil attraction to tumor sites and mediat-ing resistance to PD-1 blockade. J. Thorac. Oncol., 2017, 12(8), 1268-1279.
[http://dx.doi.org/10.1016/j.jtho.2017.04.017] [PMID: 28483607]
[62]
Numasaki, M.; Watanabe, M.; Suzuki, T.; Takahashi, H.; Nakamura, A.; McAllister, F.; Hishinuma, T.; Goto, J.; Lotze, M.T.; Kolls, J.K.; Sasaki, H. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J. Immunol., 2005, 175(9), 6177-6189.
[http://dx.doi.org/10.4049/jimmunol.175.9.6177] [PMID: 16237115]
[63]
Ye, Z.J.; Zhou, Q.; Yin, W.; Yuan, M.L.; Yang, W.B.; Xiong, X.Z.; Zhang, J.C.; Shi, H.Z. Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am. J. Respir. Crit. Care Med., 2012, 186(11), 1168-1179.
[http://dx.doi.org/10.1164/rccm.201207-1307OC] [PMID: 23065014]
[64]
Eustace, A.; Smyth, L.J.C.; Mitchell, L.; Williamson, K.; Plumb, J.; Singh, D. Identification of cells expressing IL-17A and IL-17F in the lungs of patients with COPD. Chest, 2011, 139(5), 1089-1100.
[http://dx.doi.org/10.1378/chest.10-0779] [PMID: 20864612]
[65]
Kang, M.J.; Yoon, C.M.; Nam, M.; Kim, D.H.; Choi, J.M.; Lee, C.G.; Elias, J.A. Role of chitinase 3-like-1 in IL-18-induced pulmonary type-1, -2 and-17 inflammation, alveolar destruction and airway fibrosis in the murine lung. Am. J. Respir. Cell Mol. Biol., 2015, 53, 863-871.
[http://dx.doi.org/10.1165/rcmb.2014-0366OC] [PMID: 25955511]
[66]
Al-Ramli, W.; Préfontaine, D.; Chouiali, F.; Martin, J.G.; Olivenstein, R.; Lemière, C.; Hamid, Q.T. (H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol., 2009, 123(5), 1185-1187.
[http://dx.doi.org/10.1016/j.jaci.2009.02.024] [PMID: 19361847]
[67]
Guerra, E.S.; Lee, C.K.; Specht, C.A.; Yadav, B.; Huang, H.; Akalin, A.; Huh, J.R.; Mueller, C.; Levitz, S.M. Central role of IL-23 and IL-17 producing eosinophils as immunomodulato-ry effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog., 2017, 13(1)e1006175
[http://dx.doi.org/10.1371/journal.ppat.1006175] [PMID: 28095479]
[68]
McAllister, F.; Henry, A.; Kreindler, J.L.; Dubin, P.J.; Ulrich, L.; Steele, C.; Finder, J.D.; Pilewski, J.M.; Carreno, B.M.; Goldman, S.J.; Pirhonen, J.; Kolls, J.K. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol., 2005, 175(1), 404-412.
[http://dx.doi.org/10.4049/jimmunol.175.1.404] [PMID: 15972674]
[69]
Reppert, S.; Boross, I.; Koslowski, M.; Türeci, Ö.; Koch, S.; Lehr, H.A.; Finotto, S. A role for T-bet-mediated tumour immune surveillance in anti-IL-17A treatment of lung cancer. Nat. Commun., 2011, 2, 600.
[http://dx.doi.org/10.1038/ncomms1609] [PMID: 22186896]
[70]
Mikacenic, C.; Hansen, E.E.; Radella, F.; Gharib, S.A.; Stapleton, R.D.; Wurfel, M.M. Interleukin-17A Is Associated With Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome. Crit. Care Med., 2016, 44(3), 496-502.
[http://dx.doi.org/10.1097/CCM.0000000000001409] [PMID: 26540401]
[71]
Ding, Q.; Liu, G.Q.; Zeng, Y.Y.; Zhu, J.J.; Liu, Z.Y.; Zhang, X.; Huang, J.A. Role of IL-17 in LPS-induced acute lung injury: an in vivo study. Oncotarget, 2017, 8(55), 93704-93711.
[http://dx.doi.org/10.18632/oncotarget.21474] [PMID: 29212183]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 7
Year: 2019
Page: [921 - 928]
Pages: 8
DOI: 10.2174/1871530319666190116115226
Price: $65

Article Metrics

PDF: 43
HTML: 3
EPUB: 1
PRC: 1