Differences in Serum Biomarkers Between Combined Glucosamine and Chondroitin Versus Celecoxib in a Randomized, Double-blind Trial in Osteoarthritis Patients

Author(s): Sandi L. Navarro*, Marta Herrero, Helena Martinez, Yuzheng Zhang, Jon Ladd, Edward Lo, David Shelley, Timothy W. Randolph, Johanna W. Lampe, Paul D. Lampe

Journal Name: Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents)

Volume 19 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Non-steroidal anti-inflammatory drugs, e.g., celecoxib, are commonly used for inflammatory conditions, but can be associated with adverse effects. Combined glucosamine hydrochloride plus chondroitin sulfate (GH+CS) are commonly used for joint pain and have no known adverse effects. Evidence from in vitro, animal and human studies suggest that GH+CS have anti-inflammatory activity, among other mechanisms of action.

Objective: We evaluated the effects of GH+CS versus celecoxib on a panel of 20 serum proteins involved in inflammation and other metabolic pathways.

Methods: Samples were from a randomized, parallel, double-blind trial of pharmaceutical grade 1500 mg GH + 1200 mg CS (n=96) versus 200 mg celecoxib daily (n=93) for 6- months in knee osteoarthritis (OA) patients. Linear mixed models adjusted for age, sex, body mass index, baseline serum protein values, and rescue medicine use assessed the intervention effects of each treatment arm adjusting for multiple testing.

Results: All serum proteins except WNT16 were lower after treatment with GH+CS, while about half increased after celecoxib. Serum IL-6 was significantly reduced (by 9%, P=0.001) after GH+CS, and satisfied the FDR<0.05 threshold. CCL20, CSF3, and WNT16 increased after celecoxib (by 7%, 9% and 9%, respectively, P<0.05), but these serum proteins were no longer statistically significant after controlling for multiple testing.

Conclusion: The results of this study using samples from a previously conducted trial in OA patients, demonstrate that GH+CS reduces circulating IL-6, an inflammatory cytokine, but is otherwise comparable to celecoxib with regard to effects on other circulating protein biomarkers.

Keywords: Celecoxib, chondroitin, glucosamine, inflammation, knee osteoarthritis, randomized trial.

[1]
Zeng, C.; Wei, J.; Li, H.; Yang, T.; Gao, S.G.; Li, Y.S.; Xiong, Y.L.; Xiao, W.F.; Luo, W.; Yang, T.B.; Lei, G.H. Comparison between 200 mg QD and 100 mg BID oral celecoxib in the treatment of knee or hip osteoarthritis. Sci. Rep., 2015, 5, 10593.
[http://dx.doi.org/10.1038/srep10593] [PMID: 26012738]
[2]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24(2), 121-132.
[http://dx.doi.org/10.1016/j.bpg.2009.11.005] [PMID: 20227026]
[3]
Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; FitzGerald, G.A.; Goss, P.; Halls, H.; Hawk, E.; Hawkey, C.; Hennekens, C.; Hochberg, M.; Holland, L.E.; Kearney, P.M.; Laine, L.; Lanas, A.; Lance, P.; Laupacis, A.; Oates, J.; Patrono, C.; Schnitzer, T.J.; Solomon, S.; Tugwell, P.; Wilson, K.; Wittes, J.; Baigent, C. Coxib and traditional NSAID Trialists’ (CNT) Collaboration. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 2013, 382(9894), 769-779.
[http://dx.doi.org/10.1016/S0140-6736(13)60900-9] [PMID: 23726390]
[4]
Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; Dougados, M.; Hochberg, M.; Hunter, D.J.; Kwoh, K.; Lohmander, L.S.; Tugwell, P. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage, 2008, 16(2), 137-162.
[http://dx.doi.org/10.1016/j.joca.2007.12.013] [PMID: 18279766]
[5]
Clegg, D.O.; Reda, D.J.; Harris, C.L.; Klein, M.A.; O’Dell, J.R.; Hooper, M.M.; Bradley, J.D.; Bingham, C.O.; Weisman, M.H.; Jackson, C.G.; Lane, N.E.; Cush, J.J.; Moreland, L.W.; Schumacher, H.R., Jr; Oddis, C.V.; Wolfe, F.; Molitor, J.A.; Yocum, D.E.; Schnitzer, T.J.; Furst, D.E.; Sawitzke, A.D.; Shi, H.; Brandt, K.D.; Moskowitz, R.W.; Williams, H.J. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med., 2006, 354(8), 795-808.
[http://dx.doi.org/10.1056/NEJMoa052771] [PMID: 16495392]
[6]
Hochberg, M.C.; Martel-Pelletier, J.; Monfort, J.; Möller, I.; Castillo, J.R.; Arden, N.; Berenbaum, F.; Blanco, F.J.; Conaghan, P.G.; Doménech, G.; Henrotin, Y.; Pap, T.; Richette, P.; Sawitzke, A.; du Souich, P.; Pelletier, J.P. MOVES Investigation Group. Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann. Rheum. Dis., 2016, 75(1), 37-44.
[http://dx.doi.org/10.1136/annrheumdis-2014-206792] [PMID: 25589511]
[7]
Sawitzke, A.D.; Shi, H.; Finco, M.F.; Dunlop, D.D.; Harris, C.L.; Singer, N.G.; Bradley, J.D.; Silver, D.; Jackson, C.G.; Lane, N.E.; Oddis, C.V.; Wolfe, F.; Lisse, J.; Furst, D.E.; Bingham, C.O.; Reda, D.J.; Moskowitz, R.W.; Williams, H.J.; Clegg, D.O. Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann. Rheum. Dis., 2010, 69(8), 1459-1464.
[http://dx.doi.org/10.1136/ard.2009.120469] [PMID: 20525840]
[8]
Largo, R.; Alvarez-Soria, M.A.; Díez-Ortego, I.; Calvo, E.; Sánchez-Pernaute, O.; Egido, J.; Herrero-Beaumont, G. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage, 2003, 11(4), 290-298.
[http://dx.doi.org/10.1016/S1063-4584(03)00028-1] [PMID: 12681956]
[9]
Xu, C.X.; Jin, H.; Chung, Y.S.; Shin, J.Y.; Woo, M.A.; Lee, K.H.; Palmos, G.N.; Choi, B.D.; Cho, M.H. Chondroitin sulfate extracted from the Styela clava tunic suppresses TNF-alpha-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-kappaB signal in JB6 cells. Cancer Lett., 2008, 264(1), 93-100.
[http://dx.doi.org/10.1016/j.canlet.2008.01.022] [PMID: 18295395]
[10]
Largo, R.; Martínez-Calatrava, M.J.; Sánchez-Pernaute, O.; Marcos, M.E.; Moreno-Rubio, J.; Aparicio, C.; Egido, J.; Herrero-Beaumont, G. Effect of a high dose of glucosamine on systemic and tissue inflammation in an experimental model of atherosclerosis aggravated by chronic arthritis. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H268-H276.
[http://dx.doi.org/10.1152/ajpheart.00142.2009] [PMID: 19411287]
[11]
Hua, J.; Sakamoto, K.; Kikukawa, T.; Abe, C.; Kurosawa, H.; Nagaoka, I. Evaluation of the suppressive actions of glucosamine on the interleukin-1beta-mediated activation of synoviocytes. Inflamm. Res., 2007, 56(10), 432-438.
[http://dx.doi.org/10.1007/s00011-007-7020-7] [PMID: 18026701]
[12]
Chou, M.M.; Vergnolle, N.; McDougall, J.J.; Wallace, J.L.; Marty, S.; Teskey, V.; Buret, A.G. Effects of chondroitin and glucosamine sulfate in a dietary bar formulation on inflammation, interleukin-1beta, matrix metalloprotease-9, and cartilage damage in arthritis. Exp. Biol. Med. (Maywood), 2005, 230(4), 255-262.
[http://dx.doi.org/10.1177/153537020523000405] [PMID: 15792947]
[13]
Hori, Y.; Hoshino, J.; Yamazaki, C.; Sekiguchi, T.; Miyauchi, S.; Horie, K. Effects of chondroitin sulfate on colitis induced by dextran sulfate sodium in rats. Jpn. J. Pharmacol., 2001, 85(2), 155-160.
[http://dx.doi.org/10.1254/jjp.85.155] [PMID: 11286397]
[14]
Yomogida, S.; Kojima, Y.; Tsutsumi-Ishii, Y.; Hua, J.; Sakamoto, K.; Nagaoka, I. Glucosamine, a naturally occurring amino monosaccharide, suppresses dextran sulfate sodium-induced colitis in rats. Int. J. Mol. Med., 2008, 22(3), 317-323.
[PMID: 18698490]
[15]
Kantor, E.D.; Lampe, J.W.; Vaughan, T.L.; Peters, U.; Rehm, C.D.; White, E. Association between use of specialty dietary supplements and C-reactive protein concentrations. Am. J. Epidemiol., 2012, 176(11), 1002-1013.
[http://dx.doi.org/10.1093/aje/kws186] [PMID: 23139249]
[16]
Navarro, S.L.; White, E.; Kantor, E.D.; Zhang, Y.; Rho, J.; Song, X.; Milne, G.L.; Lampe, P.D.; Lampe, J.W. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One, 2015, 10(2)e0117534
[http://dx.doi.org/10.1371/journal.pone.0117534] [PMID: 25719429]
[17]
Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol., 1988, 15(12), 1833-1840.
[PMID: 3068365]
[18]
Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis., 1957, 16(4), 494-502.
[http://dx.doi.org/10.1136/ard.16.4.494] [PMID: 13498604]
[19]
Loch, C.M.; Ramirez, A.B.; Liu, Y.; Sather, C.L.; Delrow, J.J.; Scholler, N.; Garvik, B.M.; Urban, N.D.; McIntosh, M.W.; Lampe, P.D. Use of high density antibody arrays to validate and discover cancer serum biomarkers. Mol. Oncol., 2007, 1(3), 313-320.
[http://dx.doi.org/10.1016/j.molonc.2007.08.004] [PMID: 19383305]
[20]
Rho, J.H.; Lampe, P.D. High-throughput screening for native autoantigen-autoantibody complexes using antibody microarrays. J. Proteome Res., 2013, 12(5), 2311-2320.
[http://dx.doi.org/10.1021/pr4001674] [PMID: 23541305]
[21]
Ramirez, A.B.; Loch, C.M.; Zhang, Y.; Liu, Y.; Wang, X.; Wayner, E.A.; Sargent, J.E.; Sibani, S.; Hainsworth, E.; Mendoza, E.A.; Eugene, R.; Labaer, J.; Urban, N.D.; McIntosh, M.W.; Lampe, P.D. Use of a single-chain antibody library for ovarian cancer biomarker discovery. Mol. Cell. Proteomics, 2010, 9(7), 1449-1460.
[http://dx.doi.org/10.1074/mcp.M900496-MCP200] [PMID: 20467042]
[22]
Mirus, J.E.; Zhang, Y.; Li, C.I.; Lokshin, A.E.; Prentice, R.L.; Hingorani, S.R.; Lampe, P.D. Cross-species antibody microarray interrogation identifies a 3-protein panel of plasma biomarkers for early diagnosis of pancreas cancer. Clin. Cancer Res., 2015, 21(7), 1764-1771.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3474] [PMID: 25589628]
[23]
Rho, J.H.; Mead, J.R.; Wright, W.S.; Brenner, D.E.; Stave, J.W.; Gildersleeve, J.C.; Lampe, P.D. Discovery of sialyl Lewis A and Lewis X modified protein cancer biomarkers using high density antibody arrays. J. Proteomics, 2014, 96, 291-299.
[http://dx.doi.org/10.1016/j.jprot.2013.10.030] [PMID: 24185138]
[24]
Li, C.I.; Mirus, J.E.; Zhang, Y.; Ramirez, A.B.; Ladd, J.J.; Prentice, R.L.; McIntosh, M.W.; Hanash, S.M.; Lampe, P.D. Discovery and preliminary confirmation of novel early detection biomarkers for triple-negative breast cancer using preclinical plasma samples from the Women’s Health Initiative observational study. Breast Cancer Res. Treat., 2012, 135(2), 611-618.
[http://dx.doi.org/10.1007/s10549-012-2204-4] [PMID: 22903690]
[25]
McTiernan, A.; Yasui, Y.; Sorensen, B.; Irwin, M.L.; Morgan, A.; Rudolph, R.E.; Surawicz, C.; Lampe, J.W.; Ayub, K.; Potter, J.D.; Lampe, P.D. Effect of a 12-month exercise intervention on patterns of cellular proliferation in colonic crypts: a randomized controlled trial. Cancer Epidemiol. Biomarkers Prev., 2006, 15(9), 1588-1597.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0223] [PMID: 16985018]
[26]
Ramirez, A.B.; Lampe, P.D. Discovery and validation of ovarian cancer biomarkers utilizing high density antibody microarrays. Cancer Biomark., 2010-2011, 8(4-5), 293-307.
[http://dx.doi.org/10.3233/CBM-2011-0215] [PMID: 22045360]
[27]
Smyth, G.K. Limma: linear models for microarray data.Bioinformatics and Computational Biology Solutions Using R and Bioconductor. In: ; Gentleman, R.; Carey, V.; Dudoit, S.; Irizarry, R.; Huber, I.W., Eds.; Springer: New York, 2005, pp. 397-420.
[http://dx.doi.org/10.1007/0-387-29362-0_23]
[28]
Smyth, G.K.; Speed, T. Normalization of cDNA microarray data. Methods, 2003, 31(4), 265-273.
[http://dx.doi.org/10.1016/S1046-2023(03)00155-5] [PMID: 14597310]
[29]
Bellamy, N. Pain assessment in osteoarthritis: experience with the WOMAC osteoarthritis index. Semin. Arthritis Rheum., 1989, 18(4)(Suppl. 2), 14-17.
[http://dx.doi.org/10.1016/0049-0172(89)90010-3] [PMID: 2786253]
[30]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Roy Stat. Soc. B. Met., 1995, 57(1), 289-300.
[http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
[31]
Navarro, S.L.; Kantor, E.D.; Song, X.; Milne, G.L.; Lampe, J.W.; Kratz, M.; White, E. Factors associated with multiple biomarkers of systemic inflammation. Cancer Epidemiol. Biomarkers Prev., 2016, 25(3), 521-531.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0956] [PMID: 26908433]
[32]
Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol., 2011, 7(1), 33-42.
[http://dx.doi.org/10.1038/nrrheum.2010.196] [PMID: 21119608]
[33]
Kaneko, S.; Satoh, T.; Chiba, J.; Ju, C.; Inoue, K.; Kagawa, J. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell. Mol. Ther., 2000, 6(2), 71-79.
[http://dx.doi.org/10.1080/13684730050515796] [PMID: 11108572]
[34]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[35]
Porée, B.; Kypriotou, M.; Chadjichristos, C.; Beauchef, G.; Renard, E.; Legendre, F.; Melin, M.; Gueret, S.; Hartmann, D.J.; Malléin-Gerin, F.; Pujol, J.P.; Boumediene, K.; Galéra, P. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J. Biol. Chem., 2008, 283(8), 4850-4865.
[http://dx.doi.org/10.1074/jbc.M706387200] [PMID: 18065760]
[36]
Iovu, M.; Dumais, G.; du Souich, P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthr. Cartilage, 2008, 16(Suppl. 3), S14-S18.
[http://dx.doi.org/10.1016/j.joca.2008.06.008] [PMID: 18667340]
[37]
Chan, P.S.; Caron, J.P.; Orth, M.W. Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate. J. Rheumatol., 2006, 33(7), 1329-1340.
[PMID: 16821268]
[38]
Bak, Y.K.; Lampe, J.W.; Sung, M.K. Dietary supplementation of glucosamine sulfate attenuates intestinal inflammation in a mouse model of experimental colitis. J. Gastroenterol. Hepatol., 2014, 29, 957-963.
[http://dx.doi.org/10.1111/jgh.12485] [PMID: 24325781]
[39]
Azuma, K.; Osaki, T.; Wakuda, T.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Minami, S. Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation, 2012, 35(4), 1462-1465.
[http://dx.doi.org/10.1007/s10753-012-9459-0] [PMID: 22434264]
[40]
Yomogida, S.; Hua, J.; Sakamoto, K.; Nagaoka, I. Glucosamine suppresses interleukin-8 production and ICAM-1 expression by TNF-alpha-stimulated human colonic epithelial HT-29 cells. Int. J. Mol. Med., 2008, 22(2), 205-211.
[PMID: 18636175]
[41]
Hwang, S.Y.; Hwang, J.S.; Kim, S.Y.; Han, I.O. Glucosamine inhibits lipopolysaccharide-stimulated inducible nitric oxide synthase induction by inhibiting expression of NF-kappaB/Rel proteins at the mRNA and protein levels. Nitric Oxide, 2013, 31, 1-8.
[http://dx.doi.org/10.1016/j.niox.2013.02.082] [PMID: 23454593]
[42]
Nakamura, H.; Nishioka, K. Effects of glucosamine/chondroitin supplement on osteoarthritis: involvement of PGE2 and YKL-40. J. Rheumatism Joint Surg., 2002, 21, 175-184.
[43]
Nakamura, H.; Masuko, K.; Yudoh, K.; Kato, T.; Kamada, T.; Kawahara, T. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol. Int., 2007, 27(3), 213-218.
[http://dx.doi.org/10.1007/s00296-006-0197-1] [PMID: 16953394]
[44]
Kantor, E.D.; Lampe, J.W.; Navarro, S.L.; Song, X.; Milne, G.L.; White, E. Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J. Altern. Complement. Med., 2014, 20(6), 479-485.
[http://dx.doi.org/10.1089/acm.2013.0323] [PMID: 24738579]
[45]
Kantor, E.D.; Ulrich, C.M.; Owen, R.W.; Schmezer, P.; Neuhouser, M.L.; Lampe, J.W.; Peters, U.; Shen, D.D.; Vaughan, T.L.; White, E. Specialty supplement use and biologic measures of oxidative stress and DNA damage. Cancer Epidemiol. Biomarkers Prev., 2013, 22(12), 2312-2322.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0470] [PMID: 23917455]
[46]
Madjid, M.; Fatemi, O. Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update. Tex. Heart Inst. J., 2013, 40(1), 17-29.
[PMID: 23467296]
[47]
Harvey, A.E.; Lashinger, L.M.; Hursting, S.D. The growing challenge of obesity and cancer: an inflammatory issue. Ann. N. Y. Acad. Sci., 2011, 1229, 45-52.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06096.x] [PMID: 21793838]
[48]
Aggarwal, B.B. Inflammation, a silent killer in cancer is not so silent! Curr. Opin. Pharmacol., 2009, 9(4), 347-350.
[http://dx.doi.org/10.1016/j.coph.2009.06.018] [PMID: 19671496]
[49]
Shang, Q.; Shi, J.; Song, G.; Zhang, M.; Cai, C.; Hao, J.; Li, G.; Yu, G. Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide. Int. J. Biol. Macromol., 2016, 89, 489-498.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.091] [PMID: 27164502]
[50]
Shang, Q.; Yin, Y.; Zhu, L.; Li, G.; Yu, G.; Wang, X. Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. Int. J. Biol. Macromol., 2016, 86, 112-118.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.055] [PMID: 26800901]
[51]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[52]
National Center for Biotechnology Information. Pub- Chem Compound Database; Glucosamine Hydrochloride; CID=91431; https://pubchem.ncbi.nlm.nih.gov/ compound/45933886 (accessed Dec 17, 2018).
[53]
National Center for Biotechnology Information. Pub- Chem Compound Database; Chondroitin Sulfate; CID=24766; https://pubchem.ncbi.nlm.nih.gov/com pound/24766 (accessed Dec 17, 2018).
[54]
National Center for Biotechnology Information. Pub- Chem Compound Database; Celecoxib; CID=2662, https://pubchem.ncbi.nlm.nih.gov/compound/2662 (accessed Dec 17, 2018).


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2020
Page: [190 - 201]
Pages: 12
DOI: 10.2174/1871523018666190115094512

Article Metrics

PDF: 36
HTML: 3
EPUB: 1
PRC: 1